Číslicové zpracování signálů a Fourierova analýza.

Rozměr: px
Začít zobrazení ze stránky:

Download "Číslicové zpracování signálů a Fourierova analýza."

Transkript

1 Číslicové zpracování signálů a Fourierova analýza 1

2 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza prakticky 5. Závěr 2

3 Cíle přednášky Uvedení studenta do problematiky číslicového zpracování signálů Seznámení se základy Fourierovy analýzy signálů Praktická realizace Fourierovy analýzy Některé obrázky v této prezentaci jsou převzaty z jiných zdrojů (Balda M.: Statistická mechanika, ZČU v Plzni. Tůma J.: Zpracování signálů z mechanických systémů užitím FFT, Sdělovací technika, Materiály Bruel & Kjaer ) 3

4 1 Úvod a motivace V experimentální mechanice se pracuje s naměřenými daty, které mají specifickou formu Děje v reálném světě jsou spojité, ale záznam z měření zpracovatelný na počítači je ve většině případů diskrétní Je nutné s diskrétními (tzv. navzorkovanými) daty umět pracovat a je nutné umět provádět jejich analýzu Navzorkovaný signál je v počítači reprezentován většinou ve formě vektoru (případně matice) čísel Formát čísla (integer, real, mantisa) je rovněž důležitým parametrem zpracování Analýza naměřených dat nám umožní 4

5 2 Data v časové a ve frekvenční oblasti 5

6 Data v časové oblasti vzorkování Při experimentálním měření a zpracování výsledných signálů je prvním velmi důležitým pojmem tzv. vzorkovací frekvence (počet vzorků diskrétního signálu za jednu sekundu) Zejména je nutné, aby diskrétní signál nebyl podvzorkovaný Dle typu následné analýzy mohou být na signál kladeny další podmínky Příklad: Funkce y(t) = sin(2 ft) s frekvencí f = 1 Hz a různými vzorkovacími frekvencemi f v = 100, 10, 4, 3 Hz 6

7 Data v časové oblasti vzorkování 7

8 Data v časové oblasti vzorkování 8

9 Data v časové oblasti vzorkování 9

10 Data v časové oblasti vzorkování 10

11 Data v časové oblasti Data v časové oblasti má smysl v některých případech zpracovat pomocí nástrojů matematické statistiky Průměr, střední hodnota, rozptyl, směrodatná odchylka, momenty atd. Existují další specializované algoritmy vhodné pro konkrétní analýzy z hlediska mechaniky Například metoda stékání deště apod. Velmi často pracují s histogramy četnosti Samostatnou kapitolou jsou různé filtry, které ovšem už pracují také s daty ve frekvenční oblasti 11

12 Data v časové oblasti průměrování Jedním ze základních nástrojů používaných na data v časové oblasti je tzv. průměrování Lze použít matematický nástroj nazvaný klouzavý průměr, který umožní vyhladit zpracovávaný signál a částečně ho zbavit například určitého šumu, je možné vylepšit vážením Je ovšem nutné věnovat pozornost tomu, aby nedošlo ke ztrátě reálné informace, která z povahy měřeného jevu má být v signálu obsažena Příklad: Zašuměná funkce y(t) = sin(2 1t) + 0.3*sin(2 5t) + šum, použití neváženého pětibodového klouzavého průměru 12

13 Data v časové oblasti průměrování 13

14 Data v časové oblasti průměrování 14

15 Data v časové oblasti průměrování 15

16 3 Fourierova analýza - teoreticky Analýza časových signálů pomocí jejich převedení do frekvenční oblasti Fourierova řada aproximace periodických funkcí/signálů pomocí váženého součtu harmonických funkcí Definice Fourierovy transformace (X( ) obraz, x(t) originál): 16

17 3 Fourierova analýza Přímá vs. zpětná Fourierova transformace Různé varianty FT: Spojitá Fourierova transformace Fourierova transformace signálu s diskrétním časem Diskrétní Fourierova transformace přirozená varianta pro signály zpracovávané pomocí počítače Rychlá Fourierova transformace rychlý algoritmus pro Fourierovu transformaci diskrétních signálů 17

