SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1"

Transkript

1 SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1 Souřadnicové výpočty 2 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc listopad

2 Geodézie 1 přednáška č8 VÝPOČET SOUŘADNIC JEDNOHO BODU TRANSFORMACÍ Ve skriptech Geodézie 1 autora Ing Jana Ratiborského CSc jsou úlohy pro výpočet rovinných pravoúhlých souřadnic jednoho bodu řešeny pomocí transformačních rovnic Z měřených hodnot jsou nejprve vypočteny souřadnice v souřadnicové soustavě vložené do daných bodů staničení s a kolmice k a poté jsou transformačními rovnicemi počítány souřadnice určovaného bodu v souřadnicovém systému S-JTSK Princip řešení je uveden v následujících obrázcích a odvozeních VÝPOČET SOUŘADNIC BODU RAJÓNEM Z pravoúhlého trojúhelníka P 1 3 P 3 jsou pomocí měřených veličin ω 1 a d 13 vypočteny pravoúhlé souřadnice s 13 k 13 staničení a kolmice na spojnici P 1 P 2 : Rovnicemi shodnostní transformace přednáška č7 jsou vypočteny souřadnice určovaného bodu P 3 : a VÝPOČET SOUŘADNIC BODU PROTÍNÁNÍM VPŘED Z ÚHLŮ Princip řešení spočívá v dvojím výpočtu kolmice k 13 s využitím měřených veličin vodorovné úhly ω 1 a ω 2 a to jednak z pravoúhlého trojúhelníka P 1 3 P 3 a dále z pravoúhlého trojúhelníka P 2 3 P 3 kde jednou neznámou hodnotou je délka kolmice k 13 a druhou neznámou délka staničení s 13 V trojúhelníku P 2 3 P 3 se nahradí neznámá délka s 23 = s 12 - s 13 Obě neznámé veličiny se určí řešením dvou rovnic : kde Odtud: Dosazením první rovnice do druhé se získá: a Dále je výpočet prostřednictvím transformačních rovnic stejný jako v předchozím případě s tím že je možno jej obdobně vztáhnout i k bodu P 2 2

3 VÝPOČET SOUŘADNIC BODU PROTÍNÁNÍM Z DÉLEK Hodnota staničení s13 resp délka kolmice k13 se vypočte z měřené délky d13 a vrcholového úhlu ω1 který lze vypočítat z kosinové věty nebo podobně jako v předchozím případě dvojím výpočtem kolmice k13 : Odtud: a Dále je výpočet prostřednictvím transformačních rovnic stejný jako při výpočtu rajónu s tím že je možno jej obdobně vztáhnout i k bodu P2 VÝPOČET SOUŘADNIC BODU PROTÍNÁNÍM ZPĚT Ve skriptech Geodézie 1 je podrobně popsáno určení souřadnic bodu P4 protínáním zpět pomocí řešení Cassiniho Jeho princip spočívá v převedení výpočtu na protínání vpřed z úhlů které vychází z Thaletovy poučky o obvodových úhlech nad průměrem kružnice které jsou pravé obr4 Kružnice jsou proloženy vždy 2 body danými P1 P2 resp P2 P3 a bodem určovaným P4 Pomocné body T a U které jsou průsečíkem přímky proložené bodem P2 a středem Si s odpovídající kružnicí pak musí ležet na přímce společně s určovaným bodem P4 který je zároveň patou kolmice spuštěné z bodu P2 Vodorovné úhly ω1 ω2 měřené na určovaném bodě P4 leží nad tětivou P1 P2 kružnice k1 resp P2 P3 kružnice k2 a vyskytují se tedy nad stejnými tětivami u pomocných bodů T a U obr4 Souřadnice pomocných bodů se vypočtou protínáním vpřed z úhlů 100 gon ω1 resp 100 gon 100 ω2 a to z bodů P1 P2 resp P2 P3 viz odstavec Výpočet souřadnic bodu protínáním vpřed str2 a 3 této přednášky Z jejich souřadnic se vypočítá směrník σtu a dále směrník σ42 = σtu 100 gon Dále se určí vzdálenost paty kolmice bod P4 od jednoho z pomocných bodů např od bodu U Vyjde se přitom z rovnic shodnostní transformace pro bod na kolmici str2 této přednášky analogicky upravených pro značení v obr4: Byly získány dvě rovnice o dvou neznámých jejichž řešením se určí vzdálenost paty kolmice bodu P4 od bodu U tedy su4 Na levé straně rovnic se vytvoří souřadnicové rozdíly Δx2U a Δy2U a první rovnice se násobí cosσut druhá rovnice sinσut: 3

4 a obě rovnice se sečtou: Odtud: Rajónem z bodu U směrník σut a délka su4 se vypočtou souřadnice určovaného bodu P4 str2 této přednášky Pro kontrolu se souřadnice bodu P4 vypočítají také z bodu T směrník σtu a délka st4 POLYGONOVÉ POŘADY Jednou z metod umožňujících současné určení souřadnic více bodů podrobného bodového pole jsou polygonové pořady Vycházejí a končí na bodech jejichž souřadnice jsou známy a určují souřadnice mezibodů prostřednictvím měřených vodorovných úhlů a délek obr5 Vrcholové úhly na daných i určovaných bodech se měří levostranné ve směru postupu měření a s ohledem na požadovanou přesnost v určení souřadnic se často používá trojpodstavcové soupravy trojice stativů s trojnožkami dopředu zcentrovanými na polygonových bodech do kterých se postupně vkládá přístroj a terče s hranoly k eliminaci chyby z centrace přístroje i cílů nucená centrace v trojnožce Rozdělení polygonových pořadů o Z hlediska délky stran se polygonové pořady dělí na pořady s dlouhými stranami 200 až 1500 m a s krátkými stranami 50 až 200 m o Z hlediska připojení na dané body se dělí polygonové pořady na oboustranně připojené a orientované tedy na začátku i na konci obr5 neorientované vetknuté mezi dva pevné body obr6 jednostranně připojené a orientované volné pořady připojené a orientované pouze na začátku pořadu obr7 a uzavřené pořady s orientací obr8 nebo bez orientace pořady vycházející a končící na stejném bodě obr9 o Z hlediska účelu kterému polygonové pořady slouží je možno je dělit na: polygonové pořady pro určení zhušťovacího bodu které se připojují výhradně na body ZPBP polygonové pořady pro určení ostatních bodů PPBP které se mohou připojovat na body ZPBP na zhušťovací body i na body PPBP 4

