Stochastické modelování úrokových sazeb

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Stochastické modelování úrokových sazeb"

Transkript

1 Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1

2 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo lemma Sochasické difirenciální rovnice (SDE) Jednofakorové modely Rendelman, Barer model Vašíčkův model Cox, Ingersoll, Ross (CIR) model Dvoufakorové modely Brennan-Schwarz model Longsaff-Schwarz model Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Odhad paramerů Použií MaLabu pro simulaci úrokových sazeb Využií CIR modelu pro oceňování úrokových insrumenů

3 Úvod do problemaiky sochasických procesů Moderní finanční maemaika používá pro řešení řady prakických úloh sochasického poču Oceňování finančních insrumenů zejména finančních deriváů (např. Black-Scholes model) Odhad budoucího vývoje ekonomických veličin (úrokové sazby, inflace, apod.) Řízení rizik aplikace meody Mone Carlo při výpoču Value a Risk Pro zvládnuí ěcho úkolů je řeba zná základní principy sochasických procesů Brownův pohyb Wienerův proces Sochasické diferenciální rovnice (SDE) Ioovo lemma 3

4 Úvod do problemaiky sochasických procesů Wienerův proces Je o náhodný proces se spojiým časem W(), >0, W(0)=0 Přírůsek Wienerova procesu W()-W(s) je Gausovský se sřední hodnoou E(x)=0 a rozpylem (-s) přírůsky Wienerova procesu jsou na sobě nezávislé Brownův pohyb Původně fyzikální význam popisuje neusálý a neuspořádaný pohyb molekul Z maemaického hlediska je o sochasický proces Nejčasější příklad realizace Wienerova procesu Ekonomerická aplikace Brownova pohybu Ceny akiv na finačních rzích se podle eorie dokonalých rhů chovají zcela náhodně a nezávisle na předchozím vývoji Brownův pohyb je edy ideální násroj popisující chování cen akiv (akcie, měny, komodiy) 4

5 Úvod do problemaiky sochasických procesů - pokračování Přechod z diskréní do spojié dynamiky Nechť W je přírůsek Wienerova procesu za čas, j.: W W ( ) W ( ) Pak změnu Wienerova procesu Z() pro čas napsa jako dz( ) ad bdw( ) 0 můžeme kde: a, b jsou konsany a dw limw 0 5

6 Úvod do problemaiky sochasických procesů - pokračování K omu, abychom mohli popsa chování ceny určiého akiva (např. akcie) v čase, poslouží nám následující modifikace SDE: ds Sd SdW kde: ds je okamžiý přírůsek ceny akcie je rend ve vývoji ceny akcie je volailia akcie dw je přírůsek Wienerova procesu Abychom mohli výše uvedenou rovnici vyřeši, využijeme Iovo lemma. Ioovo lemma je asi nejdůležiější vzah v sochasickém poču Ioovo lemma je obdoba Talorova rozvoje pro sochasické prosředí 6

7 Úvod do problemaiky sochasických procesů - pokračování Taylorův rozvoj: df 1 d F df dx dx dx dx Ioovo lemma: df df 1 d F dx d dx dx Velmi malé přírůsky funce F(X+dX) můžeme aproximova pomocí Taylorova rozvoje (v případě deerminisických proměnných) a pomocí Ioova lemma v případě sochasických proměnných Nechť S(X(+h)) S(X()) je přírůsek ceny akcie v inervalu +h a F(S) = ln S Poom, s využiím Ioova lemma a můžeme napsa původní SDE do následujícího varu : 7

8 8 Úvod do problemaiky sochasických procesů - pokračování d SdX Sd S d ds F d S ds ds df df d dx 1 dx S S 0 1 (0) exp ) ( Teno var můžeme vyřeši inegrováním a dosaneme:

9 9 Úvod do problemaiky sochasických procesů - pokračování Pro simulaci vývoje ceny akcie musíme převés předchozí spojiý var na diskréní formu. Nejčasější meodou je zv. Eulerova meoda. Diskréní var logarimické náhodné procházky ceny akcie je následující: S S S S 1 )exp ( ) ( ) ( kde: je náhodná veličina z rozdělení N(0,1) je časový krok je očekávaná výnosnos akcie je volailia ceny akcie

10 Jednofakorové modely úrokových sazeb Na rozdíl od akcií má chování úrokových sazeb určié zvlášnosi Úrokové sazby se pohybují v určiém rozmezí; obvykle nerosou do nekonečna ani neklesají pod nulu Úrokové sazby mají endenci se vrace k určié rovnovážné hodnoě Teno fenomén se nazývá mean reversion Sochasické modely, keré popisují chování úrokových sazeb musí edy brá v úvahu výše uvedené vlasnosi Jednofakorové modely úrokových sazeb berou v úvahu pouze jeden zdroj nejisoy popsaný jednou SDE V praxi jsou nejčasěji používány následující jednofakorové modely Rendleman-Barer model Vašíčkův model Cox, Ingersoll, Ross mode (CIR model) 10

11 Rendlemann-Barer model Renlemann-Barer model paří mezi základní jednofakorové modely Dynamika úrokové sazby r je popsána pomocí SDE následovně dr( ) rd rdw ( ) r následuje geomerický Brownův pohyb Model pracuje s konsanním rendem a konsanní volailiou Model funguje na sejném principu jako model pro modelování ceny akcie To je jeho hlavní nevýhoda, neboť nedokáže zajisi inveribiliu procesu Pro modelování úrokových sazeb není udíž vhodný 11