18 3 Fourierova analýza Diracův impuls (t) důležitá funkce pro Fourierovu transformaci, Vlastnosti 18

19 3 Fourierova analýza Pro spojitou funkci f(t 0 ) platí Diracův hřeben a vzorkování 19

20 3 Fourierova analýza Jestliže je originál periodická funkce x(t) = x(t+t) s periodou T, potom obraz X( ) nabývá nenulových hodnot jen pro úhlové frekvence X(2 k/t), kde k =, -2, -1, 0, 1, 2, Fourierova transformace Diracova impulsu 20

21 3 Fourierova analýza Fourierova transformace harmonických funkcí 21

22 3 Fourierova analýza 22

23 3 Fourierova analýza Vzorkovací teorém aby nedocházelo ke zkreslení Fourierova obrazu při FT originálu, musí být vzorkovací frekvence alespoň dvojnásobkem nejvyšší frekvence obsažené v signálu originálu Diskrétní Fourierova transformace (h originál, H obraz, N je počet vzorků, T je perioda vzorkování) Souvislost obrazů při DFT a spojité FT, a koeficientů F. řady c n originálu 23

24 4 Fourierova analýza prakticky V experimentální mechanice je důležitá schopnost analyzovat frekvenční spektrum změřeného signálu Frekvenční spektrum signálu (intuitivní nerigorózní vysvětlení) soubor frekvencí obsažených v původním signálu množina frekvencí harmonických funkcí, na které lze změřený signál rozložit Nejvhodnější nástroj rychlá varianta diskrétní Fourierovy transformace (FFT) Praktická realizace Konkrétní možnosti analyzátoru nebo software používaného při měření MATLAB funkce fft 24

25 4 Fourierova analýza prakticky function myfft(h,t) % Jedna z variant L = length(h); Fs = 1/(t(2)-t(1)); NFFT = 2^nextpow2(h); H = fft(h,nfft)/l; f = Fs/2*linspace(0,1,NFFT/2); stem(f,2*abs(h(1:nfft/2)),'r') title('jednostranne spektrum funkce h(t)') xlabel('f [Hz]') ylabel(' H(f) ') 25

26 4 Fourierova analýza prakticky sinus s frekvencí 1 Hz 26

27 4 Fourierova analýza prakticky sinus s frekvencí 1 Hz, necelistvý počet period 27

28 4 Fourierova analýza prakticky Použití časových oken eliminace efektu necelistvých period ve zpracovávaném signálu 28

29 4 Fourierova analýza prakticky harmonický signál s frekvencemi 5, 20 a 43 Hz 29

30 5 Závěr Vždy je nutné si stanovit, co je cílem při zpracování konkrétního změřeného signálu Je velmi důležité mít představu o fyzikálních (mechanických) dějích, které charakterizují měřený jev Fourierova analýza je velmi mocný nástroj pro porozumění studovanému signálu a pro vyhodnocení různých důležitých vlastností zkoumaného problému 30

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací

Více

Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky

Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky A0M38SPP - Signálové procesory v praxi - přednáška 7 2 Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky (momenty) Matematická definice korelační

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

doc. Dr. Ing. Elias TOMEH   Elias Tomeh / Snímek 1 doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací

Více

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky

Více

Digitalizace převod AS DS (analogový diskrétní signál )

Digitalizace převod AS DS (analogový diskrétní signál ) Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování

Více

ANALÝZA LIDSKÉHO HLASU

ANALÝZA LIDSKÉHO HLASU ANALÝZA LIDSKÉHO HLASU Pomůcky mikrofon MCA-BTA, LabQuest, program LoggerPro (nebo LoggerLite), tabulkový editor Excel, program Mathematica Postup Z každodenní zkušenosti víme, že každý lidský hlas je

