Stochastické modelování úrokových sazeb

Rozměr: px
Začít zobrazení ze stránky:

Download "Stochastické modelování úrokových sazeb"

Transkript

1 Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1

2 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo lemma Sochasické difirenciální rovnice (SDE) Jednofakorové modely Rendelman, Barer model Vašíčkův model Cox, Ingersoll, Ross (CIR) model Dvoufakorové modely Brennan-Schwarz model Longsaff-Schwarz model Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Odhad paramerů Použií MaLabu pro simulaci úrokových sazeb Využií CIR modelu pro oceňování úrokových insrumenů

3 Úvod do problemaiky sochasických procesů Moderní finanční maemaika používá pro řešení řady prakických úloh sochasického poču Oceňování finančních insrumenů zejména finančních deriváů (např. Black-Scholes model) Odhad budoucího vývoje ekonomických veličin (úrokové sazby, inflace, apod.) Řízení rizik aplikace meody Mone Carlo při výpoču Value a Risk Pro zvládnuí ěcho úkolů je řeba zná základní principy sochasických procesů Brownův pohyb Wienerův proces Sochasické diferenciální rovnice (SDE) Ioovo lemma 3

4 Úvod do problemaiky sochasických procesů Wienerův proces Je o náhodný proces se spojiým časem W(), >0, W(0)=0 Přírůsek Wienerova procesu W()-W(s) je Gausovský se sřední hodnoou E(x)=0 a rozpylem (-s) přírůsky Wienerova procesu jsou na sobě nezávislé Brownův pohyb Původně fyzikální význam popisuje neusálý a neuspořádaný pohyb molekul Z maemaického hlediska je o sochasický proces Nejčasější příklad realizace Wienerova procesu Ekonomerická aplikace Brownova pohybu Ceny akiv na finačních rzích se podle eorie dokonalých rhů chovají zcela náhodně a nezávisle na předchozím vývoji Brownův pohyb je edy ideální násroj popisující chování cen akiv (akcie, měny, komodiy) 4

5 Úvod do problemaiky sochasických procesů - pokračování Přechod z diskréní do spojié dynamiky Nechť W je přírůsek Wienerova procesu za čas, j.: W W ( ) W ( ) Pak změnu Wienerova procesu Z() pro čas napsa jako dz( ) ad bdw( ) 0 můžeme kde: a, b jsou konsany a dw limw 0 5

6 Úvod do problemaiky sochasických procesů - pokračování K omu, abychom mohli popsa chování ceny určiého akiva (např. akcie) v čase, poslouží nám následující modifikace SDE: ds Sd SdW kde: ds je okamžiý přírůsek ceny akcie je rend ve vývoji ceny akcie je volailia akcie dw je přírůsek Wienerova procesu Abychom mohli výše uvedenou rovnici vyřeši, využijeme Iovo lemma. Ioovo lemma je asi nejdůležiější vzah v sochasickém poču Ioovo lemma je obdoba Talorova rozvoje pro sochasické prosředí 6

7 Úvod do problemaiky sochasických procesů - pokračování Taylorův rozvoj: df 1 d F df dx dx dx dx Ioovo lemma: df df 1 d F dx d dx dx Velmi malé přírůsky funce F(X+dX) můžeme aproximova pomocí Taylorova rozvoje (v případě deerminisických proměnných) a pomocí Ioova lemma v případě sochasických proměnných Nechť S(X(+h)) S(X()) je přírůsek ceny akcie v inervalu +h a F(S) = ln S Poom, s využiím Ioova lemma a můžeme napsa původní SDE do následujícího varu : 7

8 8 Úvod do problemaiky sochasických procesů - pokračování d SdX Sd S d ds F d S ds ds df df d dx 1 dx S S 0 1 (0) exp ) ( Teno var můžeme vyřeši inegrováním a dosaneme:

9 9 Úvod do problemaiky sochasických procesů - pokračování Pro simulaci vývoje ceny akcie musíme převés předchozí spojiý var na diskréní formu. Nejčasější meodou je zv. Eulerova meoda. Diskréní var logarimické náhodné procházky ceny akcie je následující: S S S S 1 )exp ( ) ( ) ( kde: je náhodná veličina z rozdělení N(0,1) je časový krok je očekávaná výnosnos akcie je volailia ceny akcie