5 Geometrické parametry a kritéria polygonových pořadů Podle Návodu pro obnovu katastrálního operátu a převod ve znění dodatku č1 a 2 vydaného ČÚZK v roce 2009 platí pro zaměřování bodů PPBP polygonovými pořady následující požadavky: o body PPBP se zaměřují polygonovými pořady oboustranně připojenými a oboustranně orientovanými o polygonové pořady kratší než 15 km mohou být jednostranně orientované popř neorientované vetknuté o neorientované pořady mohou mít nejvýše 4 strany a je-li to možné alespoň na jednom z jeho vrcholů se zaměří orientační úhel vypočte se jeho hodnota ze souřadnic a rozdíl se porovná s mezní odchylkou v úhlu která je dána hodnotou gon pro úhel mezi bodem ZPBP nebo ZhB a bodem PPBP respektive gon pro úhel mezi body PPBP o vodorovné úhly se měří ve skupinách nejméně v jedné teodolitem zajišťujícím přesnost měřených směrů gon při délkách do 500 m je možné použít teodolit s přesností 0002 gon Mezní odchylka v uzávěru skupiny v opakovaném prvním směru osnovy a mezní rozdíl mezi skupinami je 0003 gon 5

6 o délky se měří dvakrát dálkoměrem s přesností na 001 m a obousměrně není-li to vyloučeno a vždy s využitím optických odrazných systémů na cílových bodech Krátké délky lze měřit pásmem zpravidla na jeden klad Použijí se kalibrované dálkoměry a pásma Naměřené délky se opravují o fyzikální redukce z teploty a tlaku vzduchu o matematické redukce do vodorovné roviny z nadmořské výšky a o redukce do zobrazovací roviny S- JTSK Mezní rozdíl dvojice měřených délek je 002 m u délek kratších než 500 m 004 m u délek od 500 m o centrační prvky se nezavádějí při excentricitě e < 001 m V polygonových pořadech a v plošných sítích se zásadně používá trojpodstavcová souprava o geometrické parametry a kritéria přesnosti polygonových pořadů jsou uvedeny v následující tabulce č1: Tab1 Připojovací body Mezní délka Mezní délka Mezní odchylka v uzávěru pořadu strany [m] pořadu d [m] úhlová [cc] polohová [m] ZPBP ZhB n 1/ Σd 1/2 ZPBP ZhB n 1/2 0004Σd 1/2 PPBPZPBP ZhB n 1/2 0006Σd 1/2 kde n je počet bodů pořadu včetně bodů připojovacích Σd je součet délek stran pořadu; pořad má nejvýše 15 nových bodů mezní poměr délek sousedních stran v polygonovém pořadu je 1:3 Poznámka: Ve výše uvedených skriptech Geodézie 1 a Geodézie 12 Návody ke cvičení jsou citována kritéria z již neplatných předpisů které byly nahrazeny Návodem z roku 2007 Jsou-li určovány polygonovými pořady souřadnice bodů vytyčovacích sítí primárního systému pro vytyčování staveb v Inženýrské geodézii musí jejich přesnost vyhovovat požadavkům kladeným na přesnost vytyčení hodnot geometrických veličin tvary a rozměry objektů či liniových staveb ČSN a 2 Přesnost vytyčování staveb Pro tyto účely tedy platí zpravidla přísnější kritéria přesnosti polygonových pořadů a přísnější požadavky na přesnost měřených veličin zvláště délek měří se na 0001 m Polygonový pořad oboustranně připojený a orientovaný Tento typ polygonového pořadu vychází z bodu P y P x P s orientací na bod A y A x A a končí na bodě K y K x K s orientací na bod B y B x B Rovinné souřadnice těchto bodů jsou známy Měří se vrcholové levostranné vodorovné úhly ω i a vodorovné délky stran d ii+1 obr10 pomocí nichž se počítají souřadnice mezilehlých polygonových bodů y i x i Vzhledem k tomu že jsou v tomto případě měřeny tři nadbytečné veličiny dva vrcholové úhly a jedna délka musí dojít při výpočtu souřadnic k vyrovnání aby souřadnice byly určeny jednoznačně Nadbytečná měření slouží jednak ke kontrole měřených veličin a výpočtu a dále zpřesňují výsledné souřadnice Vyrovnání lze provést některým z přibližných postupů nebo exaktně např metodou nejmenších čtverců ve vyšších ročnících po absolvování předmětu Teorie chyb a vyrovnávací počet Při použití přibližného postupu se vyrovnání rozdělí na dvě části a to na vyrovnání úhlové a vyrovnání souřadnicové 6