Více

A2B31SMS 11. PŘEDNÁŠKA 4. prosince 2014

A2B31SMS 11. PŘEDNÁŠKA 4. prosince 2014 A2B31SMS 11. PŘEDNÁŠKA 4. prosince 214 Číslicové audio efekty Hřebenové filtry Fázovací filtry Dozvuky Konvoluční reverb Schroederův algoritmus modelování dozvuku Číslicové audio efekty Filtrace - DP,

Více

P9 Provozní tvary kmitů

P9 Provozní tvary kmitů P9 Provozní tvary kmitů (měření a vyhodnocení) Pozn. Matematické základy pro tuto přednášku byly uvedeny v přednáškách Metody spektrální analýzy mechanických systémů Co jsou provozní tvary kmitů? Provozní

Více

Základní metody číslicového zpracování signálu a obrazu část II.

Základní metody číslicového zpracování signálu a obrazu část II. A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

8. Sběr a zpracování technologických proměnných

8. Sběr a zpracování technologických proměnných 8. Sběr a zpracování technologických proměnných Účel: dodat v částečně předzpracovaném a pro další použití vhodném tvaru ucelenou informaci o procesu pro následnou analyzu průběhu procesu a pro rozhodování

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Fourierova trasformace ve zpracováí obrazů Jea Baptiste Joseph Fourier 768-83 6. předáška předmětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasformaci? základí matematický

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,

Více

VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ

VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ Markéta Mazálková Katedra komunikačních a informačních systémů Fakulta vojenských technologií,

Více

Počítačové sítě. Lekce 5: Základy datových komunikací

Počítačové sítě. Lekce 5: Základy datových komunikací Počítačové sítě Lekce 5: Základy datových komunikací Přenos dat V základním pásmu Nemodulovaný Baseband V přeloženém pásmu Modulovaný Broadband Lekce 5: Základy datových komunikací 2 Přenos v základním

Více

Teoretická elektrotechnika - vybrané statě

Teoretická elektrotechnika - vybrané statě Teoretická elektrotechnika - vybrané statě David Pánek EK 63 panek50@kte.zcu.cz Fakulta elektrotechnická Západočeská univerzita v Plzni September 26, 202 David Pánek EK 63 panek50@kte.zcu.cz Teoretická

Více

Omezení barevného prostoru

Omezení barevného prostoru Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

" Furierova transformace"

 Furierova transformace UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA ŽIVOTNÍHO PROSTŘEDÍ " Furierova transformace" Seminární práce z předmětu Dálkový průzkum Země Marcela Bartošová, Veronika Bláhová OŽP, 3.ročník

Více

Fourierova transformace

Fourierova transformace Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Měření neelektrických veličin. Fakulta strojního inženýrství VUT v Brně Ústav konstruování

Měření neelektrických veličin. Fakulta strojního inženýrství VUT v Brně Ústav konstruování Měření neelektrických veličin Fakulta strojního inženýrství VUT v Brně Ústav konstruování Obsah Struktura měřicího řetězce Senzory Technické parametry senzorů Obrazová příloha Měření neelektrických veličin

Více

A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014

A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014 A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování

Více

Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s

Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s Pavel Nevøiva ANALÝZA SIGNÁLÙ A SOUSTAV Praha 2000 Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics spol.

Více

Klasifikace hudebních stylů

Klasifikace hudebních stylů Klasifikace hudebních stylů Martin Šimonovský (mys7@seznam.cz) Rozpoznávání hudby úloha z oblasti DSP klasifikace dle hudebních stylů

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

Parametrické přístupy k filtraci ultrazvukových signálů

Parametrické přístupy k filtraci ultrazvukových signálů České vysoké učení technické v Praze Fakulta elektrotechnická Katedra měření Parametrické přístupy k filtraci ultrazvukových signálů Bakalářská práce Luboš Kocourek 2010 Studijní program: Elektrotechnika

