Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka"

Transkript

1 Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní druhy: a) Disrétní náhodné veličiny, teré nabývají onečně resp spočetně mnoha hodnot b) Spojité náhodné veličiny, teré mohou nabývat libovolných hodnot z určitého (onečného popř neonečného) intervalu Přílady: - počet členů dané domácnosti - počet záazníů ve frontě - počet pousů do padnutí čísla šest - životnost televizoru - vě člověa Disrétní náhodná veličina Disrétní náhodná veličina je určena za dvou předpoladů: (i) je dán obor hodnot, terých nabývá, (ii) je dána p-st výsytu těchto hodnot Záon rozdělení p-sti Funce p ( ), terá aždé hodnotě náhodné veličiny ξ přiřazuje příslušnou p-st p ( ) se nazývá záon rozdělení (p-stní funce, frevenční funce) náhodné veličiny ξ Píšeme p ( ) = P( ξ = ) Distribuční funce Funce F( ), terá aždému reálnému (, + ) přiřazuje p-st toho, že ξ < se nazývá distribuční funce náhodné veličiny ξ Píšeme F( ) = P( ξ < )

2 Přílad: Nechť náhodnou veličinou ξ je počet padlých líců při hodu třemi mincemi Záon rozdělení p-sti je dán tabulou Nareslete graf záona rozdělení p-sti a graf distribuční funce 0 p ( ) p( ) F ( ) 7 0 Pravděpodobnostní funce 4 0 Distribuční funce Vlastnosti distribuční funce (i) 0 F( ) (ii) F( ) = p( i ) i < (iii) Pa ( ξ < b) = Fb ( ) Fa ( ) pro a< b (iv) F je nelesající (v) F( ) = 0, F( + ) = (vi) F je spojitá zleva v bodech i a oboustranně spojitá jinde

3 Číselné charateristiy disrétní náhodné veličiny Počáteční momenty Počátečním momentem -tého řádu náhodné veličiny ξ rozumíme hodnotu danou vztahem μ( ξ ) = i p ( i ) i Speciálně μ ( ) ξ se nazývá střední hodnota náhodné veličiny ξ Je to hodnota, olem níž hodnoty náhodné veličiny při opaování pousu olísají Označení E( ξ ) nebo taé μ Centrální momenty Centrálním momentem -tého řádu náhodné veličiny ξ rozumíme hodnotu danou vztahem ν ( ξ) = ( i μ) p ( i ) i Speciálně ν ( ) ξ se nazývá disperze (rozptyl) náhodné veličiny ξ Je to míra rozptýlení náhodné veličiny ξ olem střední hodnoty při opaování pousu Označení D( ξ ) nebo taé σ Další užívanou charateristiou je standardní (směrodatná) odchyla σ = D( ξ) Mezi počátečními a centrálními momenty platí vztahy: ν = 0 ν = μ μ ν = μ μ μ + μ 4 ν4 = μ4 4μμ+ 6μμ μ Centrální normované momenty Centrálním normovaným momentem -tého řádu náhodné veličiny ξ rozumíme hodnotu danou vztahem ν ( ξ ) ν ( ξ ) = σ Speciálně A = ν ( ξ ) se nazývá oeficient asymetrie a e = ν ( ξ ) 4 se nazývá oeficient ecesu (špičatosti)

4 Přílad: Určete střední hodnotu, disperzi, standardní odchylu, oeficient asymetrie a oeficient ecesu náhodné veličiny ξ vyjadřující počet padlých líců při hodu třemi mincemi 4 p ( ) p ( ) p ( ) p ( ) p ( ) 0 0,5 0,000 0,000 0,000 0,000 0,75 0,75 0,75 0,75 0,75 0,75 0,750,500,000 6,000 0,5 0,75,5,75 0,5 sumy,000,500,000 6,750 6,500 Z posledního řádu tabuly máme μ =,5 μ = μ = 6, 75 μ4 = 6,5 S použitím výše uvedených vzorců vypočteme centrální momenty ν =,5 = 0,75 ν = 6, 75, 5 +, 5 = 0 4 ν 4 = 6,5 4 6,75,5 + 6,5,5 =,5 Tedy: střední hodnota E( ξ ) = μ =,5 disperze D( ξ ) = ν( ξ) = 0,75 standardní odchyla σ = D( ξ) = 0, 75 = 0,660 0 oeficient asymetrie A = ν( ξ) = = 0 0,660,5 oeficient ecesu e = ν 4 = =, = 0, ( 0,75)

