a 1 = 2; a n+1 = a n + 2.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "a 1 = 2; a n+1 = a n + 2."

Transkript

1 Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot by e l zpt tkto:. Dolí iex ám zčí, který čle poloupoti zrov máme myli. Npříkl zápi 3 zmeá třetí čle poloupoti pole uveeého vzorce by třetí čle byl * 3, což je šet to je třetí ué čílo. Vše tuíž eí jk má. Nejveelejší obvykle bývá určeí pomocí rekuretího vzorce. Te fuguje tk, že určíte áleující čle pomocí přechozího prvího čleu poloupoti. Poloupot uých číel tey lze rekuretě zpt tkto: ;. Poku chcete yí zjitit ruhý čle poloupoti, jeouše oplíte z jeičku počítáte: po ozeí vyje to e rová čtyřem. Což eí, ruhé ué čílo je právě čtyři. Poleí možot vyjářeí poloupot je grficky. Grfem poloupoti je vžy moži mottých vzájem izolových boů.

2 Aritmetická poloupot Aritmetická poloupot je jeouchá poloupot, ky je mezi jeotlivými čley poloupoti tálý rozíl. Kžý áleující prvek je příkl větší o tři či třeb meší o emáct. Rozíl, o kolik je jeotlivé prvky poloupoti olišují, e zývá iferece (zčíme ). V prvím přípě by byl iferece tři, v ruhém míu emáct v přípě poloupoti uých číel by byl iferece v. Vzorcem by e tey ritmetická poloupot l zpt tkto:. Obecý vzorec pro výpočet tého čleu ritmetické poloupoti je poté ( ). Poku byte příkl měli okázt, jetli je tto poloupot ( 7) ritmetická, potup by byl áleující: 7 ( ) Diferece je v, jeá e o ritmetickou poloupot. Tk teď ještě pár lších užitečých vzorečků. Zčeme oučtem prvích čleů poloupoti. S ( / ) * ( ). Druhý vzorec pk popiuje způob, jk vypočítt ifereci či libovolý čle poloupoti, poku ezáte prví čle: r (r ). Vzorečky ještě jeou všechy pohromě iferece ritmetické poloupoti oučet prvích -čleů poloupoti r ( ) ( r ) ( )

3 Příkly: ) Jké hooty bue mít prvích 6 čleů ritmetické poloupoti? ; ( ) 3 3 ( 3 ) ( ) 3 9 ( 5 ) 3 ( 6 ) 3 5 ) Jký bue. čle iferece poloupoti? ( 3) ) Pátý čle ritmetické poloupoti je rove, evátý 9. Kolik čleů je třeb ečít, by byl jejich oučet? r r ( ) ( 9 5) ( ) ( 5 ) ( ) ( ( ) ) ( 3 3) ) Nejmeší vitří úhel mohoúhelíku je 7, ejvětší 7. Velikot úhlů tvoří ritmetickou poloupot. Kolik má mohoúhelík tr jek velké má vitří úhly. počet tr, Pro (-) ( ) ( ) ( ) ( ) ( )

4 ( ) M

5 Příkl: Vypočtěte oučet všech trojciferých číel ělitelých třemi Řešeí : Číl 3, 6 9,... t. tvoří ritmetickou poloupot iferecí 3. Tto úloh e tey týká ritmetické poloupoti to oučtu ritmetické poloupoti. Pro ozeí o vzorce muíme le pře určit vele 3 ještě,, Pro určeí je uté i vzpomeout, že všech číl ělitelá 3 jou tková, jejichž ciferý oučet je ělitelý 3 Nejižší trojciferé čílo je Nejižší trojciferé čílo ělitelé 3 je tey. Nejvyšší trojciferé čílo je 999. To je tké ělitelé 3 Aritmetická ř má tey 999 Zbývá vypočítt potom po ozeí o vzorce vypočítt Výleek : 65 5