12 Vašíčkův model Vašíčkův model je pojmenován po jeho vůrci Oldřichu Vašíckovi, kerý jej publikoval v roce 1977 v časopise Journal of Financial Economics Model je založen na principu Ornsein-Uhlenbeckově procesu ( mean revering proces) s konsanními koeficieny Dynamika úrokové sazby ve Vašíčkově modelu následovně b r( ) d dw( ) dr( ) a kde: a, b, jsou poziivní konsany a je koeficien rychlosi přizpůsobení dynamiky rovnovážné úrokové míře r b je rovnovážná úroková míra je volailia úrokové míry Výhodou Vašíckova modelu je (oproi předchozímu modelu) jeho inveribilia. Model je velice várný a udíž exisují expliciní analyické formule pro oceňování řady úrokových insrumenů Avšak úrokové sazby mohou v reálném čase nabýva i záporných hodno, což je v praxi dos nerealisický předpoklad r() má normální rozdělení 1

13 13 Vašíčkův model - pokračování Oceňovací formule pro bezkupónový dluhopis: T B r T A e T P ; ; ; T a e a T B 1 1 ; ; 4 ; ; T B a T T B a b T A Kde:

14 Vašíčkův model - pokračování Simulace úrokové sazby pomocí Vašíckova modelu: Paramery modelu: a = 0,10 b = 3,1 = 0% = 1 r(0) = 3,50 3 Simulace úrokových sazeb,5 1,5 1 0,5 0-0,5-1 14

15 Cox, Ingersoll, Ross model CIR model byl publikován v roce 1985 v článku A heory of he Term Srucure of Ineres Raes v časopise Economeria Na rozdíl od Vašíčkova modelu není volailia úrokových sazeb konsanní, ale je závislá na druhé odmocnině úrokové sazby, což zajišťuje, že simulovaná úroková sazba nikdy nenabude záporných hodno pokud plaí, že ab> Dynamika úrokových sazeb je v CIR modelu popsána následovně: dr a b r d r dw kde: ab, jsou poziivní konsany a je koeficien rychlosi přizpůsobení dynamiky rovnovážné úrokové míře r b je rovnovážná úroková míra je volailia úrokové míry Nespornou výhodou CIR modelu je jeho relaivní jednoduchos (sejně jako Vašíčkův model) a i fak, že úrokové sazby nemohou nabýva záporných hodno 15

16 Cox, Ingersoll, Ross model - pokračování Následující graf srovnává simulaci úrokových sazeb pomocí Vašíčkova modelu a CIR modelu 5 Simulace úrokových sazeb 4 3 VASICEK CIR Je zřejmé, že úrokové sazby simulované pomocí Vašíčkova modelu mohou lehce nabýva záporných hodno, kdežo u CIR modelu ao siuace nikdy nenasane (je-li splněna podmínka ab> V CIR modelu volailia závisí na dynamice úrokových sazeb. Čím jsou věší přírůsky simulované úrokové sazby, ím je i věší volailia procesu. 16

17 Cox, Ingersoll, Ross model - pokračování Sochasická proměnná r() nemá v CIR modelu normální rozdělení, ale non-cenral chí kvadrá rozdělení n,c,kde n je poče supňů volnosi a c je paramer vychýlení Obdobně jako u Vašíčkova modelu exisuje i pro CIR model analyická formule pro ocenění bezkupónového dluhopisu, kerá má sejný var. Avšak paramery A a B jsou rozdílné a jsou dány následovně: A ; T B e a( e ( e ( a )( T 1) / ( T ) ( T ) ; T ) 1) 1) ( T a ( e 1) ab a 17

18 Dvoufakorové modely Jednofakorové modely pracují s jedním zdrojem nahodilosi j. s jedním fakorem vyjádřeným jednou SDE Jeden zdroj nejisoy může bý za určiých okolnosí limiující pro modelování méně obvyklých varů výnosových křivek Jednofakorové modely byly udíž dále rozvíjeny ak, aby mohly lépe zachyi anomálie ve varu výnosových křivek Dvoufakorové modely pracují s dvěma zdroji nahodilosi Důvodem použií dvoufakorových modelů je edy pořeba modelova různé nesandardní vary výnosových křivek, keré jednofakorové modely neumožňují zachyi 18

19 Dvoufakorové modely Brennan Schwarz Krákodobá úroková sazba v Brennan Schwarz modelu vyhovuje rovnici a b l r d rdw dr Dlouhodobá úroková sazba je charakerizována následovně: a b r c ld ldw dl Nevýhodou modelu je jeho relaivní složios Vlasnosi dluhodobé a krákodobé sazba musí splňova jisé požadavky na konsisennos Úrokové sazby mohou v konečném čase růs do nekonečna, což není reálný předpoklad 19

20 Dvoufakorové modely Longsaff Schwarz Longsaff Schwarz model vznikl rozšířením původního CIR modelu a je charakerizován dvěma SDE ako: dx a x x d x dw 1 ( ) y yd ydw dy b Kde krákodobá úroková sazba je pak dána následovně: cx dy r 0

21 Jednofakorové vs. vícefakorové modely Jednofakorové modely (CIR, Vašíčkův model) předpokládají, že ceny všech dluhopisů jsou závislé pouze na pohybu r(), udíž všechny ceny dluhopisů jsou závislé pouze na jednom rizikovém fakoru Je však eno předpoklad realisický? Paralelní posuny výnosových křivek vysvělují až 80% všech pohybů úrokových sazeb Jednofakorové modely udíž poskyují vhodnou aproximaci pro modelování úrokových sazeb 1