5 Něterá rozdělení disrétní náhodné veličiny Alternativní rozdělení A( p ) - má náhodná veličina s pravděpodobnostní funcí p pro = p ( ) = p pro = 0 Obor hodnot {0,}, charateristiy E( ξ ) = p, D( ξ ) = p Rovnoměrné rozdělení R( n ) -má náhodná veličina s pravděpodobnostní funcí p ( ) =, de n je počet možných hodnot n Binomicé rozdělení Bi( np, ) - má náhodná veličina s pravděpodobnostní funcí n n p ( ) = p( p) 0,,,, n, charateristiy E( ξ ) = np, D( ξ ) = np( p) Obor hodnot { } Nechť výsledem nějaého pousu je jev A, pravděpodobnost nastoupení jevu je PA ( ) = p Binomicá náhodná veličina udává počet nastoupení jevu A v n nezávislých pousech Hypergeometricé rozdělení H ( N, M, n ) - má náhodná veličina s pravděpodobnostní funcí M N M n p ( ) =, N n de N je počet prvů záladního souboru; M je počet prvů v záladním souboru, teré mají požadovanou vlastnost; n je počet pousů a je počet vybraných prvů, teré mají zoumanou vlastnost ma 0, M N + n min n, M, Obor hodnot { } { } M M M N n charateristiy E( ξ) = n, D( ξ) = n N N N N

6 Poissonovo rozdělení Po( λ ) - má náhodná veličina s pravděpodobnostní funcí p( ) = λ λ e! Obor hodnot { } 0,,,, charateristiy E( ξ ) = D( ξ) = λ Poissonovsá náhodná veličina udává počet výsytů nějaého jevu v daném jednotovém úseu (časovém, délovém, plošném apod), přičemž výsyty jsou na sobě nezávislé, současně nenastane dva a více jevů a p-st výsytu jevů v daném dostatečně malém dílčím úseu je přímo úměrná veliosti tohoto úseu a je v celém jednotovém úseu stejná

7 Spojitá náhodná veličina Pro spojitou náhodnou veličinu nemá smysl definovat pojem p-stní funce stejným způsobem jao v případě disrétní náhodné veličiny, protože P( ξ = ) = 0 Zavedeme jinou funci, terou nazveme hustotou p-ti Definujme, stejně jao v disrétním případě, pojem distribuční funce F( ) = P( ξ < ) ta, aby byla zachována vlastnost (iii) Pa ( ξ < b) = Fb ( ) Fa ( ) pro a < b Tuto vlastnost můžeme zapsat jao P ( ξ < + h) = F ( + h) F ( ) Odtud P ( ξ < + h) F ( + h) F ( ) = h h P ( ξ < + h) F ( + h) F ( ) lim = lim = f ( ) h 0 h h 0 h Funci f ( ) nazýváme hustotou p-ti náhodné veličiny ξ Je zřejmé, že poslední limita je definicí derivace funce F( ), tedy f ( ) = F ( ) a platí Pa ( ξ b) Fb ( ) Fa ( ) f( d < = = ) b a f ( ) F( ) P( a < b) a Funce hustoty b Distribuční funce

8 Číselné charateristiy spojité náhodné veličiny Počáteční momenty Počátečním momentem -tého řádu náhodné veličiny ξ rozumíme hodnotu danou vztahem μ ( ξ) = f( ) d Speciálně μ ( ) ξ se nazývá střední hodnota náhodné veličiny ξ Je to hodnota, olem níž hodnoty náhodné veličiny při opaování pousu olísají Označení E( ξ ) nebo taé μ Centrální momenty Centrálním momentem -tého řádu náhodné veličiny ξ rozumíme hodnotu danou vztahem ν ( ξ) = ( μ) f( ) d Speciálně ν ( ) ξ se nazývá disperze (rozptyl) náhodné veličiny ξ Je to míra rozptýlení náhodné veličiny ξ olem střední hodnoty při opaování pousu Označení D( ξ ) nebo taé σ Další užívanou charateristiou je standardní (směrodatná) odchyla σ = D( ξ) Mezi počátečními a centrálními momenty platí vztahy: ν = 0 ν = μ μ ν = μ μ μ + μ 4 ν 4 = μ4 4μμ+ 6μμ μ Centrální normované momenty Centrálním normovaným momentem -tého řádu náhodné veličiny ξ rozumíme hodnotu danou vztahem ν ( ξ ) ν ( ξ ) = σ Speciálně A = ν ( ξ ) se nazývá oeficient asymetrie a e = ν ( ξ ) 4 se nazývá oeficient ecesu (špičatosti)