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

OBHAJOBA DIPLOMOVÉ PRÁCE

OBHAJOBA DIPLOMOVÉ PRÁCE OBHAJOBA DIPLOMOVÉ PRÁCE Lukáš Houser FS ČVUT v Praze Ústav mechaniky, biomechaniky a mechatroniky 28. srpen 2015 Simulační modely tlumičů a jejich identifikace Autor: Studijní obor: Lukáš Houser Mechatronika

Více

ROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI

ROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI Vzorečky Co to je FT? Vzorečky Co to je FT? Transformace signálu z časové (resp. obrazové) reprezentace f(t) do frekvenční reprezentace F(ψ) a zpět. Díky ní můžeme signál analyzovat ve frekvenční oblasti

Více

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají

Více

Snímání biologických signálů. A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů

Snímání biologických signálů. A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů Snímání biologických signálů A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů horcik@fel.cvut.cz Snímání biologických signálů problém: převést co nejvěrněji spojitý signál do číslicové podoby

Více

Opakování z předmětu TES

Opakování z předmětu TES Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme

Více

Základní metody číslicového zpracování signálu část I.

Základní metody číslicového zpracování signálu část I. A4M38AVS Aplikace vestavěných systémů Základní metody číslicového zpracování signálu část I. Radek Sedláček, katedra měření, ČVUT v Praze FEL, 2015 Obsah přednášky Úvod, motivace do problematiky číslicového

Více

KATEDRA ELEKTRICKÝCH MĚŘENÍ

KATEDRA ELEKTRICKÝCH MĚŘENÍ VŠB-TU Ostrava Datum měření: Datum odevzdání/hodnocení: KATEDRA ELEKTRICKÝCH MĚŘENÍ 9. VIRTUÁLNÍ MĚŘICÍ PŘÍSTROJE Fakulta elektrotechniky a informatiky Jména, studijní skupiny: Cíl měření: Seznámit se

Více

ADA Semestrální práce. Harmonické modelování signálů

ADA Semestrální práce. Harmonické modelování signálů České vysoké učení technické v Praze ADA Semestrální práce Harmonické modelování signálů Jiří Kořínek 31.12.2005 1. Zadání Proveďte rozklad signálu do harmonických komponent (řeč, hudba). Syntetizujte

Více

Učební osnova předmětu ELEKTRICKÁ MĚŘENÍ

Učební osnova předmětu ELEKTRICKÁ MĚŘENÍ Učební osnova předmětu ELEKTRICKÁ MĚŘENÍ Obor vzdělání: 2-41-M/01 Elektrotechnika (slaboproud) Forma vzdělávání: denní studium Ročník kde se předmět vyučuje: třetí, čtvrtý Počet týdenních vyučovacích hodin

Více

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje

Více

Spektrální analyzátory

Spektrální analyzátory Lubomír Slavík TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Materiál vznikl v rámci projektu ESF (CZ.1.07/2.2.00/07.0247), který je spolufinancován Evropským

Více

Waveletová transformace a její použití při zpracování signálů

Waveletová transformace a její použití při zpracování signálů Waveletová transformace a její použití při zpracování signálů BÍLOVSKÝ, Petr 1 1 Katedra elektrických měření, VŠB-TU Ostrava, 17. listopadu, Ostrava - Poruba, 708 33, petr.bilovsky@vsb.cz Abstrakt: Wavelet

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Modulace a šum signálu

Modulace a šum signálu Modulace a šum signálu PATRIK KANIA a ŠTĚPÁN URBAN Nejlepší laboratoř molekulové spektroskopie vysokého rozlišení Ústav analytické chemie, VŠCHT Praha kaniap@vscht.cz a urbans@vscht.cz http://www.vscht.cz/anl/lmsvr

Více

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722 Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická

Více

3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU

3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU 3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

Zvuková karta. Zvuk a zvuková zařízení. Vývoj, typy, vlastnosti

Zvuková karta. Zvuk a zvuková zařízení. Vývoj, typy, vlastnosti Zvuk a zvuková zařízení. Vývoj, typy, vlastnosti Zvuková karta Počítač řady PC je ve své standardní konfiguraci vybaven malým reproduktorem označovaným jako PC speaker. Tento reproduktor je součástí skříně