22 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Výpočení prosředí MaLab můžeme využí pro: Odhad paramerů modelu Samonou simulaci scénářů úrokových sazeb Ocenění úrokových insrumenů pomocí CIR modelu Problemaika odhad paramerů CIR modelu: Dvě možné cesy odhadu odhad paramerů z akuálního varu výnosové křivky (saická meoda) odhad paramerů z hisorického vývoje úrokových sazeb (dynamická meoda)

23 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Saická meoda odhadu paramerů Každý den jsou paramery odhadovány z akuálního varu výnosové křivky meodou nelineárních nejmenších čverců Tao meoda popisuje siuaci jednoho jediného dne (nebere v poaz hisorii), což je její velká nevýhoda Dynamická meoda odhadu paramerů CIR model definuje sochasický vývoj úrokové sazby v čase, udíž je logické odhadova paramery procesu z předchozí dynamiky sazeb Kroky při odhadu paramerů jsou následující Volba reprezenaivní krákodobé úrokové sazby - jaký enor použí? Volba vhodného hisorického časového vzorku, ze kerého budeme paramery odhadova jaký horizon? Volba saické meody odhadu paramerů nejčasěji používaná meoda je Meoda maximální věrohodnosi Dynamická meoda odhadu paramerů popisuje průměrnou siuaci v dynamice úrokových sazeb za posledních n dní 3

24 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Vhodný kandidá na reprezenaivní krákodobou úrokovou sazbu Úroková sazba musí bý krákodobá (j. z krákého konce výnosové křivky) AVŠAK Příliš kráké úrokové sazby vykazují určié anomálie (poměrně dlouhá období relaivně sabilních sazeb sřídají silné skokové pohyby jako důsledek exerních šoků v podobě zásahů cenrální banky) L. Trosanucci A. Umboldi navrhují pro modelování EUR výnosové křivky použí 3M EURIBOR Podle zkušenosí z českého prosředí se jeví jako užiečnější použí 6M PRIBOR (eno enor můžeme považova ješě za krákodobou úrokovou sazbu, kerá však již nevykazuje ak významné jednorázové skoky v její dynamice) 4

25 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Volba vhodného časového horizonu pro odhad paramerů Z hlediska přesnosi odhadu je žádoucí použí pokud možno co nejdelší hisorickou časovou řadu Z hlediska akuálnosi je vhodné naopak použí pokud možno daa z velmi kráké minulosi KOMPROMIS Mezi výše uvedenými exrémy je nuné nají kompromis Jako rozumný kompromis se jeví posledních obchodních dní s diskréním časovým krokem = 1/50 (50 obchodních dní za rok) Výpoče paramerů pro 6M PRIBOR provedeme meodou maximální věrohodnosi v prosředí MaLab s následujícími výsledky 5

26 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Odhadnué paramery procesu simulujícího 6M PRIBOR Paramery CIR modelu a b Denní hodnoy 0, , , Anualizované hodnoy 0,1354 1,7469 0,194 Na základě ako odhadnuých paramerů můžeme simulova budoucí vývoj úrokových sazeb pro libovolný enor výnosové křivky 6

27 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Příklad simulace (1000 simulací) 6M PRIBORu pro období jednoho roku s využiím výpočeního prosředí MaLab 7

28 Využíí CIR modelu pro oceňování úrokových insrumenů Základní úrokové násroje (dluhopisy s fixním kuponem, FRN, IRS, FRA) se dají oceňi velice jednoduše jako současná hodnoa všech budoucích peněžních oků Pomocí CIR modelu lze snadno oceni jednoduché zero bondy T A ; T T e r B ; ; P Někeré ypy dluhopisů se speciální konsrukcí kuponu nelze oceni žádnou analyickou formulí TARN (arge redemion noe) Snowball Range Accrual Noe Excess Reurn Index Linked Noe Zde hraje nezasupielnou úlohu právě simulace úrokových sazeb 8

29 Využíí CIR modelu pro oceňování úrokových insrumenů Příklad ocenění TARN bondu Mauria 15 le Emisní cena 100% Kupon: 1 rok 6,75% poé (9% - (*6M PRIBOR())) Trigger level: 9.5% TARN redepion: Dluhopis je svolán v okamžiku, kdy suma vyplacených kuponů je rovna nebo překročí hodnou rigger level Ocenění akovéhoo dluhopisu je možné s využiím simulace budoucího vývoje 6M PRIBORu. 9

30 Využíí CIR modelu pro oceňování úrokových insrumenů Posup ocenění TARN bondu Volba vhodného sochasického procesu (v našem případě bude zvolen CIR model) Odhad paramerů příslušného procesu (viz. sr. 6 éo prezenace) Vygenerování scénářů budoucího vývoje 6M PRIBORu ( simulací je považováno za minimum) Zvolení hodnoy budoucího 6M PRIBORu z vygenerovaného scénáře (j. výpoče příslušného percenilu) V našem případě je pro nás riziko růsu úrokových sazeb, udíž budeme počía nejhorší možný vývoj (95-99 percenil z příslušného scénáře) Výpoče kuponu TARNu (dle formule na sr. 9) Výpoče diskonovaných peněžních oků z TARNu a určení současné hodnoy 30