7 o Postup výpočtu Nejprve se vypočtou ze souřadnic směrníky jižníky orientačních stran σpa a σkb obr10 Postup výpočtu viz přednáška č7 Dále se provede úhlové vyrovnání viz skripta Geodézie1 str205 Nejprve se vypočte úhlový uzávěr: [ ] Ten se porovná s mezním uzávěrem ΔMω Při splnění nerovnosti se úhlový uzávěr rozdělí rovnoměrně na počet vrcholů k v obr10 k = 5 a o tuto hodnotu se opraví jednotlivé vrcholové úhly Znaménko oprav δω určuje znaménko úhlového uzávěru oω správná naměřená Opravy se zaokrouhlují na 01 mgon a jejich součet musí souhlasit s úhlovým uzávěrem mohou se tedy vzájemně lišit o 01 mgon Bude-li úhlový uzávěr např oω = 48 mgon a počet vrcholů 5 jednotlivé opravy budou mít hodnotu např 10 mgon 09 mgon 10 mgon 09 mgon a 10 mgon Součet potom musí být 48 mgon Z opravených úhlů se vypočtou směrníky jednotlivých polygonových stran: Kontrolou správnosti výpočtu je souhlas směrníku σkb vypočteného ze souřadnic a směrníku αkb vypočteného z opravených vrcholových úhlů a směrníku orientační strany na začátku pořadu: Dalším krokem je výpočet přibližných souřadnicových rozdílů z vyrovnaných směrníků a délek stran postupný výpočet rajónů obr11: 7

8 Po výpočtu přibližných souřadnicových rozdílů se vypočtou souřadnicové uzávěry o x o y a to odečtením souřadnicových rozdílů počátečního a koncového bodu pořadu získaných z daných souřadnic a součtu přibližných souřadnicových rozdílů: Pro hodnocení dosažené přesnosti měření se vypočte polohový uzávěr o p : a porovná s mezní hodnotou polohového uzávěru pro mezní délky stran uvedenou v tabulce č1 na str6: Je-li splněna výše uvedená nerovnost souřadnicové uzávěry o x o y se rozdělí nejčastěji úměrně absolutním hodnotám souřadnicových rozdílů: O znaménku oprav δx ii+1 resp δy ii+1 rozhoduje znaménko o x resp o y Výpočet vyrovnaných souřadnic: Kontrola správnosti výpočtu souřadnicového vyrovnání pro obr11: Polygonový pořad neorientovaný vetknutý Vetknutý polygonový pořad vychází a končí na připojovacích bodech P a K jejichž souřadnice jsou dány Na koncových bodech není možné zaměřit orientace na jiné dané body Měří se vrcholové vodorovné úhly i a vodorovné délky d ii+1 a určují se souřadnice mezilehlých polygonových bodů obr13 8

9 o Postup výpočtu Nejprve se vypočtou souřadnice polygonových bodů v pomocném souřadnicovém systému s osami 2y 2x s počátkem vloženým do bodu P a kladnou poloosou +2x vloženou do polygonové strany P1 obr13 Výpočet směrníků v pomocné soustavě Směrník strany P1 ležící v kladné poloose 2x tj 2 P1 = 0 Další směrníky se počítají z měřených vrcholových úhlů ze vztahu: Výpočet souřadnicových rozdílů v pomocné soustavě Pomocí směrníků a délek se vypočtou souřadnicové rozdíly Δ2yii+1 Δ2xii+1 v pomocné soustavě obr13 zeleně resp červeně: Součty souřadnicových rozdílů ΣΔ2yii+1 ΣΔ2xii+1 udávají souřadnicové rozdíly Δ2yPK Δ2xPK v pomocné soustavě obr13: Výpočet úhlu stočení Z daných souřadnic bodů P a K v S-JTSK se vypočte směrník jižník jejich spojnice σpk v obr13 oranžově Obdobně se vypočte směrník 2 PK spojnice PK v pomocné souřadnicové soustavě v obr13 modře Úhel stočení který je dán jejich rozdílem obr13 je zároveň směrníkem jižníkem první polygonové strany P1 v souřadnicovém systému S-JTSK: Další směrníky ii+1 se již vypočtou známým způsobem: nebo se směrníky v pomocné soustavě 2 ii+1 opraví o úhel stočení Souřadnicové vyrovnání Ze směrníků jižníků ii+1 a vodorovných délek polygonových stran dii+1 se vypočtou přibližné souřadnicové rozdíly v S-JTSK: a vypočtou jejich součty: Poté se vypočítají souřadnicové uzávěry oy ox z následujících vztahů: Vypočte se polohový uzávěr op ze vztahu: 9

10 který se hodnotí porovnáním s mezním polohovým uzávěrem ΔMp získaným z tabulky č1 str6 Splní-li polohový uzávěr op nerovnost op ΔMp provede se souřadnicové vyrovnání rozdělení souřadnicových uzávěrů na jednotlivé souřadnicové rozdíly stejným postupem jako v polygonovém pořadu oboustranně připojeném a orientovaném předchozí odststr8 skripta Geodézie1 str207 Polygonový pořad jednostranně připojený a orientovaný volný Volný polygonový pořad vychází z bodu P s orientací na bod A jejichž souřadnice jsou dány Souřadnice dalších bodů tvořících vrcholy polygonového pořadu obr14 jsou určeny pomocí měřených vrcholových úhlů i a vodorovných délek dii+1 avšak bez možnosti vyrovnání pouze nezbytný počet měřených veličin o Postup výpočtu Po výpočtu směrníku jižníku σpa ze souřadnic se vypočtou směrníky ii+1 dalších polygonových stran pomocí vrcholových úhlů obr14: Dále se vypočítají souřadnicové rozdíly Δyii+1 Δxii+1 : a z nich souřadnice jednotlivých polygonových bodů: K úhlovému ani souřadnicovému vyrovnání nedochází Polygonový pořad uzavřený Uzavřené polygonové pořady vycházejí a končí na stejném bodě který může mít známé souřadnice V tom případě je obvykle z tohoto bodu měřena orientace na další bod s danými souřadnicemi Potom se jedná o uzavřený polygonový pořad připojený a orientovaný obr15 Pokud onen výchozí bod nemá známé souřadnice v S-JTSK jedná se o uzavřený polygonový pořad nepřipojený a neorientovaný který je řešen ve vlastní souřadnicové soustavě obr16 10