6 Geometrická poloupot Geometrická poloupot e o přechozí ritmetické liší tím, že v oueí čley emjí tejý rozíl, ýbrž poíl. Tomuto poílu e říká kvociet (zčíme q). Tkže jeouchá geometrická poloupot by třeb mohly být mociy eíti -,,... Kvociet by ze byl pochopitelě eet, eboť po ozeí o vzorečku q / oteme příkl q /. Z těchto vzorečků už můžeme pomlu ovoit rekuretí vzorec geometrické poloupoti: q (protě vyáobíte jee čle kvocietem otete áleující čle - poku byte chtěli přechozí čle, míto áobeí buete ělit). Vzorec pro obecý čle goiometrické poloupoti poté je q. Geometrické poloupoti můžeme ještě rozělit o lších vou kupi ice pole toho, jký mjí kvociet. Poku totiž bue bolutí hoot kvocietu meší ež je, bue celá poloupot klet k ule. Tkováto poloupot e tey zývá kovergetí. Nopk poku bue bolutí hoot kvocietu větší ež je, bue poloupot chvátt k ekoeču říká e jí ivergetí poloupot. Pro kovergetí poloupot poté pltí jeouchý vzorec pro oučet celé řy (pltí pouze pro kovergetí, protože ivergetí e blíží k ekoeču tk její oučet je e fcto ekoečo): / q. Vzorečky ještě jeou všechy pohromě q kvociet geometrické poloupoti oučet prvích -čleů poloupoti ± árůt, - pokle r q r q q q q ±

7 ) Jké hooty bue mít prvích 5 čleů geometrické poloupoti? ) Vypočtěte, q? q q 3 6 q q 6 6q 6q 6q 3 95 q 6 ( q) ( q q ) 95 ( q) q 6 6 q 95q 55q 6 55 ± q, 3 q q 6 ( ) ± 5 ( q ) 3 q 5 6 6

8 3) Z jk louho třááme 9 Kč při uklááí čátky Kč počátku kžého roku při % úrokováí?, 9,, 5,,9,, log, q q,9 log,9 log, log,9 3, 3 % q, ) Jeím tžeím rátu e zmeší průměr rátu o %. Jký průměr bue mít rát půvoím průměrem 6mm po omi tžeích? q % 6mm 6 q (,),5mm 5) Počet obyvtel mět vzrotl z let z Jký byl ročí přírůtek obyvtel v procetech? Počet obyvtel mět vzrotl z let z Jký byl ročí přírůtek obyvtel v procetech? q 7,3? 56 7 q 56 q q q,3 q,3 (,3 ) q,65 q

9 Použitá litertur temtik/aritmetickpoloupot.htm Náleující tráky oporučuji: poloupoti/iex.htm

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa yzikálí praktiku I Úloha č10 Měřeí oporu prouícího zuchu (erze 0/01) Úloha č 10 Měřeí rychloti prouu zuchu Měřeí záiloti íly oporu protřeí a taru tělea 1) Poůcky: Aeroyaický tuel, ikroaoetr, Pratloa trubice,

Více

Š ď ř ě ěř ř ř ž ř ě ř ě ř ř Í ě ý Ú Žď ě ž ř ě ř ě úř úř ý ě ř ž ž ř š ř ň ž ý Ú ž ě ě ě Ž ě ě š ěř ěř ď ž ěř ž ř š ď ě Ť ř ž ě ž ě ž ě ř ř ě ř ě ě ř ě ř ě ř ř ě ř ě ě ř ě ř ě Ž ě ě ř ě ř ě ř š ř ř ř

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

Ý Ý Ý Ý Ý Ý Ý Ý. ď Ý Ý Ý Ý Ý Ý

Ý Ý Ý Ý Ý Ý Ý Ý. ď Ý Ý Ý Ý Ý Ý Č Á Ě ě ě ěž ě ě é ě É Ř Á É Ř ň é é ž ž é ě ň ň é ě é ě é ě ě ů ů ó ě é ú ó ú é ž é ů Á ě ě é é é é ú é ž é ě é ů ě ú é é ě é ú ě ů ů é ú ě é ě ž ů ě ú ň ž é ň ěž ú Í é ů ěž ú ěž ú ěž ú Č ú é ě ů ú é

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

ú é ů ú ť ů ú š ň é ň é é é ž é Ý é Ý Ý é ú ů ú ů Ý ú é é ú ú Ú ů ů š é é ž é ú Ú Í ů ů é é é ú ú ó é é é é ú é ž é é ž ž ň é é é é é é É Š é ů é Š Š ú é ž ú ú é ú é é Ú ú ú Ý ů ó Š ú ú ň ů ň š ň š é é

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II 1.3.5 Řešení slovníh úloh pomoí Vennovýh igrmů II Přepokly: 1304 Pegogiká poznámk: Ieální je poku tto hoin vyje n vičení. Postup stuentů je totiž velmi iniviuální ěljí velké množství hy, oěht elou tříu