31 Závěr Prosor pro oázky a pro diskusi 31

32 Závěr Děkuji za pozornos Michal Papež Živnosenská banka, a.s. Odbor řízení rizik

33 Použiá lieraura Ahangarani, P. An Empirical Esimaion and Model Selecion of he Shor Term Ineres Rae, working paper Brigo, D., Mercurio F. - Ineres Rae Models, Theory and Pracice, Springer-Verlag Berlin, 001 Jackson, M., Saunon, M. Advanced Modelling in Finance using Excel and VBA, John Wiley & Sons, 001 Jorion, P. Value a Risk: The benchmark for conrolling Marke risk, The McvGraw-Hill companies, 1997 Trosanucci, L. Umboldi, A. Saic and Dynamic Approach o he CIR Model and Empirical Evaluaion of he Marke Price of Risk, working paper Wilmo, P. Derivaives, The heory and pracice of financial engineering, John Wiley & Sons,

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Masarykova univerzia Přírodovědecká fakula VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Bakalářská práce Lucie Pečinková Vedoucí bakalářské práce: Mgr. Per ČERVINEK Brno 202 Bibliografický záznam

Více

Simulace důchodových dávek z navrhovaného příspěvkově definovaného penzijního systému v ČR

Simulace důchodových dávek z navrhovaného příspěvkově definovaného penzijního systému v ČR 3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 006 Simulace důchodových dávek z navrhovaného příspěvkově definovaného

Více

Vybrané poznámky k řízení rizik v bankách

Vybrané poznámky k řízení rizik v bankách Vybrané poznámky k řízení rizik v bankách Seminář z aktuárských věd Petr Myška 7.11.2008 Obsah přednášky Oceňování nestandartních instrumentů finančních trhů Aplikace analytických vzorců Simulační techniky

Více

Nové indikátory hodnocení bank

Nové indikátory hodnocení bank 5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 2010 Nové indikáory hodnocení bank Josef Novoný 1 Absrak Příspěvek je

Více

Modelování výnosové křivky a modelování úrokových nákladů státního dluhu Kamil Kladívko Odbor řízení státního dluhu a finančního majetku Úrokové náklady portfolia státního dluhu 2 Úrokové náklady státního

Více

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1 Výnosnos obchodních sraegií echnické analýzy Michal Dvořák Srovnání výnosnosi základních obchodních sraegií echnické analýzy při obchodování měn CZK/USD a CZK/EUR Verze 3 03 Michal Dvořák Záměr Na přednáškách

Více

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala Výpočy populačních projekcí na kaedře demografie Fakuly informaiky a saisiky VŠE TomášFiala 1 Komponenní meoda s migrací Zpravidla zjednodušený model migrace předpokládá se pouze imigrace na úrovni migračního

Více

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat Vojěch Janoušek: III. Sascké zpracování a nerpreace analyckých da Úvod III. Zpracování a nerpreace analyckých da Sascké vyhodnocení analyckých da Zdroje chyb, přesnos a správnos analýzy Sysemacké chyby,

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

CENTRUM EKONOMICKÝCH STUDIÍ VŠEM

CENTRUM EKONOMICKÝCH STUDIÍ VŠEM V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U CENTRUM EKONOMICKÝCH STUDIÍ VŠEM ISSN 1801-1578 03 vydání 03/ ročník 2010 /31.3.2010 Bullein CES VŠEM V TOMTO VYDÁNÍ Příspěvek k insiucionální

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 7/2003 Český akciový rh jeho efekivnos a makroekonomické souvislosi Helena Horská INSTITUT PRO EKONOMICKOU A EKOLOGICKOU POLITIKU A KATEDRA HOSPODÁŘSKÉ POLITIKY

Více

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí

Více

Prognózování vzdělanostních potřeb na období 2006 až 2010

Prognózování vzdělanostních potřeb na období 2006 až 2010 Prognózování vzdělanosních pořeb na období 2006 až 2010 Zpráva o savu a rozvoji modelu pro předvídání vzdělanosních pořeb ROA - CERGE v roce 2005 Vypracováno pro čás granového projeku Společnos vědění

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 10/2003 Konvergence nominální a reálné výnosnosi finančního rhu implikace pro poby koruny v mechanismu ERM II Vikor Kolán INSTITUT PRO EKONOMICKOU A EKOLOGICKOU

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. /003 Hyperbolické diskonování a jeho význam v ekonomickém modelování Michal Andrle Jan Brůha INSTITUT PRO EKONOMICKOU A EKOLOGICKOU POLITIKU A KATEDRA HOSPODÁŘSKÉ

Více

1/77 Navrhování tepelných čerpadel

1/77 Navrhování tepelných čerpadel 1/77 Navrhování epelných čerpadel paramery epelného čerpadla provozní režimy, navrhování akumulace epla bilancování inervalová meoda sezónní opný fakor 2/77 Paramery epelného čerpadla opný výkon Q k [kw]

Více

VLIV MAKROEKONOMICKÝCH ŠOKŮ NA DYNAMIKU VLÁDNÍHO DLUHU: JAK ROBUSTNÍ JE FISKÁLNÍ POZICE ČESKÉ REPUBLIKY?