10 Jednofakorové modely úrokových sazeb Na rozdíl od akcií má chování úrokových sazeb určié zvlášnosi Úrokové sazby se pohybují v určiém rozmezí; obvykle nerosou do nekonečna ani neklesají pod nulu Úrokové sazby mají endenci se vrace k určié rovnovážné hodnoě Teno fenomén se nazývá mean reversion Sochasické modely, keré popisují chování úrokových sazeb musí edy brá v úvahu výše uvedené vlasnosi Jednofakorové modely úrokových sazeb berou v úvahu pouze jeden zdroj nejisoy popsaný jednou SDE V praxi jsou nejčasěji používány následující jednofakorové modely Rendleman-Barer model Vašíčkův model Cox, Ingersoll, Ross mode (CIR model) 10

11 Rendlemann-Barer model Renlemann-Barer model paří mezi základní jednofakorové modely Dynamika úrokové sazby r je popsána pomocí SDE následovně dr( ) rd rdw ( ) r následuje geomerický Brownův pohyb Model pracuje s konsanním rendem a konsanní volailiou Model funguje na sejném principu jako model pro modelování ceny akcie To je jeho hlavní nevýhoda, neboť nedokáže zajisi inveribiliu procesu Pro modelování úrokových sazeb není udíž vhodný 11

12 Vašíčkův model Vašíčkův model je pojmenován po jeho vůrci Oldřichu Vašíckovi, kerý jej publikoval v roce 1977 v časopise Journal of Financial Economics Model je založen na principu Ornsein-Uhlenbeckově procesu ( mean revering proces) s konsanními koeficieny Dynamika úrokové sazby ve Vašíčkově modelu následovně b r( ) d dw( ) dr( ) a kde: a, b, jsou poziivní konsany a je koeficien rychlosi přizpůsobení dynamiky rovnovážné úrokové míře r b je rovnovážná úroková míra je volailia úrokové míry Výhodou Vašíckova modelu je (oproi předchozímu modelu) jeho inveribilia. Model je velice várný a udíž exisují expliciní analyické formule pro oceňování řady úrokových insrumenů Avšak úrokové sazby mohou v reálném čase nabýva i záporných hodno, což je v praxi dos nerealisický předpoklad r() má normální rozdělení 1

13 13 Vašíčkův model - pokračování Oceňovací formule pro bezkupónový dluhopis: T B r T A e T P ; ; ; T a e a T B 1 1 ; ; 4 ; ; T B a T T B a b T A Kde:

14 Vašíčkův model - pokračování Simulace úrokové sazby pomocí Vašíckova modelu: Paramery modelu: a = 0,10 b = 3,1 = 0% = 1 r(0) = 3,50 3 Simulace úrokových sazeb,5 1,5 1 0,5 0-0,5-1 14

15 Cox, Ingersoll, Ross model CIR model byl publikován v roce 1985 v článku A heory of he Term Srucure of Ineres Raes v časopise Economeria Na rozdíl od Vašíčkova modelu není volailia úrokových sazeb konsanní, ale je závislá na druhé odmocnině úrokové sazby, což zajišťuje, že simulovaná úroková sazba nikdy nenabude záporných hodno pokud plaí, že ab> Dynamika úrokových sazeb je v CIR modelu popsána následovně: dr a b r d r dw kde: ab, jsou poziivní konsany a je koeficien rychlosi přizpůsobení dynamiky rovnovážné úrokové míře r b je rovnovážná úroková míra je volailia úrokové míry Nespornou výhodou CIR modelu je jeho relaivní jednoduchos (sejně jako Vašíčkův model) a i fak, že úrokové sazby nemohou nabýva záporných hodno 15

16 Cox, Ingersoll, Ross model - pokračování Následující graf srovnává simulaci úrokových sazeb pomocí Vašíčkova modelu a CIR modelu 5 Simulace úrokových sazeb 4 3 VASICEK CIR Je zřejmé, že úrokové sazby simulované pomocí Vašíčkova modelu mohou lehce nabýva záporných hodno, kdežo u CIR modelu ao siuace nikdy nenasane (je-li splněna podmínka ab> V CIR modelu volailia závisí na dynamice úrokových sazeb. Čím jsou věší přírůsky simulované úrokové sazby, ím je i věší volailia procesu. 16

17 Cox, Ingersoll, Ross model - pokračování Sochasická proměnná r() nemá v CIR modelu normální rozdělení, ale non-cenral chí kvadrá rozdělení n,c,kde n je poče supňů volnosi a c je paramer vychýlení Obdobně jako u Vašíčkova modelu exisuje i pro CIR model analyická formule pro ocenění bezkupónového dluhopisu, kerá má sejný var. Avšak paramery A a B jsou rozdílné a jsou dány následovně: A ; T B e a( e ( e ( a )( T 1) / ( T ) ( T ) ; T ) 1) 1) ( T a ( e 1) ab a 17