Více

Ť Ť Ť Ť Ť Ť Ť ň Ť š Ť É éť š Ť š éť š éť š ď éť š éť š éť š éť š Ú éť š š Ť š š ě š Ť š é Ť š Ť Ť š Ť Ť š ď Ť Ť š Ú Ě é Ť š Ť š é Ť š Ř š ž Ž ě ď é Ť š é Ť š Ž ž é Ť é Ť š é ě ě ď ě Ť š Ť š é Ť š é é š

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

ů Ť ě Á Ř ž ó ě Ž ž ž ž ě ě ž ě ž ž ě ě ž Č ůž ě ě ž ě ů ě ě ú ú ě ě ě ž ě ě ž ě ž Š Č ů ž ó ž ů ě ů ž ů ž ů ů ž ž ě ů ě ž ů ž ů ů ž ě ů Ž ž Ž ě ě ě Š ě ó ě ě ě ě ě ě ů ů Š ě Ó ú Ť ě ěž ž ě ú ěž úě ěž

Více

Č ř ř Í ř ě ř Ť ú ů ů ř ř ř ěř ť ř ěř ř ď ř ď é ř é úř é ř ř ř ú ú ě úř é Č Í Č ř ě ř ř ě ř ď ú é é ř ď ě ě ů ř ě ř ř ú ů é ř ů ě ú ř é ř ř ď ř ř ě ď Í ů žň ř ě ď ř ě ě ú ů é ě ž š ř é ú ě ě ú é ě ě ú

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

Ý úř ř é Č ó ř ř Á ř ě ř ď ú ů ů ř ě é ř ěř ř ř ř ř ř ř ú ř ě ř ě ř ď ú ů ů ř ě ů ř é ř é ť Í Ž ř ě ě š ř ť ů ěž é ú ů ř ř é é é ó é é é ě ú ě ú Í Ú ř ď ě é ú Ť ě ě ř Ú Ú š Ť š é ěž é ú é ž ě ž ě ěž é

Více

Á Í Ě č ě š č č ž ě ě š č ě ě ě š ů ě ě š ů č ě ě ě ě š ů ě š ě ě ě š ů ě Ž Í ě ž ň ů úč ě Č č ž š ě ě ž ň ů ů č ě ď č č č č ú š ě č č Í Š ě č ť ě ě ů š č ů č ů ů ů ů ě ů ů ě ě š ů úč č š ě č ě ě ň š ě

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

Č Č Č Č ř ř ď ěř ř ú ě ě ů ú ě ů ů ř ň ř ř ř ř ř ú š ě Č ň Č ě Č ěř ě Č É Ě Ř Ě Ý ě ú ě ěř ř ú ě ť Č Č Í ř ÚČ ř ě ř ěž Í ě ÚČ Í Č ť ě ř ú ě ě ú ú ě ú ě ú ř ť ť ě Š ť ě ú ě Ó ů ň ÚČ ě ř ěř ú ě šú ě ÚČ ě

Více

ň ž ň ě ň ň ó óž ě ů ň ž ň ě ě ě ě ě ů ě ň Ú ů ů ů ž ů ě ě ě Ř ň ň ě ů ě ú ě ě ě ě ě ů ěž ě ň ň ž ě ú ň ě ž ú ď ě ě Ť Ž ě ě ě ě ě ě ž ň Ž ě ů ě ě ě ů ě ž Ú ě ě ě ě ě ů ž ž ů ů ě ů ě ď ě ž ě ď ě ě ě ě ě

Více

ó ý ó ě ť ě ě é ě ě é ď ú ý ů ý ů š ň ě ě é é ě ó ě é ě ú ě ý ě ý Ú é ě é ě ý ď ý ů ý ů ý ů Č é ž ý ň Ž ď é ý ú ě ý ě ý ů ě ě é ú ů ý ě é ě ý Í ě ý é ů ě ý ů ý ý ů ě ý ú ý ů Ž ú Ť ý ě ě ú ý ě ů ý ý Ů úě