VLIV MAKROEKONOMICKÝCH ŠOKŮ NA DYNAMIKU VLÁDNÍHO DLUHU: JAK ROBUSTNÍ JE FISKÁLNÍ POZICE ČESKÉ REPUBLIKY? VLIV MAKROEKONOMICKÝCH ŠOKŮ NA DYNAMIKU VLÁDNÍHO DLUHU: JAK ROBUSTNÍ JE FISKÁLNÍ POZICE ČESKÉ REPUBLIKY? Aleš Melecký, Marin Melecký, VŠB Technická univerzia Osrava* 1. Úvod Globální finanční a ekonomická

Více

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Manuál k vyrovnávacímu násroji pro vorbu cen pro vodné a sočné MINISTERSTVO

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

ANALÝZA EKONOMICKÝCH ČASOVÝCH ŘAD S PŘÍKLADY

ANALÝZA EKONOMICKÝCH ČASOVÝCH ŘAD S PŘÍKLADY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Fakula informaiky a saisiky ANALÝZA EKONOMICKÝCH ČASOVÝCH ŘAD S PŘÍKLADY Josef Arl Markéa Arlová Eva Rublíková 00 Recenzeni: Prof. Ing. Franišek Fabian, CSc. Doc. Ing. Jiří

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

Jan Jersák Technická univerzita v Liberci. Technologie III - OBRÁBĚNÍ. TU v Liberci

Jan Jersák Technická univerzita v Liberci. Technologie III - OBRÁBĚNÍ. TU v Liberci EduCom Teno maeriál vznikl jako součás projeku EduCom, kerý je spolufinancován Evropským sociálním fondem a sáním rozpočem ČR. ŘEZÉ PODMÍKY Jan Jersák Technická univerzia v Liberci Technologie III - OBRÁBĚÍ

Více

2.1 POHYB 2.2 POLOHA A POSUNUTÍ

2.1 POHYB 2.2 POLOHA A POSUNUTÍ 2 P ÌmoËar pohyb V roce 1977 vyvo ila Kiy OíNeilov rekord v z vodech dragser. Dos hla ehdy rychlosi 628,85 km/h za pouh ch 3,72 s. Jin rekord ohoo ypu zaznamenal v roce 1958 Eli Beeding ml. p i jìzdï na

Více

Zásady hodnocení ekonomické efektivnosti energetických projektů

Zásady hodnocení ekonomické efektivnosti energetických projektů Absrak Zásady hodnocení ekonomické efekivnosi energeických projeků Jaroslav Knápek, Oldřich Sarý, Jiří Vašíček ČVUT FEL, kaedra ekonomiky Každý energeický projek má své ekonomické souvislosi. Invesor,

Více

Vysoká škola ekonomická v Praze Recenzované studie. Working Papers Fakulty mezinárodních vztahů

Vysoká škola ekonomická v Praze Recenzované studie. Working Papers Fakulty mezinárodních vztahů Vysoká škola ekonomická v Praze Recenzované sudie Working Papers Fakuly mezinárodních vzahů 12/2010 Míra nezaměsnanosi neakcelerující inflaci a hospodářský cyklus v prosředí České republiky hisorie a možný

Více

Working Paper Solidarita mezi generacemi v systémech veřejného zdravotnictví v Evropě

Working Paper Solidarita mezi generacemi v systémech veřejného zdravotnictví v Evropě econsor www.econsor.eu Der Open-Access-Publikaionsserver der ZBW Leibniz-Informaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Pavloková, Kaeřina

Více

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Ze serveru www.czso.cz jsme sledovali sklizeň obilovin v ČR. Sklizeň z několika posledních le jsme vložili do abulky 7.1. a) Jaké plodiny paří mezi obiloviny?

Více

Podzim 2004. Výzkumná práce 2 Sektorové produktivity a relativní cena neobchodovatelných statků: Opravdu příliš mnoho povyku pro nic?

Podzim 2004. Výzkumná práce 2 Sektorové produktivity a relativní cena neobchodovatelných statků: Opravdu příliš mnoho povyku pro nic? Podzim 24 Výzkumná práce 2 Sekorové produkiviy a relaivní cena neobchodovaelných saků: Opravdu příliš mnoho povyku pro nic? Makroekonomický vývoj 15 Akuální makroekonomický vývoj České republiky 32 Prognóza

Více

Specific Combined Approach to Valuation of Life Insurance Companies. Specifické kombinované metody oceňování komerčních životních pojišťoven 1

Specific Combined Approach to Valuation of Life Insurance Companies. Specifické kombinované metody oceňování komerčních životních pojišťoven 1 8 h Inernaional scienific conference Financial managemen of firms and financial insiuions Osrava VŠB-TU Osrava, faculy of economics,finance deparmen 6 h 7 h Sepember 2011 Specific Combined Approach o Valuaion

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 2/23 Inflace po vsupu do měnové unie vybrané problémy Jan Kubíček INSIU PRO EKONOMICKOU A EKOLOGICKOU POLIIKU A KAERA HOSPOÁŘSKÉ POLIIKY VYSOKÁ ŠKOLA EKONOMICKÁ

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

FUTURITY. INSTITUT EKONOMICKÝCH STUDIÍ Fakulta sociálních věd University Karlovy

FUTURITY. INSTITUT EKONOMICKÝCH STUDIÍ Fakulta sociálních věd University Karlovy INTITUT EKONOMICKÝCH TUDIÍ akula sociálních věd Universiy Karlovy UTURITY udijní ex č. k předměu Násroje finančních rhů Doc. Ing. Oldřich Dědek Cc. 2 A. MECHANIKA KONTRAKTŮ TYPU ORWARD A UTURE. Základní

Více

ROTORŮ TURBOSOUSTROJÍ

ROTORŮ TURBOSOUSTROJÍ ZJIŠŤOVÁNÍ PŘÍČIN ZVÝŠENÝCH VIBRACÍ ROTORŮ TURBOSOUSTROJÍ Prof Ing Miroslav Balda, DrSc Úsav ermomechaniky AVČR + Západočeská univerzia Veleslavínova 11, 301 14 Plzeň, el: 019-7236584, fax: 019-7220787,