11 o Postup výpočtu u polygonového pořadu připojeného a orientovaného Jsou měřeny levostranné vrcholové úhly i a vodorovné délky dii+1 Jsou-li očíslovány polygonové body proti směru otáčení hodinových ručiček jedná se o úhly vnitřní Výpočet úhlového uzávěru Součet vnitřních úhlů v n-úhelníku: kde k je počet vrcholů n-úhelníka Při číslování polygonových bodů v opačném směru by levostranné vrcholové úhly byly vnější a jejich součet by byl: Úhlový uzávěr oω se vypočte ze vztahu: popř Úhlové vyrovnání Vyhovuje-li úhlový uzávěr mezní hodnotě úhlového uzávěru rozdělí se rovnoměrně na jednotlivé vrcholové úhly Oprava vodorovného úhlu a o tuto hodnotu se opraví vrcholové úhly Výpočet směrníků Nejprve se vypočte směrník σpa ze souřadnic daných bodů Dále se vypočtou směrníky ii+1 polygonových stran pomocí opravených vrcholových úhlů obr15 Výpočet souřadnicových rozdílů Dále se počítají z vodorovných délek dii+1 a směrníků ii+1 přibližné souřadnicové rozdíly Souřadnicové vyrovnání Protože u uzavřeného polygonového pořadu platí že bod P = K musí být součet souřadnicových rozdílů roven 0: Vlivem náhodných odchylek měřených veličin úhlů a délek vzniknou odchylky v souřadnicových uzávěrech oy ox: Ze souřadnicových uzávěrů se vypočte Pythagorovou větou polohový uzávěr op a porovná s mezním uzávěrem ΔMp získaným z tabulky č1 str6 V případě splnění nerovnosti op ΔMp se provede souřadnicové vyrovnání rozdělení souřadnicových uzávěrů na jednotlivé souřadnicové rozdíly stejným postupem jako v polygonovém pořadu oboustranně připojeném a orientovaném str8 skripta Geodézie1 str207 Z opravených souřadnicových rozdílů se vypočtou souřadnice polygonových bodů o Postup výpočtu u polygonového pořadu nepřipojeného a neorientovaného Při výpočtu tohoto typu polygonového pořadu se nejprve zvolí souřadnicová soustava V uvedeném příkladu obr16 je počátek vložen do polygonového bodu č1 a kladná větev osy x do spojnice bodů 12 11

12 Opět jsou měřeny levostranné vnitřní vrcholové úhly i a vodorovné délky dii+1 Výpočet úhlového uzávěru Součet vnitřních úhlů v n-úhelníku: kde k je počet vrcholů n-úhelníka Úhlový uzávěr oω se vypočte ze vztahu: Úhlové vyrovnání Úhlový uzávěr se stejně jako v předchozím případě rozdělí rovnoměrně na jednotlivé vrcholové úhly Oprava vodorovného úhlu Výpočet směrníků ve vlastní souřadnicové soustavě Směrník α12 = 0 neboť kladná poloosa +x byla vložena do polygonové strany 12 obr16 Dále se vypočtou směrníky ii+1 polygonových stran pomocí vrcholových úhlů Výpočet souřadnicových rozdílů Přibližné souřadnicové rozdíly délek dii+1 a směrníků ii+1 se počítají z vodorovných Souřadnicové vyrovnání Protože u uzavřeného polygonového pořadu platí že výchozí a koncový bod pořadu jsou stejné musí být součet souřadnicových rozdílů roven 0: Vlivem náhodných odchylek měřených veličin úhlů a délek vzniknou odchylky v souřadnicových uzávěrech oy ox: Ze souřadnicových uzávěrů se vypočte Pythagorovou větou polohový uzávěr op a porovná s mezním uzávěrem ΔMp získaným z tabulky č1 str6 V případě splnění nerovnosti op ΔMp se provede souřadnicové vyrovnání rozdělení souřadnicových uzávěrů na jednotlivé souřadnicové rozdíly stejným postupem jako v polygonovém pořadu oboustranně připojeném a orientovaném str8 skripta Geodézie1 str207 Z opravených souřadnicových rozdílů se vypočtou souřadnice polygonových bodů ve vlastní souřadnicové soustavě 12

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015

Více

Podrobné polohové bodové pole (1)

Podrobné polohové bodové pole (1) Podrobné polohové bodové pole (1) BUDOVÁNÍ NEBO REVIZE A DOPLNĚNÍ PODROBNÉHO POLOHOVÉHO BODOVÉHO POLE Prohloubení nabídky dalšího vzdělávání v oblasti Prohloubení nabídky zeměměřictví dalšího vzdělávání

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné

Více

Souřadnicové výpočty. Geodézie Přednáška

Souřadnicové výpočty. Geodézie Přednáška Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

Ukázka hustoty bodového pole

Ukázka hustoty bodového pole Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz síť bodů pokrývající území ČR u bodů jsou známé souřadnice Y, X v S-JTSK, případně souřadnice B, L v ERTS pro každý bod jsou vyhotoveny geodetické údaje (GÚ) ukázka

Více

SYLABUS PŘEDNÁŠKY 9 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 9 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 9 Z GEODÉZIE 1 (Souřadnicové výpočty 3 Centrace měřených veličin) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc prosinec 2015 1 Geodézie

Více

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.7 Vytyčování, souřadnicové výpočty, podélné a příčné profily Vytyčování Geodetická činnost uskutečněná odborně a nestranně na

Více

2. Bodové pole a souřadnicové výpočty

2. Bodové pole a souřadnicové výpočty 2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.

Více

Vytyčovací sítě. Výhody: Přizpůsobení terénu

Vytyčovací sítě. Výhody: Přizpůsobení terénu Typ liniové sítě záleží na požadavcích na přesnost. Mezi tyto sítě patří: polygonové sítě -> polygonový pořad vedený souběžně s liniovou stavbou troj a čtyřúhelníkové řetězce -> zdvojený polygonový pořad