Více

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

š ě ě ů ů ě š ů ě š š ě ž š ú ě ě š ě ě š ů ě ě š ů ú ě ě ú ě ě š ů ě ů ů ě ěž ů ž ěž ů ú ěž ž ů ě ú ě ů ů ú š ů ů ů ů ů ů š ú ž ú ň ú ů ů š ě ě ě ú ú ú ě ů ě ú ů ě ů ě ú ě ú ž ň ú ě ě ž š ú ě ě ě ú ú

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

ú é Č é ě é ě ě ď ú ě ě Í úě ě ě ú ě é ě ě ě ě ú ě é ě é ě ď ě ú é ě ěž é ú ě é ě é é é ěň ě é é ě ď š ě ě ě ó Ú é ěž ú ě ě ó š é š š ěž é ď ě ě é š ú é é ú ě Í ď Í šť é ň ě é ě ě ě ě ě ěí ě ě ě ě ě ě

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU 6. ZÁSOBOVÁÍ 6.1. Bilance materiálu 6.2. Propočty potřeby materiálu 6.3. Řízení záob (plánování záob) Záobování patří mezi velmi ůležité ponikové aktivity. Při řízení záob e jená v potatě o řešení tří

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Vedení vvn a vyšší parametry vedení

Vedení vvn a vyšší parametry vedení Veení vvn a vyšší parametry veení Při řešení těchto veení je třeba vzhleem k jejich élce uvažovat nejenom opor veení R a inukčnost veení L, ale také kapacitu veení C. Svo veení G se obvykle zanebává. Tyto

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

ě ř Ú ň Č ž ěž ě Ž ř ř ě ú ř ě ě ě Ž ěř ě ř ř ě ř ň ě ř ě ů ř ř ž ž ř ůř ě ě š ř ě ě ň ěř ě ě ř ěř ů ř ů ě ů ě ě ž ů Í ř ů ž ž ř ů ř ůž ř ř ř ě ě ů Č ů ú Š Š ř ň Ť ě Ž ě Ž Í ř ěž ů ú ň ě ě ř š ě š ě Ž

Více

Ú é ž ě ě ě ů Ú é ž š š ě é é ú Ť é ž ý é ž ú ú é š é ě ú ů ú ú ů é ž š š š é ž ú ž ý ň Š Š ž š é é ž ů ž é š ž š ž ů ý é ž š š ťú ě ěž ú ů ů ý ú ě ý š ú Ť š é ž ů é ý ů ý é ě š ý ý ť é ě é ú ú É ž ěž

Více

Ú Ú Ú š ě š ě Ú ž ů ě ž ů š ě Š Ě ú Á Ř Ř š Ě ň Ú Ú ě ě Ú ě ú ů Ú ú ě ě ú ú š Ú Ú š ě Ú Ú ú ž Ú ů ě Ú Ú š ů š ú Ú ě ž ů Ú ě ú ů ů ů ň ě ú ž ě ůú ě ú ů ů Ř Ř Ú ú ě š ě ž Ú ě š ě ě ú ě ě ú ě Ú Ú š ě ě ú

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

ú ť š č ř ó Ě č ě ě ř ý ď ý é ř é é ř ř é ý ě ů č ú ř é ý Č ý ě Ť ž Č ě é č ě ě ě é ě Á ú ř ř ě ř é é ř é ž ě ř ý ě ě š ř ů Ť ě ý ř ě ě ř é é ř é ř é ý ě ů žš ý é ý ě ř é ž ř ě ř é ž ě č č ý ě ř é ě ř

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Kopie z www.dsagro-kostalov.cz

Kopie z www.dsagro-kostalov.cz é š š é ó ú Č é ř ěž é ú ó ó ú é ě ó ÚČ Ý éž é ú ň é ú é ě ě ž š Ý Á š é šť úě ó Ý É úě ž řé š ěž ó óš ú š řé é ě ě ž Ý éž ř ó ú Á Ě Éú é šť š š ř ě š ř ó š ň ó Ý š ě ě ž é ř ž ž é ř Ů ě ě ů ě ú š ů é

Více

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta Chromatografie Zroj: http://www.scifun.org/homeexpts/homeexpts.html [34] Diaktický záměr: Vysvětlení pojmu chromatografie. Popis: Žáci si vyzkouší velmi jenouché ělení látek pomocí papírové chromatografie.