Více

Ekonomické aspekty spolehlivosti systémů

Ekonomické aspekty spolehlivosti systémů ČESKÁ SPOLEČNOST PRO JAKOST Novoného lávka 5, 116 68 Praha 1 43. SETKÁNÍ ODBORNÉ SKUPINY PRO SPOLEHLIVOST pořádané výborem Odborné skupiny pro spolehlivos k problemaice Ekonomické aspeky spolehlivosi sysémů

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

KIV/PD. Sdělovací prostředí

KIV/PD. Sdělovací prostředí KIV/PD Sdělovací prosředí Přenos da Marin Šime Orienační přehled obsahu předměu 2 principy přenosu da mezi 2 propojenými zařízeními předměem sudia je přímá cesa, ne omuniační síť ja se přenáší signály

Více

Modelování kreditního spreadu

Modelování kreditního spreadu Modelování kreditního spreadu Jan Šedivý 1 Abstrakt Text uvádí do problematiky stanovení kreditního spreadu za pomoci strukturálních a redukovaných modelů úvěrového rizika. Jako determinanty kreditního

Více

Frézování - řezné podmínky - výpočet

Frézování - řezné podmínky - výpočet Předmě: Ročník: Vyvořil: Daum: Základy výroby 2 M. Geisová 10. červen 2012 Název zpracovaného celku: Frézování - řezné podmínky - výpoče Posup při určování řezných podmínek, výpoče řezné síly Fř, výkonu

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

PRVKY KOVOVÝCH KONSTRUKCÍ MODUL BO02-M05

PRVKY KOVOVÝCH KONSTRUKCÍ MODUL BO02-M05 VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ PROF. ING. JINDICH MELCHER,DR.SC. ING. MARCELA KARMAZÍNOVÁ, CSC. ING. MIROSLAV BAJER,CSC. ING. KAREL SÝKORA PRVKY KOVOVÝCH KONSTRUKCÍ MODUL BO0-M05 PRUTY NAMÁHANÉ

Více

Univerzita Pardubice. Dopravní fakulta Jana Pernera

Univerzita Pardubice. Dopravní fakulta Jana Pernera Univerzia Pardubice Dopravní fakula Jana Pernera Fakory ovlivňující popávku po osobních auomobilech v ČR Bc. Tomáš Mikas Diplomová práce 2011 Prohlašuji: Tuo práci jsem vypracoval samosaně. Veškeré lierární

Více

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva Vysoká škola báňská Tehniká univerzia Osrava MODULOVANÉ SIGNÁLY učební ex Zdeněk Maháček, Pavel Nevřiva Osrava Reenze: Ing. Jiří Kozian, Ph.D. RNDr. Miroslav Liška, CS. Název: Modulované signály Auor:

Více

Průzkumová analýza dat (Exploratory Data Analysis, EDA)

Průzkumová analýza dat (Exploratory Data Analysis, EDA) 19. února 2007 Přednáška 1 maeriály: přednášky zápoče: v průběhu semesr určiý projek na zápoče a na známku, kerá bude ke zkoušce zkouška: zadaný určiý problém, na něj zadaný určiý čas, zpracováván s využiím

Více

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3 Fyzikajekolemnás(Polohaajejízměny) Sudijní ex pro řešiele FO a osaní zájemce o fyziku Ivo Volf Miroslava Jarešová Obsah Slovo úvodem 3 1 Popis polohy ělesa 4 1.1 Jednorozměrnýprosor.......................

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

Mechanické upevnění solárních zařízení na průmyslové střechy Bezpečné - Přizpůsobivé - Rychlé. Světová novinka SOL-R

Mechanické upevnění solárních zařízení na průmyslové střechy Bezpečné - Přizpůsobivé - Rychlé. Světová novinka SOL-R Mechanické upevnění solárních zařízení na průmyslové sřechy Bezpečné - Přizpůsobivé - Rychlé Svěová novinka SOL-R SOL-R nejpřizpůsobivější upevňovací sysém pro monáž solárních zařízení na průmyslové sřechy

Více

MODELOVÁNÍ A KLASIFIKACE REGIONÁLNÍCH TRHŮ PRÁCE

MODELOVÁNÍ A KLASIFIKACE REGIONÁLNÍCH TRHŮ PRÁCE VYSOKÁ ŠKOL BÁNSKÁ - TECHNICKÁ UNIVERZIT OSTRV EKONOMICKÁ FKULT MODELOVÁNÍ KLSIFIKCE REGIONÁLNÍCH TRHŮ PRÁCE Jana Hančlová Ivan Křivý Jaromír Govald Miroslav Liška Milan Šimek Josef Tvrdík Lubor Tvrdý

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Koncepce penzijní reformy hledání základních parametrů

Koncepce penzijní reformy hledání základních parametrů Analýza říjen 2004 Koncepce penzijní efomy hledání základních paameů Téma penzí neusále nabývá na významu. Takzvaný důchodový úče nespasily ani změny paameů povedené v ámci efomy veřejných ozpočů a hlavní

Více

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001,

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001, 213/2001 ve znění 425/2004 VYHLÁŠKA Minisersva průmyslu a obchodu ze dne 14. června 2001, kerou se vydávají podrobnosi náležiosí energeického audiu Minisersvo průmyslu a obchodu sanoví podle 14 ods. 5