18 Dvoufakorové modely Jednofakorové modely pracují s jedním zdrojem nahodilosi j. s jedním fakorem vyjádřeným jednou SDE Jeden zdroj nejisoy může bý za určiých okolnosí limiující pro modelování méně obvyklých varů výnosových křivek Jednofakorové modely byly udíž dále rozvíjeny ak, aby mohly lépe zachyi anomálie ve varu výnosových křivek Dvoufakorové modely pracují s dvěma zdroji nahodilosi Důvodem použií dvoufakorových modelů je edy pořeba modelova různé nesandardní vary výnosových křivek, keré jednofakorové modely neumožňují zachyi 18

19 Dvoufakorové modely Brennan Schwarz Krákodobá úroková sazba v Brennan Schwarz modelu vyhovuje rovnici a b l r d rdw dr Dlouhodobá úroková sazba je charakerizována následovně: a b r c ld ldw dl Nevýhodou modelu je jeho relaivní složios Vlasnosi dluhodobé a krákodobé sazba musí splňova jisé požadavky na konsisennos Úrokové sazby mohou v konečném čase růs do nekonečna, což není reálný předpoklad 19

20 Dvoufakorové modely Longsaff Schwarz Longsaff Schwarz model vznikl rozšířením původního CIR modelu a je charakerizován dvěma SDE ako: dx a x x d x dw 1 ( ) y yd ydw dy b Kde krákodobá úroková sazba je pak dána následovně: cx dy r 0

21 Jednofakorové vs. vícefakorové modely Jednofakorové modely (CIR, Vašíčkův model) předpokládají, že ceny všech dluhopisů jsou závislé pouze na pohybu r(), udíž všechny ceny dluhopisů jsou závislé pouze na jednom rizikovém fakoru Je však eno předpoklad realisický? Paralelní posuny výnosových křivek vysvělují až 80% všech pohybů úrokových sazeb Jednofakorové modely udíž poskyují vhodnou aproximaci pro modelování úrokových sazeb 1

22 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Výpočení prosředí MaLab můžeme využí pro: Odhad paramerů modelu Samonou simulaci scénářů úrokových sazeb Ocenění úrokových insrumenů pomocí CIR modelu Problemaika odhad paramerů CIR modelu: Dvě možné cesy odhadu odhad paramerů z akuálního varu výnosové křivky (saická meoda) odhad paramerů z hisorického vývoje úrokových sazeb (dynamická meoda)

23 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Saická meoda odhadu paramerů Každý den jsou paramery odhadovány z akuálního varu výnosové křivky meodou nelineárních nejmenších čverců Tao meoda popisuje siuaci jednoho jediného dne (nebere v poaz hisorii), což je její velká nevýhoda Dynamická meoda odhadu paramerů CIR model definuje sochasický vývoj úrokové sazby v čase, udíž je logické odhadova paramery procesu z předchozí dynamiky sazeb Kroky při odhadu paramerů jsou následující Volba reprezenaivní krákodobé úrokové sazby - jaký enor použí? Volba vhodného hisorického časového vzorku, ze kerého budeme paramery odhadova jaký horizon? Volba saické meody odhadu paramerů nejčasěji používaná meoda je Meoda maximální věrohodnosi Dynamická meoda odhadu paramerů popisuje průměrnou siuaci v dynamice úrokových sazeb za posledních n dní 3

24 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Vhodný kandidá na reprezenaivní krákodobou úrokovou sazbu Úroková sazba musí bý krákodobá (j. z krákého konce výnosové křivky) AVŠAK Příliš kráké úrokové sazby vykazují určié anomálie (poměrně dlouhá období relaivně sabilních sazeb sřídají silné skokové pohyby jako důsledek exerních šoků v podobě zásahů cenrální banky) L. Trosanucci A. Umboldi navrhují pro modelování EUR výnosové křivky použí 3M EURIBOR Podle zkušenosí z českého prosředí se jeví jako užiečnější použí 6M PRIBOR (eno enor můžeme považova ješě za krákodobou úrokovou sazbu, kerá však již nevykazuje ak významné jednorázové skoky v její dynamice) 4

25 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Volba vhodného časového horizonu pro odhad paramerů Z hlediska přesnosi odhadu je žádoucí použí pokud možno co nejdelší hisorickou časovou řadu Z hlediska akuálnosi je vhodné naopak použí pokud možno daa z velmi kráké minulosi KOMPROMIS Mezi výše uvedenými exrémy je nuné nají kompromis Jako rozumný kompromis se jeví posledních obchodních dní s diskréním časovým krokem = 1/50 (50 obchodních dní za rok) Výpoče paramerů pro 6M PRIBOR provedeme meodou maximální věrohodnosi v prosředí MaLab s následujícími výsledky 5