Více

Ý Ř Č Ě É Ř Ř ý ě ú ý ů ý ů Í ě ú ý Ž ě ě ě ý ú ú Š ó ý ó ó Ř É ě ý ý ý ú ý Í Ů Č Í ě Í ě ú Ž ý É ě ě ý ů š ý Č Š ý Č Í ú š ú Í ý ú Ó ě ý ů ý ě ý ě ý ý Í ě ý Č ě ý ě ý ú ý Č ú Í ů ú ě ýš Í ý Ů ě ě ý ý

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

š ě ě ý ř ř ě ě ě ý ů ě ě š ř ů é ě š ř ů ý ů é Í ě ě š ř ů ř ř ú ý ů ý ů ě ě š ř ů ž ě š Í ú ř ž é ú é š ě ě é ě ř Í ř ú š ě š ě ř ř é ř ř é é ř ř š Ř Ě Ř Á Í Ř Í ř ě ř ú ř ř ě ě é ú ě ý ú ů ě ě š ř ů

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

Á Ě Ý ě ě ň ě ě š ř ů š ř š ě ú ě ů ě ě š ř ů é ě é ě ř ě é ě ř ě Ú ř úř ú ň ř ě Č Ť ě ě š ů ě é ě ě ř ň ř ř ě ě ě ě é ů ě ě ř ů š ú ě ň ě ě š ě š ů ě ú ě ě Č éž ě ř ě ř ě Č éž Č ú ř ě ě ř ú é ě ř ž ě

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků 2. Sě ěšováí a ředěí roztoů vyučováí áte z roztoů Sožeí ě áte ůžee vyadřovat poocí hototích zoů edotvých áte (ože ě). Hototí zoe -té ožy e defová ao poěr eí hotot hotot ě : (2) Pode záoa zachováí hotot

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

ě š Ř é žď ě ř ř ě ž ň ě é ě ě š ř ů ě ě ě ě š ů ě š š é Žď ě ř ř ě Ž ň é ú Ř ě é š š é ú é š ě š é ú ú Ž ž ě é ú ř š ě é ů ř ž ř Ž ě ř ě ě é ě ů ú ú ř š ú ř ů ě é Ž ř ě ř ě ř Ž ň Ž ů é ř ď ů ž ř ů ě é

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Ý ÚŘ Č Ý Ý Ě Ř Ř Ř Ý ě ú ý ů ý ů ě ú ě ý š ú ú ě Č é ě Ř É ý ú Í ý ý Í ú Í ý Í ě Í Í Í Ú Í ý ý Í ý ýš ý ý ěň ů é ě ů š ý ž ú Ú ý ú Č Ú Í ú ú Í ě ý ú ě é ú ě Ú ů žň Í ý ý ý ů Í Í Ů ú ú ú Í Í ý Í ě ů ě ú

Více

É ú ě Ž ě Ú ě ě ě Ř Ř ž ž Č ú ů ů ě ě ě Ó ú ú š Č ú Ž ě ú ě š Ž ú ě Ý ě Č úě ě Ú š ž ů Ú ú Č ě ÓŘ Č ě Č Ú ě ů ú š Ú ě Ú ě ě ů Ž Ť Ť ó š š Ú ó Ú ě Ť ó ů ů Ú ě ú Ú ě ú ě ě Č Ž ě Č Ú ú ě Ú ň ě Ú ě ů ú ň ě

Více

Č š ř č ý Č Í Á č š Č č č č č ď š ř ě ě ž ú š ř š ř ě č č ů ě ý ů ě š ě šť ě ý ů ě ř š ý š ě Ů šť ě š ě ů ř ý ě š ý š č č ěř č š š ě š ž š ý š š š č ď š ž č š ž Š ý ř š š ý ž ě š šť č ý ů ů ž š č ý ž ů

Více

ř ě ě Š ř ů Š Ř Ž ě ú š ř é ř é é š ý ě ř é ý é Ž Ž é š ý ú ř ě Í ý ř Ž é ř é é ž ř ě ř ě Ó é ž ř Ž ž ř ž ž ř ě ř ř ž ř ř ř Ž ř ř Ž ý ý ě ž ž ý ě ř Ž Ž ř ě é ě ř Ž é ř ě ů ř Ž ě ě Í ě ě ů ů ř ž é ř ž Ž

Více

Š ě ěř ř ř š Š ř ě ř ě ř ě Č ú Ř Č ý ý ú ě ý ý ý ř Š Š ž ř ě ř ě úř úř ý ě ř ř š ř ě š ěř ěř ž ěř ž ř š ý ř š ě ý ý ě ě ř ř ě ř ě ú Í ě ý ý ě ř ě ř ě ř ř ě ř ě ě ř ř š ř š ě š ě ř ř ě ř ž ř š ě ý š ř š