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

Protipožární obklad ocelových konstrukcí

Protipožární obklad ocelových konstrukcí Technický průvoce Proipožární obkla ocelových konsrukcí Úvo Ocel je anorganický maeriál a lze jí ey bez zvlášních zkoušek zařai mezi nehořlavé maeriály. Při přímém působení ohně vlivem vysokých eplo (nárůs

Více

ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZTAHŮ MEZI ČASOVÝMI ŘADAMI

ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZTAHŮ MEZI ČASOVÝMI ŘADAMI Polcká ekonome 49:, sr. 58-73, VŠE Praha,. ISSN 3-333 Rukops ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZAHŮ MEZI ČASOVÝMI ŘADAMI Josef ARL, Šěpán RADKOVSKÝ, Vsoká škola ekonomcká, Praha, Česká národní banka, Praha.

Více

Seznam parametrů Vydání 04/03. sinamics SINAMICS G110

Seznam parametrů Vydání 04/03. sinamics SINAMICS G110 Seznam paramerů Vydání 04/0 sinamics SINAMICS G110 Dokumenace k výrobku SINAMICS G110 Příručka pro začínající uživaele Příručka pro začínající uživaele si klade za cíl umožni uživaelům rychlý přísup k

Více

Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2

Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2 Dobrý den. Kladno, 22. 3. 2007 21:35 Chtěl bych se všem omluvit za ten závěr přednášky. Bohužel mě chyba v jednom z příkladů vykolejila natolik, že jsem se již velice těžko soustředil na svůj výkon. Chtěl

Více

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou:

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou: Model vývoje HDP ČR Definice problému Očekávaný vývoj hrubého domácího produktu jakožto základní makroekonomické veličiny ovlivňuje chování tržních subjektů, které v důsledku očekávání modulují své chování

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

Návrh Investičního portfolia

Návrh Investičního portfolia Návrh Investičního portfolia Jan Bohatý vytvořeno: 18. březen Připravil: Ing.Petr Ondroušek PO Investment Dunajská 17 62500 Brno Kontakt: telefon: 603383742 email: petr.ondrousek@poinvestment.cz www.poinvestment.cz

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper o. 1/24 ondový penzijní sysém v konvergující ekonomice Jan Kubíček ISIU PRO EKOOMICKOU A EKOLOGICKOU POLIIKU VYSOKÁ ŠKOLA EKOOMICKÁ V PRAZE AKULA ÁROOHOSPOÁŘSKÁ

Více

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s.

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s. PEZIJÍ PLÁ Allianz ransformovaný fond, Allianz penzijní společnos, a. s. Preambule Penzijní plán Allianz ransformovaného fondu, Allianz penzijní společnos, a. s. (dále jen Allianz ransformovaný fond ),

Více

Úhrada za ústřední vytápění bytů II

Úhrada za ústřední vytápění bytů II Úhrada za úsřdní vyápění byů II Anoac Článk j druhým z séri příspěvků, krými jsou prsnovány dlouholé výsldky prác na Tchnické univrziě v Librci v oblasi rozpočíávání nákladů na vyápění pomocí poměrových

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

VOLNOST NA VODÍTKU. Milý obchodníku,

VOLNOST NA VODÍTKU. Milý obchodníku, VOLNOST NA VODÍTKU Milý obchodníku, VOLNOST NA VODÍTKU V základním vybavení majiele psa nesmí v žádném případě chybě: vhodné vodíko. Majielé si pro svého psa přejí konrolu a jisou. Zároveň by rádi svým

Více

ANALÝZA SPEKULATIVNÍCH OBCHODŮ S KOMODITAMI NA ZÁKLADĚ DETEKCE PARAMETRICKÝCH EXTRÉMŮ V ČASOVÝCH ŘADÁCH CEN

ANALÝZA SPEKULATIVNÍCH OBCHODŮ S KOMODITAMI NA ZÁKLADĚ DETEKCE PARAMETRICKÝCH EXTRÉMŮ V ČASOVÝCH ŘADÁCH CEN Trendy v podniání vědecý časopis Fauly eonomicé ZČU v Plzni ANALÝZA SPEKULATIVNÍCH OBCHODŮ S KOMODITAMI NA ZÁKLADĚ DETEKCE PARAMETRICKÝCH EXTRÉMŮ V ČASOVÝCH ŘADÁCH CEN Jiří Peší, Mara Šlehoferová ÚVOD

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

Credit Valuation Adjustment

Credit Valuation Adjustment Credit Valuation Adjustment Seminář Moderní nástroje pro finanční analýzy a modelovaní Michal Papež, Igor Paholok Market Risk Monitorig UniCredit Bank Czech Republic Credit Valuation Adjustment Představení

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Aplikace multifraktální geometrie na finančních trzích

Aplikace multifraktální geometrie na finančních trzích Aplikace multifraktální geometrie na finančních trzích 5. studentské kolokvium a letní škola matematické fyziky Stará Lesná Fakulta jaderná a fyzikálně inženýrská ČVUT, Praha 1. 9. 2011 Úvod náhodné procesy

Více

Evropské stres testy bankovního sektoru

Evropské stres testy bankovního sektoru Evropské stres testy bankovního sektoru Evropský bankovní sektor, podobně jako americký na přelomu 2008 a 2009, se dostal v 2Q letošního roku do centra pozornosti investorů v souvislosti s narůstajícími