Více

Úvod do inženýrské geodézie

Úvod do inženýrské geodézie Úvod do inženýrské geodézie Úvod do inženýrské geodézie Rozbory přesnosti Vytyčování Čerpáno ze Sylabů přednášek z inženýrské geodézie doc. ing. Jaromíra Procházky, CSc. Úvod do inženýrské geodézie Pod

Více

Vytyčení polohy bodu polární metodou

Vytyčení polohy bodu polární metodou Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5

Více

GEODÉZIE II. daný bod. S i.. měřené délky Ψ i.. měřené směry. orientace. Měřická přímka PRINCIP POLÁRNÍ METODY

GEODÉZIE II. daný bod. S i.. měřené délky Ψ i.. měřené směry. orientace. Měřická přímka PRINCIP POLÁRNÍ METODY Vysoká škola báňská technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Ing. Hana Staňková, Ph.D. kontrolní oměrná míra PRINCIP POLÁRNÍ METODY 4. Podrobné

Více

SYLABUS 8. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE

SYLABUS 8. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE SYLABUS 8 PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE (Vytyčování kružnicových oblouků) 3 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc listopad 2015 1 11 VYTYČOVÁNÍ OBLOUKŮ

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu úloha/zadání název úlohy Inženýrská geodézie II 1/5 Určení nepřístupné vzdálenosti

Více

6.16. Geodetické výpočty - GEV

6.16. Geodetické výpočty - GEV 6.16. Geodetické výpočty - GEV Obor: 36-46-M/01 Geodézie a katastr nemovitostí Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 8 Platnost učební osnovy: od 1.9.2010 1) Pojetí vyučovacího

Více

ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ

ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ 5. PŘEDNÁŠKA LETNÍ 00 ING. HANA STAŇKOVÁ, Ph.D. MĚŘENÍ ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ GEODÉZIE 5. PŘEDNÁŠKA LETNÍ 00 METODY MĚŘENÍ ÚHLŮ. měření úhlů v jedné poloze dalekohledu.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu VÝUKA V TERÉNU Z GEODÉZIE 1, 2 - VY1 kód úlohy název úlohy K PŘÍMÉ

Více

VÝUKA V TERÉNU GD 1,2

VÝUKA V TERÉNU GD 1,2 VÝUKA V TERÉNU GD 1,2 2015 OBECNÉ POKYNY MĚŘENÍ V TERÉNU Každý je povinen být v okamžiku zahájení úlohy seznámen s jejím obsahem a musí mu být zřejmé měřické postupy. Především jaké veličiny se budou měřit,

Více

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu Václav Čech, ČVUT v Praze, Fakulta stavební, 008 Úloha č. 1 : TROJÚHELNÍK Určení prostorových posunů stavebního objektu Zadání : Zjistěte posun bodu P do P, umístěného na horní terase Stavební fakulty.

Více

Výuka v terénu I. Obory: Inženýrská geodézie a Důlní měřictví. Skupiny: GB1IGE01, GB1IGE02, GB1DME

Výuka v terénu I. Obory: Inženýrská geodézie a Důlní měřictví. Skupiny: GB1IGE01, GB1IGE02, GB1DME Výuka v terénu I Obory: Inženýrská geodézie a Důlní měřictví Skupiny: GB1IGE01, GB1IGE02, GB1DME01 27. 4-30. 4. 2015 1. Trojúhelníkový řetězec Zásady pro zpracování úlohy: Zaměřte ve skupinách úhly potřebné

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Souřadnicové výpočty I.

Souřadnicové výpočty I. Geodézie přednáška 7 Souřadnicové výpočt I. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Výpočet směrníku a délk stran v základním i podrobném bodovém poli

Více

SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 7. POLOHOVÉ VYTYČOVACÍ SÍTĚ Vytyčení je součástí realizace

Více

Kontrola svislosti montované budovy

Kontrola svislosti montované budovy 1. Zadání Kontrola svislosti montované budovy Určete skutečné odchylky svislosti panelů na budově ČVUT. Objednatel požaduje kontrolu svislosti štítové stěny objektu. Při konstrukční výšce jednoho podlaží

Více

SYLABUS 9. PŘEDNÁŠKY Z GEODÉZIE 2 (Výpočet výměr)

SYLABUS 9. PŘEDNÁŠKY Z GEODÉZIE 2 (Výpočet výměr) SYLABUS 9. PŘEDNÁŠKY Z GEODÉZIE 2 (Výpočet výměr) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. duben 2016 1 Geodézie 2 přednáška č.9 VÝPOČET VÝMĚR

Více

Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů

Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů 5. PŘEDNÁŠKA LETNÍ 00 Ing. Hana Staňková, Ph.D. Měření úhlů Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů GEODÉZIE 5. PŘEDNÁŠKA LETNÍ 00 POPIS TEODOLITU THEO 00 THEO 00 kolimátor dalekohled

Více

PODROBNÉ MĚŘENÍ POLOHOPISNÉ

PODROBNÉ MĚŘENÍ POLOHOPISNÉ Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství MAPOVÉ PODKLADY Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto 7. 4. 2017 PODROBNÉ MĚŘENÍ POLOHOPISNÉ

Více

Průmyslová střední škola Letohrad Komenského 472, Letohrad

Průmyslová střední škola Letohrad Komenského 472, Letohrad Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi

Více

SYLABUS 6. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE

SYLABUS 6. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE SYLABUS 6. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě, Polohové vytyčování) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. listopad 2015

Více

ČESKÝ ÚŘAD ZEMĚMĚŘICKÝ A KATASTRÁLNÍ. NÁVOD PRO OBNOVU KATASTRÁLNÍHO OPERÁTU A PŘEVOD ve znění dodatků č.1, 2 a 3 (pracovní pomůcka)