26 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Odhadnué paramery procesu simulujícího 6M PRIBOR Paramery CIR modelu a b Denní hodnoy 0, , , Anualizované hodnoy 0,1354 1,7469 0,194 Na základě ako odhadnuých paramerů můžeme simulova budoucí vývoj úrokových sazeb pro libovolný enor výnosové křivky 6

27 Modelování úrokových sazeb pomocí CIR modelu ve výpočením prosředí MaLab Příklad simulace (1000 simulací) 6M PRIBORu pro období jednoho roku s využiím výpočeního prosředí MaLab 7

28 Využíí CIR modelu pro oceňování úrokových insrumenů Základní úrokové násroje (dluhopisy s fixním kuponem, FRN, IRS, FRA) se dají oceňi velice jednoduše jako současná hodnoa všech budoucích peněžních oků Pomocí CIR modelu lze snadno oceni jednoduché zero bondy T A ; T T e r B ; ; P Někeré ypy dluhopisů se speciální konsrukcí kuponu nelze oceni žádnou analyickou formulí TARN (arge redemion noe) Snowball Range Accrual Noe Excess Reurn Index Linked Noe Zde hraje nezasupielnou úlohu právě simulace úrokových sazeb 8

29 Využíí CIR modelu pro oceňování úrokových insrumenů Příklad ocenění TARN bondu Mauria 15 le Emisní cena 100% Kupon: 1 rok 6,75% poé (9% - (*6M PRIBOR())) Trigger level: 9.5% TARN redepion: Dluhopis je svolán v okamžiku, kdy suma vyplacených kuponů je rovna nebo překročí hodnou rigger level Ocenění akovéhoo dluhopisu je možné s využiím simulace budoucího vývoje 6M PRIBORu. 9

30 Využíí CIR modelu pro oceňování úrokových insrumenů Posup ocenění TARN bondu Volba vhodného sochasického procesu (v našem případě bude zvolen CIR model) Odhad paramerů příslušného procesu (viz. sr. 6 éo prezenace) Vygenerování scénářů budoucího vývoje 6M PRIBORu ( simulací je považováno za minimum) Zvolení hodnoy budoucího 6M PRIBORu z vygenerovaného scénáře (j. výpoče příslušného percenilu) V našem případě je pro nás riziko růsu úrokových sazeb, udíž budeme počía nejhorší možný vývoj (95-99 percenil z příslušného scénáře) Výpoče kuponu TARNu (dle formule na sr. 9) Výpoče diskonovaných peněžních oků z TARNu a určení současné hodnoy 30

31 Závěr Prosor pro oázky a pro diskusi 31

32 Závěr Děkuji za pozornos Michal Papež Živnosenská banka, a.s. Odbor řízení rizik

33 Použiá lieraura Ahangarani, P. An Empirical Esimaion and Model Selecion of he Shor Term Ineres Rae, working paper Brigo, D., Mercurio F. - Ineres Rae Models, Theory and Pracice, Springer-Verlag Berlin, 001 Jackson, M., Saunon, M. Advanced Modelling in Finance using Excel and VBA, John Wiley & Sons, 001 Jorion, P. Value a Risk: The benchmark for conrolling Marke risk, The McvGraw-Hill companies, 1997 Trosanucci, L. Umboldi, A. Saic and Dynamic Approach o he CIR Model and Empirical Evaluaion of he Marke Price of Risk, working paper Wilmo, P. Derivaives, The heory and pracice of financial engineering, John Wiley & Sons,

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika

Více

Oceňování finančních investic

Oceňování finančních investic Oceňování finančních invesic A. Dluhopisy (bondy, obligace). Klasifikace obligací a) podle kupónu - konvenční obligace (sraigh, plain vanilla, bulle bond) vyplácí pravidelný (roční, pololení) kupón po

Více

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka Analýza časových řad Klasický přísup k analýze ČŘ dekompozice časové řady - rozklad ČŘ na složky charakerizující různé druhy pohybů v ČŘ, keré umíme popsa a kvanifikova rend periodické kolísání cyklické

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely

Více

Vybrané metody statistické regulace procesu pro autokorelovaná data

Vybrané metody statistické regulace procesu pro autokorelovaná data XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,

Více

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut. 21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

Vybrané poznámky k řízení rizik v bankách

Vybrané poznámky k řízení rizik v bankách Vybrané poznámky k řízení rizik v bankách Seminář z aktuárských věd Petr Myška 7.11.2008 Obsah přednášky Oceňování nestandartních instrumentů finančních trhů Aplikace analytických vzorců Simulační techniky