Více

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I ..5 Řešení příkldů n ronoměrně zrychlený pohyb I Předpokldy: 4 Pedgogická poznámk: Cílem hodiny je, by se sudeni nučili smosně řeši příkldy. Aby dokázli njí zh, kerý umožňuje příkld yřeši, dokázli ze zhů

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Elektronika I ISBN 978-80-7314-114-1. Vydavatel, nositel autorských práv, vyrobil: (C) Evropský polytechnický institut, 2007. Ing. Oldřich Kratochvíl

Elektronika I ISBN 978-80-7314-114-1. Vydavatel, nositel autorských práv, vyrobil: (C) Evropský polytechnický institut, 2007. Ing. Oldřich Kratochvíl Soukromá sředníí odborná školla, s.r.o. Osvobození 699, 686 04 Kunovice ell..:: 57 548 98,, emaiill::ssssoss@edukompllex..cczz Elekronika I Ing.. Olldřiich KATOHVÍL 007 3 Ing. Oldřich Kraochvíl Elekronika

Více

4.1 Zptnovazební oscilátory sinusového prbhu naptí

4.1 Zptnovazební oscilátory sinusového prbhu naptí 4 Osciláory Nezpracovávají žádný vsupní signál, ale jsou sami zdrojem sídavých signál. Ze sejnosmrného napájecího napí vyváejí napí sídavá. Druh osciláor je mnoho. Podle principu innosi se rozdlují na

Více

D chodové fondy (2. pilí ) 30. 6. 2014

D chodové fondy (2. pilí ) 30. 6. 2014 D chodové y (2. pilí ) 30. 6. 2014 D chodové y Fond státních dluhopis Konzervativní Vyvážený Dynamický 1. Výnosy z úrok a podobné výnosy 1 12 014,96 30 081,60 58 315,80 Úroky z dluhových cenných papír

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

Měření parametrů a kvality elektrické energie. Systém PowerLogic. Katalog

Měření parametrů a kvality elektrické energie. Systém PowerLogic. Katalog Měření paramerů a kvaliy elekrické energie Sysém PowerLogic Kaalog Komplení nabídka Přísroje pro disribuci elekrické energie Výkonové jisiče a odpínače nízkého napěí Vzduchové jisiče a odpínače Maserpac

Více

ELEKTRONICKÉ OBVODY I

ELEKTRONICKÉ OBVODY I NIVEZITA OBANY Fakula vojenských echnologií Kaedra elekroechniky -99 ELEKTONIKÉ OBVODY I čebnice Auoři: rof. Ing. Dalibor Biolek, Sc. rof. Ing. Karel Hájek, Sc. doc. Ing. Anonín Krička, Sc. doc. Ing. Karel

Více

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy:

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy: HODNOCENÍ INVESTIC Podstatou hodnocení investic je porovnání vynaloženého kapitálu (nákladů na investici) s výnosy, které investice přinese. Jde o rozpočtování jednorázových (investičních) nákladů a ročních

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Pojistné rozpravy 5 POJISTNĚ TEORETICKÝ BULLETIN

Pojistné rozpravy 5 POJISTNĚ TEORETICKÝ BULLETIN Pojisné rozpravy 5 POJISTNĚ TEORETICKÝ BULLETIN 999 ISSN 0862 662 OBSAH Siuace ve veřejném zdravoním pojišění v ČR... 5 (Ing. Jarmila Fuchsová Soukromé zdravoní pojišění v Německu... (Klaus Michel Zdravoní

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

FINANČNÍ MODELY. Koncepty, metody, aplikace. Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý

FINANČNÍ MODELY. Koncepty, metody, aplikace. Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý FINANČNÍ MODELY Koncepty, metody, aplikace Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý Recenzenti: Jan Frait, ČNB Jaroslav Ramík, SU v Opavě Autorský kolektiv: Zdeněk Zmeškal vedoucí autorského kolektivu,

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8. Idenifiáor maeriálu: ICT 1 9 Regisrační číslo rojeu Název rojeu Název říjemce odory název maeriálu (DUM) Anoace Auor Jazy Očeávaný výsu Klíčová slova Druh učebního maeriálu Druh ineraiviy Cílová suina

Více

Obsah. Předmluva... 12. Seznam ostatních zkratek... 11. Seznam zkratek některých použitých právních předpisů... 10

Obsah. Předmluva... 12. Seznam ostatních zkratek... 11. Seznam zkratek některých použitých právních předpisů... 10 Obsah Předmluva.................................................... 12 Seznam ostatních zkratek........................................ 11 Seznam zkratek některých použitých právních předpisů.................

Více

ENERGETICKÝ AUDIT. Realizace úspor energie Střední škola zemědělství a služeb, Město Albrechtice. Nemocniční 11, Město Albrechtice

ENERGETICKÝ AUDIT. Realizace úspor energie Střední škola zemědělství a služeb, Město Albrechtice. Nemocniční 11, Město Albrechtice Miroslav Baručák ENERGOS Sídlišě Beskydské 1199 744 01 FRENŠTÁT POD RADHOŠTĚM ENERGETICKÝ AUDIT Realizace úspor energie, Nemocniční 11, název předměu EA daum vypracování 24. srpna 2013 energeický specialisa

Více

Řízení finančních rizik v energetice. 1. Stochastické modely v energetice

Řízení finančních rizik v energetice. 1. Stochastické modely v energetice Úvod Řízení finančních rizik v energetice 1. Stochastické modely v energetice Úvod do problematiky stochastických procesů Charakteristiky časových řad Vztah cen spotových a forwardových kontraktů Modely

Více