ČESKÝ ÚŘAD ZEMĚMĚŘICKÝ A KATASTRÁLNÍ. NÁVOD PRO OBNOVU KATASTRÁLNÍHO OPERÁTU A PŘEVOD ve znění dodatků č.1, 2 a 3 (pracovní pomůcka) ČESKÝ ÚŘAD ZEMĚMĚŘICKÝ A KATASTRÁLNÍ NÁVOD PRO OBNOVU KATASTRÁLNÍHO OPERÁTU A PŘEVOD ve znění dodatků č.1, 2 a 3 (pracovní pomůcka) PRAHA 2013 Zpracoval: Český úřad zeměměřický a katastrální Schválil:

Více

SPŠSTAVEBNÍČeskéBudějovice. MAPOVÁNÍ Polohopisné mapování JS pro G4

SPŠSTAVEBNÍČeskéBudějovice. MAPOVÁNÍ Polohopisné mapování JS pro G4 SPŠSTAVEBNÍČeskéBudějovice MAPOVÁNÍ Polohopisné mapování JS pro G4 vsuvka: návrh řešení domácího úkolu Polohopisnémapování Přípravné práce projekt mapování vybudování měřické sítě příprava náčrtů Zjišťování

Více

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008 Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ VOŠ a SŠS Vysoké Mýto leden 2008 METODY MĚŘENÍ DÉLEK PŘÍMÉ (měřidlo klademe přímo do měřené

Více

6.1 Základní pojmy - zákonné měřící jednotky

6.1 Základní pojmy - zákonné měřící jednotky 6. Měření úhlů 6.1 Základní pojmy 6.2 Teodolity 6.3 Totální stanice 6.4 Osové podmínky, konstrukční chyby a chyby při měření 6.5 Měření úhlů 6.6 Postup při měření vodorovného úhlu 6.7 Postup při měření

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Geodézie. Pozemní stavitelství. denní. Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho 1 hodina cvičení),

Geodézie. Pozemní stavitelství. denní. Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho 1 hodina cvičení), Učební osnova předmětu Geodézie Studijní obor: Stavebnictví Zaměření: Forma vzdělávání: Pozemní stavitelství denní Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho

Více

ČSGK Katastr nemovitostí aktuálně. novela vyhl. č. 31/1995 Sb., bod 10 přílohy Technické požadavky měření a výpočty bodů určovaných terestricky

ČSGK Katastr nemovitostí aktuálně. novela vyhl. č. 31/1995 Sb., bod 10 přílohy Technické požadavky měření a výpočty bodů určovaných terestricky ČSGK Katastr nemovitostí aktuálně (Praha, 15.6.2016) v poslední (celkově 5.) novele předpisu k 1.1.2016 (nabytí účinnosti novely) zformulován nový bod 10 přílohy: Technické požadavky měření a výpočty bodů

Více

7.1 Definice délky. kilo- km 10 3 hekto- hm mili- mm 10-3 deka- dam 10 1 mikro- μm 10-6 deci- dm nano- nm 10-9 centi- cm 10-2

7.1 Definice délky. kilo- km 10 3 hekto- hm mili- mm 10-3 deka- dam 10 1 mikro- μm 10-6 deci- dm nano- nm 10-9 centi- cm 10-2 7. Měření délek 7.1 Definice délky, zákonné měřící jednotky 7.2 Měření délek pásmem 7.3 Optické měření délek 7.3.1 Paralaktické měření délek 7.3.2 Ryskový dálkoměr 7.4 Elektrooptické měření délek 7.5 Fyzikální

Více

Předloha č. 2 podrobné měření

Předloha č. 2 podrobné měření Předloha č. 2 podrobné měření 1. Zadání 2. Zápisník 3. Stručný návod Groma 4. Protokol Groma 5. Stručný návod Geus 6. Protokol Geus 7. Stručný návod Kokeš 8. Protokol Kokeš 1 Zadání 1) Vložte dané body

Více

T a c h y m e t r i e

T a c h y m e t r i e T a c h y m e t r i e (Podrobné měření výškopisu, okolí NTK) Poslední úprava: 2.10.2018 9:59 Úkolem je vyhotovit digitální model terénu pomocí programového systému Atlas DMT (úloha U_7, vztažné měřítko

Více

Průmyslová střední škola Letohrad Komenského 472, Letohrad

Průmyslová střední škola Letohrad Komenského 472, Letohrad Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)

Více

TUNELY 2. Doc. Ing. Pavel Hánek, CSc. Následující stránky jsou doplňkem přednášek předmětu 154GP10 PROFILY TUNELŮ

TUNELY 2. Doc. Ing. Pavel Hánek, CSc. Následující stránky jsou doplňkem přednášek předmětu 154GP10 PROFILY TUNELŮ TUNELY Doc. Ing. Pavel Hánek, CSc. Následující stránky jsou doplňkem přednášek předmětu 154GP10 017 ÚČEL A. Dopravní železniční (jednokolejné, dvoukolejné) silniční podzemní městské dráhy B. Rozvody průplavní,

Více

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 1. část. Ing. Jana Mansfeldová

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 1. část. Ing. Jana Mansfeldová Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY 1. část Ing. Jana Mansfeldová Úvod Tento text je určen pro studenty. až 4. ročníku středních průmyslových škol se zaměřením na geodézii. Jedná se

Více

Sylabus přednášky č.6 z ING3

Sylabus přednášky č.6 z ING3 Sylabus přednášky č.6 z ING3 Přesnost vytyčování staveb (objekty s prostorovou skladbou) Doc. Ing. Jaromír Procházka, CSc. Výtah z ČSN 73 0420-2 Praha 2014 1 PŘESNOST VYTYČOVÁNÍ STAVEB (Výtah z ČSN 73

Více

Seminář z geoinformatiky

Seminář z geoinformatiky Seminář z geoinformatiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Délka je definována jako vzdálenost dvou bodů ve smyslu definované metriky. Délka je tedy popsána v jednotkách, tj. v násobcích

Více

Návod pro obnovu katastrálního operátu a převod

Návod pro obnovu katastrálního operátu a převod Český úřad zeměměřický a katastrální Návod pro obnovu katastrálního operátu a převod Dodatek č. 3 Praha 2013 Zpracoval: Český úřad zeměměřický a katastrální Schválil: Ing. Karel Štencel, místopředseda

Více

OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21

OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21 OBSAH I. ČÁST ZEMĚ A GEODÉZIE 1 Úvod... 1 1.1 Historie měření velikosti a tvaru Země... 1 1.1.1 První určení poloměru Zeměkoule... 1 1.1.2 Středověké měření Země... 1 1.1.3 Nové názory na tvar Země...