9 Něterá rozdělení spojité náhodné veličiny Rovnoměrné rozdělení R( ab, ) -má náhodná veličina s funcí hustoty pro ab, f( ) = b a 0 pro ab, ( ) Charateristiy E( ξ) = a+ b, D( ξ) = b a Graf hustoty pravděpodobnosti: Distribuční funce 0 pro, a ( ) a F = pro a, b b a pro ( b, ) Graf distribuční funce ( ) F ( ) a b

10 Eponenciální rozdělení E( λ ) -má náhodná veličina s funcí hustoty λe λ pro 0 f( ) = 0 pro < 0 Charateristiy E( ξ) =, D( ξ) = λ λ Graf hustoty pravděpodobnosti: Distribuční funce má tvar λ e pro 0 F( ) = 0 pro < 0 Graf distribuční funce: Toto rozdělení má spojitá náhodná veličina ξ, terá představuje interval čeání na poissonovsý jev resp interval mezi dvěma poissonovsými jevy (např doba čeání na obsluhu, vzdálenost mezi dvěma azy v balíu láty) Závisí na parametru λ, což je převrácená hodnota střední hodnoty doby čeání do nastoupení sledovaného jevu

11 Normální rozdělení N( μ, σ ) -má náhodná veličina s funcí hustoty ( μ ) = e σ π σ ( ) pro (-,+ ) f Charateristiy E( ξ ) μ, ( ξ) σ = D = Grafem hustoty pravděpodobnosti je tzv Gaussova (Gaussova-Laplaceova, zvonová) řiva: Graf distribuční funce: Normální rozdělení používáme v případě, že náhodná veličina je výsledem působení velého počtu nepatrných a vzájemně nezávislých vlivů Normálním rozdělením se dají mnohá jiná používaná rozdělení nahradit

12 Normované normální rozdělení N (0,) Normální rozdělení se střední hodnotou μ = 0 a disperzí σ normované normální rozdělení Hustota p-sti má tvar = se nazývá = e π ( ) pro (-,+ ) ϕ Graf funce hustoty: Graf distribuční funce: Hodnoty funce hustoty a distribuční funce normovaného normálního rozdělení jsou tabelovány Dá se doázat následující věta Věta: Má-li náhodná veličina ξ normální rozdělení ξ μ τ = má rozdělení N (0,) σ N μ σ (, ), náhodná veličina

13 Přílad: Nechť náhodná veličin ξ má rozdělení N (;0,64) Určete, s jaou p-stí padne do intervalu (5,6) Řešení: Platí 5 ξ 6 P(5 < ξ < 6) = P < < = P(,5 < τ <,75) =Φ(,75) Φ (,5) = 0,64 0,64 0,64 = 0,9999 0,99790 = 0,006 Hodnoty distribuční funce Φ byly nalezeny v tabulách Aproimace binomicého rozdělení Vzhledem obtížnosti výpočtu ombinačních čísel pro velá n používá se často aproimace binomicého rozdělení rozdělením Poissonovým nebo rozdělením normálním Pro p < 0, nebo p>0,7 aproimujeme rozdělení Bi( np, ) rozdělením Po( λ), λ = np, pro p 0,;0, 7 pa rozdělením N( μσ, ), μ= np, σ = np( p)

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční

Více

Poznámky k předmětu Aplikovaná statistika, 5.téma

Poznámky k předmětu Aplikovaná statistika, 5.téma Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Distribuční funkce je funkcí neklesající, tj. pro všechna

Distribuční funkce je funkcí neklesající, tj. pro všechna Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005 Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme

Více

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd. ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č.