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský sociální fond Praha & EU: Invesujeme do vaší budoucnosi Ekonomika podniku Kaedra ekonomiky, manažersví a humaniních věd Fakula elekroechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Kriéria efekivnosi

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA

Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA 4 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 11-12 září 2008 Analýza rizikových fakorů při hodnocení invesičních projeků dle kriéria

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. 2011 Jakub Černý

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. 2011 Jakub Černý Univerzia Karlova v Praze Maemaicko-fyzikální fakula DIPLOMOVÁ PRÁCE 211 Jakub Černý Univerzia Karlova v Praze Maemaicko-fyzikální fakula DIPLOMOVÁ PRÁCE Jakub Černý Sochasické modelování úrokových sazeb

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Heeroskedasicia Cvičení 7 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady. E(u) = 0 náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný

Více

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Masarykova univerzia Přírodovědecká fakula VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Bakalářská práce Lucie Pečinková Vedoucí bakalářské práce: Mgr. Per ČERVINEK Brno 202 Bibliografický záznam

Více

Studie proveditelnosti (Osnova)

Studie proveditelnosti (Osnova) Sudie provedielnosi (Osnova) 1 Idenifikační údaje žadaele o podporu 1.1 Obchodní jméno Sídlo IČ/DIČ 1.2 Konakní osoba 1.3 Definice a popis projeku (max. 100 slov) 1.4 Sručná charakerisika předkladaele

Více

2.2.9 Jiné pohyby, jiné rychlosti II

2.2.9 Jiné pohyby, jiné rychlosti II 2.2.9 Jiné pohyby, jiné rychlosi II Předpoklady: 020208 Pomůcky: papíry s grafy Př. 1: V abulce je naměřeno prvních řice sekund pohybu konkurenčního šneka. Vypoči: a) jeho průměrnou rychlos, b) okamžié

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

2. ZÁKLADY TEORIE SPOLEHLIVOSTI

2. ZÁKLADY TEORIE SPOLEHLIVOSTI 2. ZÁKLADY TEORIE SPOLEHLIVOSTI Po úspěšném a akivním absolvování éo KAPITOLY Budee umě: orienova se v základním maemaickém aparáu pro eorii spolehlivosi, j. v poču pravděpodobnosi a maemaické saisice,

Více

APLIKACE INDEXU DAŇOVÉ PROGRESIVITY V PODMÍNKÁCH ČESKÉ REPUBLIKY

APLIKACE INDEXU DAŇOVÉ PROGRESIVITY V PODMÍNKÁCH ČESKÉ REPUBLIKY APLIKACE INDEXU DAŇOVÉ PROGRESIVIT V PODMÍNKÁCH ČESKÉ REPUBLIK Ramanová Ivea ABSTRAKT Příspěvek je věnován problemaice měření míry progresiviy zdanění pomocí indexu daňové progresiviy, kerý vychází z makroekonomických

Více

Simulace důchodových dávek z navrhovaného příspěvkově definovaného penzijního systému v ČR

Simulace důchodových dávek z navrhovaného příspěvkově definovaného penzijního systému v ČR 3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 006 Simulace důchodových dávek z navrhovaného příspěvkově definovaného

Více

Zhodnocení historie predikcí MF ČR

Zhodnocení historie predikcí MF ČR E Zhodnocení hisorie predikcí MF ČR První experimenální publikaci, kerá shrnovala minulý i očekávaný budoucí vývoj základních ekonomických indikáorů, vydalo MF ČR v lisopadu 1995. Tímo byl položen základ

Více

Měření výkonnosti údržby prostřednictvím ukazatelů efektivnosti

Měření výkonnosti údržby prostřednictvím ukazatelů efektivnosti Měření výkonnosi údržby prosřednicvím ukazaelů efekivnosi Zdeněk Aleš, Václav Legá, Vladimír Jurča 1. Sledování efekiviy ve výrobní organizaci S rozvojem vědy a echniky je spojena řada požadavků kladených

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Výkonnost a spolehlivost číslicových systémů

Výkonnost a spolehlivost číslicových systémů Výkonnos a spolehlivos číslicových sysémů Úloha Generování a zpracování náhodných čísel Zadání 9 Trojúhelníkové rozdělení Jan Kupka A65 kupka@sudens.zcu.cz . Zadání vyvoře generáor rozdělení jako funkci

Více

Přednáška kurzu MPOV. Klasifikátory, strojové učení, automatické třídění 1

Přednáška kurzu MPOV. Klasifikátory, strojové učení, automatické třídění 1 Přednáška kurzu MPOV Klasifikáory, srojové učení, auomaické řídění 1 P. Peyovský (email: peyovsky@feec.vubr.cz), kancelář E530, Inegrovaný objek - 1/25 - Přednáška kurzu MPOV... 1 Pojmy... 3 Klasifikáor...