Více

7. Určování výšek II.

7. Určování výšek II. 7. Určování výšek II. 7.1 Geometrická nivelace ze středu. 7.1.1 Princip geometrické nivelace. 7.1.2 Výhody geometrické nivelace ze středu. 7.1.3 Dělení nivelace dle přesnosti. 7.1.4 Nivelační přístroje.

Více

Sylabus přednášky č.7 z ING3

Sylabus přednášky č.7 z ING3 Sylabus přednášky č.7 z ING3 Přesnost vytyčování staveb (objekty liniové a plošné) Doc. Ing. Jaromír Procházka, CSc. Výtah z ČSN 73 0420-2 Praha 2014 1 PŘESNOST VYTYČOVÁNÍ STAVEB (Výtah z ČSN 73 0420-2,

Více

SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc s využitím přednášky doc Ing Martina

Více

SYLABUS 10. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 10. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 10 PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Přechodnice, přechodnicové a výškové oblouky) 3 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka, CSc prosinec 2015 1

Více

Vytyčování pozemních stavebních objektů s prostorovou skladbou

Vytyčování pozemních stavebních objektů s prostorovou skladbou Vytyčování pozemních stavebních objektů s prostorovou skladbou ZÁPADOČESKÁ UNIVERZITA V PLZNI Ing. Martina Vichrová, Ph.D. Fakulta aplikovaných věd - KMA oddělení geomatiky vichrova@kma.zcu.cz Vytvoření

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Seminář z geoinformatiky Metody měření výškopisu, Tachymetrie Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Více

SPŠ STAVEBNÍ České Budějovice GEODÉZIE STA NIVELACE VÝŠKOVÉ MĚŘENÍ A VÝŠKOVÉ BODOVÉ POLE JS

SPŠ STAVEBNÍ České Budějovice GEODÉZIE STA NIVELACE VÝŠKOVÉ MĚŘENÍ A VÝŠKOVÉ BODOVÉ POLE JS SPŠ STAVEBNÍ České Budějovice GEODÉZIE STA NIVELACE VÝŠKOVÉ MĚŘENÍ A VÝŠKOVÉ BODOVÉ POLE JS NIVELACE - úvod NIVELACE je měření výškového rozdílu od realizované (vytyčené) vodorovné roviny Provádí se pomocí

Více

Země a mapa. CZ.1.07/1.5.00/34.0015 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT. Geodézie ve stavebnictví.

Země a mapa. CZ.1.07/1.5.00/34.0015 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT. Geodézie ve stavebnictví. Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0015 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Geodézie ve stavebnictví Pořadov é číslo 1 Téma Označení

Více

Geodézie Přednáška. Geodetické polohové a výškové vytyčovací práce

Geodézie Přednáška. Geodetické polohové a výškové vytyčovací práce Geodézie Přednáška Geodetické polohové a výškové vytyčovací práce strana 2 Geodetické vytyčovací práce řeší úlohu přenosu geometricky daných prvků nebo útvarů z plánu, mapy nebo náčrtu do terénu a tam

Více

5.1 Definice, zákonné měřící jednotky.

5.1 Definice, zákonné měřící jednotky. 5. Měření délek. 5.1 Definice, zákonné měřící jednotky. 5.2 Měření délek pásmem. 5.3 Optické měření délek. 5.3.1 Paralaktické měření délek. 5.3.2 Ryskový dálkoměr. 5.4 Elektrooptické měření délek. 5.4.1

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

SYLABUS 6. PŘEDNÁŠKY Z GEODÉZIE 2 (Geodetické základy v ČR)

SYLABUS 6. PŘEDNÁŠKY Z GEODÉZIE 2 (Geodetické základy v ČR) SYLABUS 6. PŘEDNÁŠKY Z GEODÉZIE 2 (Geodetické základy v ČR) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. březen 2015 1 Geodézie 2 přednáška č.6 GEODETICKÉ

Více

Triangulace a trilaterace

Triangulace a trilaterace Výuka v terénu z vyšší geodézie Triangulace a trilaterace Staré Město pod Sněžníkem 2015 1 Popis úlohy V rámci úlohy Triagulace budou metodami klasické geodézie (triangulace, trilaterace, astronomické

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. 1 Komplexní úloha FAKULTA STAVEBNÍ - OBOR STAVEBNÍ INŽENÝRSTVÍ KATEDRA SPECIÁLNÍ GEODÉZIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. 1 Komplexní úloha FAKULTA STAVEBNÍ - OBOR STAVEBNÍ INŽENÝRSTVÍ KATEDRA SPECIÁLNÍ GEODÉZIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ - OBOR STAVEBNÍ INŽENÝRSTVÍ KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu STAVEBNÍ GEODÉZIE číslo úlohy název úlohy 1 Komplexní úloha školní rok den výuky

Více

TECHNICKÁ NIVELACE (U_6) (určování výšek bodů technickou nivelací)

TECHNICKÁ NIVELACE (U_6) (určování výšek bodů technickou nivelací) Pracovní pomůcka TECHNICKÁ NIVELACE (U_6) (určování výšek bodů technickou nivelací) Pořadem technické nivelace (TN) vloženého mezi dva dané nivelační body (PNS-Praha, ČSNS), které se považují za ověřené,