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č. Mendelova zemědělsá a lesnicá univerzita Provozně eonomicá faulta Výpočet charateristi ze tříděných údajů Statistia I. protool č. 2 Jan Grmela, 2. roční, Eonomicá informatia Zadání 130810, supina Středa

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

1 Rozptyl a kovariance

1 Rozptyl a kovariance Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Měření indukčností cívek

Měření indukčností cívek 7..00 Ṫeorie eletromagneticého pole Měření indučností cíve.......... Petr Česá, studijní supina 05 Letní semestr 000/00 . Měření indučností cíve Měření vlastní a vzájemné indučnosti válcových cíve ZAÁNÍ

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

1 Pravděpodobnostní prostor

1 Pravděpodobnostní prostor PaS 1.-10. přednáška 1 Pravděpodobnostní prostor Náhodný pokus je takový pokus, jehož výsledek nelze s jistotou předpovědět. Pokud jsme schopni pokus za stále stejných podmínek opakovat (například házíme

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

Deskriptivní statistické metody II. Míry polohy Míry variability

Deskriptivní statistické metody II. Míry polohy Míry variability Deskriptivní statistické metody II. Míry polohy Míry variability Jana Vránová, 3.lékařská fakulta UK, Praha Náhodný výběr všechny prvky výběru {x i }, i = 1, 2,, n, se chápou jako náhodné veličiny, které

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

PRAVDĚPODOBNOST A STATISTIKA. Odhady parametrů Postačující statistiky

PRAVDĚPODOBNOST A STATISTIKA. Odhady parametrů Postačující statistiky PRAVDĚPODOBNOS A SAISIKA Odhady parametrů SP3 Připomenutí pojmů Připomenutí pojmů z S1P a SP2 odhady Nechť X,, je náhodný výběr z rozdělení s distribuční funkcí. 1 X,, X ) ( 1 n Statistika se nazývá bodovým

Více

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra.

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra. @091 7. Reciproá funce Reciproou funci znáte ze záladní šoly pod označením nepřímá úměra. Definice: Reciproá funce je dána předpisem ( 0 je reálné číslo) f : y R \ {0} A) Definiční obor funce: Je třeba

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Vstupní tok požadavků

Vstupní tok požadavků Vsupní o požadavů Bodový proces, záladní ypy procesů Bodový proces Sledujeme chod určiého procesu, v němž čas od času dochází jisé význačné událosi posloupnos časových oamžiů = 1 3 4 proces deerminován

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND.

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND. Pravděpodobnostn podobnostní charateristiy diagnosticých testů, Bayesův vzorec Prof.RND RND.Jana Zvárov rová,, DrSc. Náhodný pous, náhodný n jev Náhodný pous: výslede není jednoznačně určen podmínami,

Více

5. B o d o v é o d h a d y p a r a m e t r ů

5. B o d o v é o d h a d y p a r a m e t r ů 5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme

Více

5 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY

5 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY 5 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY 5. Rovnoměrné rozdělení R(a,) - má náhodná veličina X, která má stejnou možnost naýt kterékoliv hodnoty z intervalu < a, >; a, R Definice

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

1. Klasická pravděpodobnost

1. Klasická pravděpodobnost Příklady 1. Klasická pravděpodobnost 1. Házíme dvakrát kostkou. Jaká je pravděpodobnost, že padne alespoň jedna šestka? 2. Základy teorie pravděpodobnosti vznikly v korespondenci mezi dvěma slavnými francouzskými

Více

Základy teorie odhadu parametrů bodový odhad

Základy teorie odhadu parametrů bodový odhad Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru

Více

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopravní Pravděpodobnost a matematická statistika RNDr. Jana Novovičová, CSc. 1999 Vydavatelství ČVUT Lektor : Doc. Ing. Miloslav Vošvrda, CSc. (c) RNDr. Jana

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Normální rozdělení a centrální limitní věta Vilém Vychodil KMI/PRAS, Přednáška 9 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 9) Normální rozdělení

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B. Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistia Přílady a otázy Petr Hebá a Hana Salsá GAUDEAMUS 2011 Autoři: prof. Ing. Petr Hebá, CSc. Autoři: prof. RNDr. Hana Salsá, CSc. Recenzenti: doc. RNDr. Tatiana Gavalcová, CSc.

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo. přednáša KOMBINATORIKA Při řešení mnoha praticých problémů se setáváme s úlohami, ve terých utváříme supiny z prvů nějaé onečné množiny Napřílad máme sestavit rozvrh hodin z daných předmětů, potřebujeme

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Příklad 0.1. Máme balíček karet na Kanastu: celkem 56 karet, z toho čtyři žolíci. Jak často při sejmutí

Příklad 0.1. Máme balíček karet na Kanastu: celkem 56 karet, z toho čtyři žolíci. Jak často při sejmutí 0.1 Pravděpodobnost 1 0.1 Pravděpodobnost V příkladech, na kterých budeme základní pojmy vysvětlovat, se většinou setkáme s možná poněkud neprakticky vyhlížejícím házením kostkami, vytahováním barevných

Více