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

Grafika na počítači. Bc. Veronika Tomsová

Grafika na počítači. Bc. Veronika Tomsová Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

Vlastnosti Fourierovy transformace

Vlastnosti Fourierovy transformace Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390) Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 13. března 2007 Obor: Fyzika Ročník: III Semestr:

Více

UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU

UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU ANALÝZU VÍCEKANÁLOVÝCH SIGNÁLŮ Robert Háva, Aleš Procházka Vysoká škola chemicko-technologická, Abstrakt Ústav počítačové a řídicí techniky Analýza vícekanálových

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným

Více

Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013

Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013 Operace s obrazem Biofyzikální ústav LF MU Obraz definujeme jako zrakový vjem, který vzniká po dopadu světla na sítnici oka. Matematicky lze obraz chápat jako vícerozměrný signál (tzv. obrazová funkce)

Více

Modulační parametry. Obr.1

Modulační parametry. Obr.1 Modulační parametry Specifickou skupinou měřicích problémů je měření modulačních parametrů digitálních komunikačních systémů. Většinu modulačních metod používaných v digitálních komunikacích lze realizovat

Více

Středoškolská technika SCI-Lab

Středoškolská technika SCI-Lab Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT SCI-Lab Kamil Mudruňka Gymnázium Dašická 1083 Dašická 1083, Pardubice O projektu SCI-Lab je program napsaný v jazyce

Více

Základní komunikační řetězec

Základní komunikační řetězec STŘEDNÍ PRŮMYSLOVÁ ŠKOLA NA PROSEKU EVROPSKÝ SOCIÁLNÍ FOND Základní komunikační řetězec PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL

Více

DIGITÁLNÍ OBRAZ. Obrázky (popř. slajdy) převzaty od

DIGITÁLNÍ OBRAZ. Obrázky (popř. slajdy) převzaty od DIGITÁLNÍ OBRAZ JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah fáze zpracování obrazu reprezentace obrazu digitalizace obrazu

Více

Měření rychlosti zvuku vzorová úloha (SŠ)

Měření rychlosti zvuku vzorová úloha (SŠ) Měření rychlosti zvuku vzorová úloha (SŠ) 1 Teoretický úvod: Zvuk je mechanické vlnění s frekvencí v intervalu od 16 Hz do 16 000 Hz. Jedná se o systémem zhuštění a zředění částic vzduchu. Zvuková vlna

Více

SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN

SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN ANNA MOTYČKOVÁ 2015/2016, 8. Y Obsah Teoretický rozbor... 3 Zjištění tuhosti pružiny... 3 Sériové zapojení pružin... 3 Paralelní zapojení pružin... 3 Praktická část...

Více

Vzorkování. Je-li posloupnost diracových impulzů s periodou T S : Pak časová posloupnost diskrétních vzorků bude:

Vzorkování. Je-li posloupnost diracových impulzů s periodou T S : Pak časová posloupnost diskrétních vzorků bude: Vzorkování Vzorkování je převodem spojitého signálu na diskrétní. Lze si ho představit jako násobení sledu diracových impulzů (impulzů jednotkové plochy a nulové délky) časovým průběhem vzorkovaného signálu.

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování

Více

FILTRACE VE FOURIEROVSKÉM SPEKTRU

FILTRACE VE FOURIEROVSKÉM SPEKTRU 1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz

Více

Sledování vlivu režimu výpalu speciálního vápna na vlastnosti produktu

Sledování vlivu režimu výpalu speciálního vápna na vlastnosti produktu Sledování vlivu režimu výpalu speciálního vápna na vlastnosti produktu Ing. Radovan Nečas, Ing. Jiří Junek, Ing. Dana Kubátová, Ing. Vladimír Těhník Výzkumný ústav stavebních hmot a. s. Ve Výzkumném ústavu