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

SPŠ STAVEBNÍ České Budějovice GEODÉZIE. Teodolit a měření úhlů

SPŠ STAVEBNÍ České Budějovice GEODÉZIE. Teodolit a měření úhlů SPŠ STAVEBNÍ České Budějovice GEODÉZIE Teodolit a měření úhlů ještě doplnění k výškovému systému jadranský systém udává pro stejný bod hodnotu výšky o cca 0,40 m větší než systém Bpv Potřebujeme vědět

Více

Trigonometrické určení výšek nepřístupných bodů na stavebním objektu

Trigonometrické určení výšek nepřístupných bodů na stavebním objektu Trigonometrické určení výšek nepřístupných bodů na stavebním objektu Prof. Ing. Jiří Pospíšil, CSc., 2010 V urbanismu a pozemním stavitelství lze trigonometrického určování výšek užít při zjišťování relativních

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu Geodézie v podzemních prostorách 10 úloha/zadání H/190-4 název úlohy Hloubkové

Více

DOPORUČENÁ LITERATURA VZTAHUJÍCÍ SE KE KATASTRU NEMOVITOSTÍ A ZEMĚMĚŘICTVÍ

DOPORUČENÁ LITERATURA VZTAHUJÍCÍ SE KE KATASTRU NEMOVITOSTÍ A ZEMĚMĚŘICTVÍ Seznam a doporučené odborné literatury ke zkouškám odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností /1/ Zákon č. 177/1927 Sb., o pozemkovém katastru a jeho

Více

TECHNICKÁ ZPRÁVA GEODETICKÉHO ZAMĚŘENÍ

TECHNICKÁ ZPRÁVA GEODETICKÉHO ZAMĚŘENÍ TECHNICKÁ ZPRÁVA GEODETICKÉHO ZAMĚŘENÍ Název akce : Stanovení záplavového území řeky Kamenice Lokalita : Srbská Kamenice - Dolní Falknov Investor : Povodí Ohře s.p. Zadavatel : Hydrosoft Veleslavín s.r.o.,

Více

SPŠ STAVEBNÍ České Budějovice GEODÉZIE. Teodolit a měření úhlů

SPŠ STAVEBNÍ České Budějovice GEODÉZIE. Teodolit a měření úhlů SPŠ STAVEBNÍ České Budějovice GEODÉZIE Teodolit a měření úhlů ještě doplnění k výškovému systému jadranský systém udává pro stejný bod hodnotu výšky o cca 0,40 m větší než systém Bpv Potřebujeme vědět

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

K přesnosti volného stanoviska

K přesnosti volného stanoviska K přesnosti volného stanoviska MDT Doc. Ing. Martin Štroner, Ph.D., ČVUT Fakulta stavební, Praha Abstrakt Článek se zabývá rozborem přesnosti a vyvozením obecnějších závěrů pro přesnost určení souřadnic

Více

SYLABUS PŘEDNÁŠKY Z GEODÉZIE 2 (Vytyčování)

SYLABUS PŘEDNÁŠKY Z GEODÉZIE 2 (Vytyčování) SYLABUS 3-5 PŘEDNÁŠKY Z GEODÉZIE 2 (Vytyčování) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc březen 2016 1 VYTYČOVÁNÍ (Skripta Geodézie 2 str62 ) Geodézie

Více

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13 CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu

Více

Geodézie a pozemková evidence

Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.5 Metody výškového měření, měření vzdáleností, měřické přístroje Podpořeno projektem Průřezová inovace studijních programů Lesnické

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

SYLABUS 2. a 3. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE

SYLABUS 2. a 3. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE SYLABUS 2. a 3. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE Plánování přesnosti měření v IG) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. říjen 2018 1 3. PLÁNOVÁNÍ

Více

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem Kružnice Kružnice je množina všech bodů roviny, které mají od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem je průměr kružnice.

Více

Sada 2 Geodezie II. 13. Základní vytyčovací prvky

Sada 2 Geodezie II. 13. Základní vytyčovací prvky S třední škola stavební Jihlava Sada 2 Geodezie II 13. Základní vytyčovací prvky Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SOUŘADNICOVÉ SOUSTAVY VE FTM hlavní souřadnicové soustavy systém snímkových souřadnic systém modelových

Více

Souřadnicové výpočty, měření

Souřadnicové výpočty, měření Souřadnicové výpočty, měření Souřadnicové výpočty Měření úhlů Měření délek - délka - směrník - polární metoda - protínání vpřed z délek - metoda ortogonální, oměrné míry Určování převýšení Souřadnicové

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při . VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

4.1 Základní pojmy Zákonné měřicí jednotky.

4.1 Základní pojmy Zákonné měřicí jednotky. 4. Měření úhlů. 4.1 Základní pojmy 4.1.1 Zákonné měřicí jednotky. 4.1.2 Vodorovný úhel, směr. 4.1.3 Svislý úhel, zenitový úhel. 4.2 Teodolity 4.2.1 Součásti. 4.2.2 Čtecí pomůcky optickomechanických teodolitů.

Více

Tachymetrie (Podrobné měření výškopisu)

Tachymetrie (Podrobné měření výškopisu) Tachymetrie (Podrobné měření výškopisu) Úkolem je vyhotovit digitální model terénu pomocí programového systému Atlas DMT (úloha U_8). Pro jeho vytvoření je potřeba znát polohu a výšku vhodně zvolených

Více

Geodetické základy a triangulace Trigonometrické sítě na našem území Stabilizace a signalizace Tachymetrie - úvod Podélné a příčné profily

Geodetické základy a triangulace Trigonometrické sítě na našem území Stabilizace a signalizace Tachymetrie - úvod Podélné a příčné profily Geodetické základy a triangulace Trigonometrické sítě na našem území Stabilizace a signalizace Tachymetrie - úvod Podélné a příčné profily Kartografie přednáška 6 Geodetické základy při měření (mapování)

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

PLANIMETRIE úvodní pojmy

PLANIMETRIE úvodní pojmy PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více