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Modely simulánních rovnic Problém idenifikace srukurních simulánních rovnic Cvičení Zuzana Dlouhá Modely simulánních rovnic (MSR) eisence vzájemných vazeb mezi proměnnými v modelu,

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

Úloha VI.3... pracovní pohovor

Úloha VI.3... pracovní pohovor Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro

Více

Modelování volatility akciového indexu FTSE 100

Modelování volatility akciového indexu FTSE 100 ISSN 805-06X 805-0638 (online) ETTN 07--0000-09-4 Modelování volailiy akciového indexu FTSE 00 Adam Borovička Vysoká škola ekonomická v Praze Fakula informaiky a saisiky Kaedra ekonomerie; nám. W. Churchilla

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE VYTVÁŘENÍ TRŽNÍ ROVNOVÁHY VYBRANÝCH ZEMĚDĚLSKO-POTRAVINÁŘSKÝCH PRODUKTŮ Ing. Michal Malý Školiel: Prof. Ing. Jiří

Více

Modelování výnosové křivky a modelování úrokových nákladů státního dluhu Kamil Kladívko Odbor řízení státního dluhu a finančního majetku Úrokové náklady portfolia státního dluhu 2 Úrokové náklady státního

Více

Analýza citlivosti NPV projektu na bázi ukazatele EVA

Analýza citlivosti NPV projektu na bázi ukazatele EVA 3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 2006 Analýza cilivosi NPV projeku na bázi ukazaele EVA Dagmar Richarová

Více

Vliv struktury ekonomiky na vztah nezaměstnanosti a inflace

Vliv struktury ekonomiky na vztah nezaměstnanosti a inflace Mendelova univerzia v Brně Provozně ekonomická fakula Úsav ekonomie Vliv srukury ekonomiky na vzah nezaměsnanosi a inflace Diplomová práce Vedoucí práce: Ing. Milan Palá, Ph.D. Vypracoval: Bc. Jiří Morávek

Více

Zpracování výsledků dotvarovací zkoušky

Zpracování výsledků dotvarovací zkoušky Zpracování výsledků dovarovací zkoušky 1 6 vývoj deformace za konsanního napěí 5,66 MPa ˆ J doba zaížení [dny] počáek zaížení čas [dny] Naměřené hodnoy funkce poddajnosi J 12 1 / Pa 75 6 45 3 15 doba zaížení

Více

Nové indikátory hodnocení bank

Nové indikátory hodnocení bank 5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 2010 Nové indikáory hodnocení bank Josef Novoný 1 Absrak Příspěvek je

Více

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat Vojěch Janoušek: III. Sascké zpracování a nerpreace analyckých da Úvod III. Zpracování a nerpreace analyckých da Sascké vyhodnocení analyckých da Zdroje chyb, přesnos a správnos analýzy Sysemacké chyby,

Více

Vliv funkce příslušnosti na průběh fuzzy regulace

Vliv funkce příslušnosti na průběh fuzzy regulace XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,

Více

Několik poznámek k oceňování plynárenských aktiv v prostředí regulace činnosti distribuce zemního plynu v České republice #

Několik poznámek k oceňování plynárenských aktiv v prostředí regulace činnosti distribuce zemního plynu v České republice # Několik poznámek k oceňování plynárenských akiv v prosředí regulace činnosi disribuce zemního plynu v České republice # Jiří Hnilica * Odvěví disribuce zemního plynu paří mezi regulovaná odvěví. Způsoby

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Indexy základní, řeězové a empo přírůsku Aleš Drobník srana 1 7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU V kapiole Indexy při časovém srovnání jsme si řekli: Časové srovnání vzniká, srovnáme-li jednu

Více

Modelování rizika úmrtnosti

Modelování rizika úmrtnosti 5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 200 Modelování rizika úmrnosi Ingrid Perová Absrak V příspěvku je řešena

Více

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí

Více

SROVNÁNí APROXIMAČNíCH METOD V TEORII RIZIKA

SROVNÁNí APROXIMAČNíCH METOD V TEORII RIZIKA ROBUST 000, 47 56 c JČMF 001 SROVNÁNí APROXIMAČNíCH METOD V TEORII RIZIKA MARTIN ROTKOVSKÝ Absrak. One of he main erms of he risk heory is so called individual model, which describes for example oal aggregae

Více

Company Valuation Models Comparison Under Risk and Flexibility

Company Valuation Models Comparison Under Risk and Flexibility 8 h Inernaional scienific conference Financial managemen of firms and financial insiuions Osrava VŠB-U Osrava, faculy of economics,finance deparmen 6 h 7 h Sepember 011 Company Valuaion Models Comparison

Více

Fyzikální praktikum II - úloha č. 4

Fyzikální praktikum II - úloha č. 4 Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných

Více

Zrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs.

Zrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs. MTF, rozlišovací schopnos Zrnios Graininess vs. granulariy Zrnios Zrnios foografických maeriálů je definována jako prosorová změna opické husoy rovnoměrně exponované a zpracované plošky filmu měřená denziomerem

Více

Úloha II.E... je mi to šumák

Úloha II.E... je mi to šumák Úloha II.E... je mi o šumák 8 bodů; (chybí saisiky) Kupe si v lékárně šumivý celaskon nebo cokoliv, co se podává v ableách určených k rozpušění ve vodě. Změře, jak dlouho rvá rozpušění jedné abley v závislosi

Více

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K 1. KAPITOLA TEPELNÉ VLASTNOSTI Tepelné vlasnosi maeriálů jsou charakerizovány pomocí epelných konsan jako měrné eplo, eploní a epelná vodivos, lineární a objemová rozažnos. U polymerních maeriálů má eploa

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala Výpočy populačních projekcí na kaedře demografie Fakuly informaiky a saisiky VŠE TomášFiala 1 Komponenní meoda s migrací Zpravidla zjednodušený model migrace předpokládá se pouze imigrace na úrovni migračního

Více

Nové metody a přístupy k analýze a prognóze ekonomických časových řad

Nové metody a přístupy k analýze a prognóze ekonomických časových řad ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Provozně ekonomická fakula Diserační práce Nové meody a přísupy k analýze a prognóze ekonomických časových řad Auor: Ing. Aleš Krišof Školiel: Doc.RNDr. Bohumil Kába,

Více

Matematické modely v ekologii a na co jsou dobré

Matematické modely v ekologii a na co jsou dobré Maemaické modely v ekologii a na co jsou dobré Indukivní a dedukivní uvažování o Indukce - mám spousu pozorování, a v nich se snažím naléz zákoniosi, zobecnní ad. o Dedukce - mám adu pravd, a hledám jejich

Více

Diferenciální rovnice 1. řádu

Diferenciální rovnice 1. řádu Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou

Více

Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo

Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo Kateřina Zelinková 1 Abstract The financial institution, namely securities firms, banks

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA. Prognostické modely v oblasti modelování finančních časových řad

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA. Prognostické modely v oblasti modelování finančních časových řad ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA Prognosické modely v oblasi modelování finančních časových řad diserační práce Auor: Školiel: RNDr. Vladimíra PETRÁŠKOVÁ Doc. RNDr.Bohumil

Více

RŮSTOVÉ MODELY ČESKÉHO STRAKATÉHO SKOTU

RŮSTOVÉ MODELY ČESKÉHO STRAKATÉHO SKOTU RŮSTOVÉ MODELY ČESKÉHO STRAKATÉHO SKOTU Helena Nešeřilová 1, Jan Pulkrábek 2 1 Česká zemědělská universia v Praze 2 Výzkumný úsav živočišné výroby, Praha-Uhříněves Anoace: Na souboru býků českého srakaého

Více

Srovnávací analýza vývoje mezd v České republice

Srovnávací analýza vývoje mezd v České republice Mendelova univerzia v Brně Provozně ekonomická fakula Srovnávací analýza vývoje mezd v České republice Bakalářská práce Vedoucí práce: Mgr. Kamila Vopaová Vypracovala: Lucie Mojžíšová Brno 10 Děkuji ímo

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

CENTRUM EKONOMICKÝCH STUDIÍ VŠEM

CENTRUM EKONOMICKÝCH STUDIÍ VŠEM V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U CENTRUM EKONOMICKÝCH STUDIÍ VŠEM ISSN 1801-1578 03 vydání 03/ ročník 2010 /31.3.2010 Bullein CES VŠEM V TOMTO VYDÁNÍ Příspěvek k insiucionální

Více

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ PROVOZNĚ EKONOMICKÁ FAKULTA DEMOGRAFICKÁ DYNAMIKA OBYVATELSTVA ČESKÉ REPUBLIKY Bakalářská práce Vypracovala: Jana Horníčková Vedoucí bakalářské práce:

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 7/2003 Český akciový rh jeho efekivnos a makroekonomické souvislosi Helena Horská INSTITUT PRO EKONOMICKOU A EKOLOGICKOU POLITIKU A KATEDRA HOSPODÁŘSKÉ POLITIKY

Více

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1 Výnosnos obchodních sraegií echnické analýzy Michal Dvořák Srovnání výnosnosi základních obchodních sraegií echnické analýzy při obchodování měn CZK/USD a CZK/EUR Verze 3 03 Michal Dvořák Záměr Na přednáškách

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

5. Modifikovaný exponenciální trend

5. Modifikovaný exponenciální trend 5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů

Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů Proceedings of Inernaional Scienific Conference of FME Session 4: Auomaion Conrol and Applied Informaics Paper 26 Klasifikace, idenifikace a saisická analýza nesacionárních náhodných procesů MORÁVKA, Jan

Více

MATEMATICKÉ MODELOVÁNÍ SPOTŘEBY PALIVA VOZIDLA

MATEMATICKÉ MODELOVÁNÍ SPOTŘEBY PALIVA VOZIDLA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS MATEMATICKÉ MODELOVÁNÍ SPOTŘEBY PALIVA

Více

Úrokové daňové štíty nemusí být jisté

Úrokové daňové štíty nemusí být jisté Mařík, M. - Maříková, P.: Úrokové daňové šíy nemusí bý jisé. Odhadce a oceňování podniku č. 3/2012, ročník XVIII, sr. 4-17, ISSN 1213-8223 Úrokové daňové šíy nemusí bý jisé prof. Miloš Mařík, doc. Pavla

Více

1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 - Úvod Michael Šebek Auomaické řízení 2016 Evroský sociální fond Praha & EU: Invesujeme do vaší budoucnosi 23-2-16 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo)

Více

The Analysis of Volatility of Selected Countries Exchange Rates

The Analysis of Volatility of Selected Countries Exchange Rates MPRA Munich Personal RePEc Archive The Analysis of Volailiy of Seleced Counries Exchange Raes Radek Bednarik VSB Technical Universiy, Faculy of Economics, VSB-Technical Universiy of Osrava, The Faculy

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 7/2003 Český akciový rh jeho efekivnos a makroekonomické souvislosi Helena Horská INSTITUT PRO EKONOMICKOU A EKOLOGICKOU POLITIKU A KATEDRA HOSPODÁŘSKÉ POLITIKY

Více

Standard IAS 19 a výpočet výše rezervy na zaměstnanecké benefity. Šárka Hezoučká

Standard IAS 19 a výpočet výše rezervy na zaměstnanecké benefity. Šárka Hezoučká Sandard IAS 9 a výpoče výše rezervy na zaměsnanecké benefiy Šárka Hezoučká Agenda Rezerva na zaměsnanecké benefiy Typy zaměsnaneckých benefiů Moivace pro vorbu rezervy Sandard IAS 9 Výpoče rezervy Přírůsková

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

PŘÍLOHA SDĚLENÍ KOMISE. nahrazující sdělení Komise

PŘÍLOHA SDĚLENÍ KOMISE. nahrazující sdělení Komise EVROPSKÁ KOMISE V Bruselu dne 28.10.2014 COM(2014) 675 final ANNEX 1 PŘÍLOHA SDĚLENÍ KOMISE nahrazující sdělení Komise o harmonizovaném rámci návrhů rozpočových plánů a zpráv o emisích dluhových násrojů

Více

VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ

VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ Jan Blaška, Miloš Sedláček České vysoké učení echnické v Praze Fakula elekroechnická, kaedra měření 1. Úvod Jak je

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní

Více

ANALÝZA ČASOVÝCH ŘAD IVAN KŘIVÝ OSTRAVA URČENO PRO VZDĚLÁVÁNÍ V AKREDI TOVANÝCH STUDIJ NÍCH PROGRAMECH

ANALÝZA ČASOVÝCH ŘAD IVAN KŘIVÝ OSTRAVA URČENO PRO VZDĚLÁVÁNÍ V AKREDI TOVANÝCH STUDIJ NÍCH PROGRAMECH ANALÝZA ČASOVÝCH ŘAD URČENO PRO VZDĚLÁVÁNÍ V AKREDI TOVANÝCH STUDIJ NÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Více

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém

Více

Scenario analysis application in investment post audit

Scenario analysis application in investment post audit 6 h Inernaional Scienific Conference Managing and Modelling of Financial Risks Osrava VŠB-U Osrava, Faculy of Economics,Finance Deparmen 0 h h Sepember 202 Scenario analysis applicaion in invesmen pos

Více