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

ANALÝZA AKUSTICKÝCH PARAMETRŮ ZVONU Z KOSTELA SV. TOMÁŠE V BRNĚ. Smutný Jaroslav, Pazdera Luboš Vysoké učení technické v Brně, fakulta stavební

ANALÝZA AKUSTICKÝCH PARAMETRŮ ZVONU Z KOSTELA SV. TOMÁŠE V BRNĚ. Smutný Jaroslav, Pazdera Luboš Vysoké učení technické v Brně, fakulta stavební ANALÝZA AKUSTICKÝCH PARAMETRŮ ZVONU Z KOSTELA SV. TOMÁŠE V BRNĚ Smutný Jaroslav, Pazdera Luboš Vysoké učení technické v Brně, fakulta stavební Abstrakt Příspěvek popisuje měření a analýzu akustických parametrů

Více

POHON 4x4 JAKO ZDROJ VIBRACÍ OSOBNÍHO AUTOMOBILU

POHON 4x4 JAKO ZDROJ VIBRACÍ OSOBNÍHO AUTOMOBILU POHON 4x4 JAKO ZDROJ VIBRACÍ OSOBNÍHO AUTOMOBILU Pavel NĚMEČEK, Technická univerzita v Liberci 1 Radek KOLÍNSKÝ, Technická univerzita v Liberci 2 Anotace: Příspěvek popisuje postup identifikace zdrojů

Více

Deformace rastrových obrázků

Deformace rastrových obrázků Deformace rastrových obrázků 1997-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Warping 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 22 Deformace obrázků

Více

Rekurentní filtry. Matlab

Rekurentní filtry. Matlab Rekurentní filtry IIR filtry filtry se zpětnou vazbou a nekonečnou impulsní odezvou Výstupní signál je závislý na vstupu a minulém výstupu. Existují různé konvence zápisu, pozor na to! Někde je záporná

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Ṡystémy a řízení. Helikoptéra Petr Česák

Ṡystémy a řízení. Helikoptéra Petr Česák Ṡystémy a řízení Helikoptéra 2.......... Petr Česák Letní semestr 2001/2002 . Helikoptéra 2 Identifikace a řízení modelu ZADÁNÍ Identifikujte laboratorní model vodárny č. 2.; navrhněte a odzkoušejte vhodné

Více

Analýza a zpracování ultrazvukových signálů

Analýza a zpracování ultrazvukových signálů KAPITOLA 6 Analýza a zpracování ultrazvukových signálů Tato kapitola se zaměřuje zejména na metody číslicového zpracování a analýzy ultrazvukových signálů. V dnešních ultrazvukových přístrojích převažuje

Více

Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy

Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Fyzikální laboratoř. Kamil Mudruňka. Gymnázium, Pardubice, Dašická /8

Fyzikální laboratoř. Kamil Mudruňka. Gymnázium, Pardubice, Dašická /8 Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Fyzikální laboratoř Kamil Mudruňka Gymnázium, Pardubice, Dašická 1083 1/8 O projektu Cílem projektu bylo vytvořit

Více

Komplexní obálka pásmového signálu

Komplexní obálka pásmového signálu České vysoké učení technické v Praze, Fakulta elektrotechnická X37SGS Signály a systémy Komplexní obálka pásmového signálu Daniel Tureček 8.11.8 1 Úkol měření Nalezněte vzorky komplexní obálky pásmového

Více

Komprese dat Obsah. Komprese videa. Radim Farana. Podklady pro výuku. Komprese videa a zvuku. Komprese MPEG. Komprese MP3.

Komprese dat Obsah. Komprese videa. Radim Farana. Podklady pro výuku. Komprese videa a zvuku. Komprese MPEG. Komprese MP3. Komprese dat Radim Farana Podklady pro výuku Obsah Komprese videa a zvuku. Komprese MPEG. Komprese MP3. Komprese videa Velký objem přenášených dat Typický televizní signál - běžná evropská norma pracuje

Více