Více

ý ú é ý Č Ř ě é ú ý ů ý ů ě ě ý ž é ů ú ú ě ě ú ý ů ý ů ý ě ý ů é é ý ý ě ý é ě ý ý ů ý š é š ě š š ýš ě é ý š š é š š ě é ýú ěš ý ý ě ý Ú ý š ý ý ú é ě é ě ď ú ě é ěž ý ú ú é Č ěž ý ú ú é ě ú é ú ěž é

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

ěš š Č É Ý Í š ň ň ť ť Á Ř Ř Ú ú š ů Ť ů ě ě ě ů ě ě š ó ó ó Ý ěž ú ě ě ž ě Ž ů ž ú ů ž ž Ž š ž Ž ě ž ě š ě ě ě ů ě ů š š ě ú ě ě ě ě ú ů ě ů ě ů ě ě ů ěž ě ů ě Ť ž Ž šš ů ě ú š Š Ý Ž Ý Í š š Í ů ů ů

Více

ů Č Č Ú ě ě ě Ž ě ě š Č ě Č Č ě ě ť ě ú ě Ž ú ú ě ě ž ú ě ě ě ž ó ú ě š ě ě Ž ě ě ú ú ě ě ú ě ú ě ž ú ě ů ň ú ě ě ú ú š ú ě ě ě ě ú ě Ž ů Č ě Ž Ž ě ž ú ů ú ě ú ě ů ú ú ů ú ů ě ú ě ú ě ě ú ů ú Ž ú ě Ž Č

Více

š ý Č Í Á é č š Č č Íč č č Í š ě ě é š š š é ě ě č č š ň š ě ý ě Í š ň ě č šš é é ě š ý š ů ě ý ů é š ě š ě ó š é š š ý ě š Š Ž š š š š š š ě Š ý ý ý ýš ý ě Í ý ý ě Ž ě ě Š ó š ě é é š é é Š ě ě ě č ý

Více

é ž Á ř Á Í é ž é ž ú ě é ř ú ě é ž ú ě ý ú ý ýš ú ě ú ě Ú ě ě ž Á ú ě é ú ěř ú ě ž ř é é ě Á Á ř é é é é Á ú ě š ě ú ě ý ů ě é ě é ě ěž ř ú ýš šš ě ú ě ú ě é ž ý ě ž é ú ě ú ě Á é ú ě ú ě é é é ě š ž

Více

Ý ÚŘ Ý Ý Ě Ř Ř Č Ř Ý ú ú ú é ě ě š ů ú ů ů ě ě š ů ú é é é ě ě ě é ú é ě ů š ůž ú Č é ě ě ě é Ó é ú ů é Ů Č ě ě ú ě Ú é ň é ú Í Ý é ů ě ú é ú š š ě ě Č ÚČ Í ě ě š ů ě é é ú š ě é ú ň é ž Č š ě é é ě Č

Více

á é š Ž ř ž éčá é ý ů Ťž é á č ář é ž ý ř ú ý ď ť á Ú á ú Í ř á ř ř ž éčá Ť é ý ů é žší čí á Ťá ý č ý ů č é ď é ř ý é ď š š č ř ý Ý ů é á áš ň ú á é á ý é Ž é š á á á áň á Ž Ú ů é ž é á á ž č ř ý š ř á

Více

ě ě ě ěš é ú ě ěš ě ě ě ěš é ú ů ě ěš é ě ě ěš ě ú ú ě ě ě ě ď ú ů ú Ř ž Š š ě ó ú ě ú ú ů é é ě é ú ě ě ů é é é ú š ů ú ú ú ě ú ě ú ě š ě é é š ě ž é š ěž é ž š š š ě ě šť ě ě ů ů ě ě ó ě ě ě é ž ě ě

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

ě č č Č Č Í ěř ý é ý ě é á á ř á Č á á ě é Č á á šť ř ž Č á á Š ě á á ě č Č Č ž é á ě é á ýš č á á ů é ýš č é á ě é á á ě é á é á š č é ř ú ě á ů á á á é ě č ě á ě ě š á á ř é á é č ý áá é ě š ř ů á ř

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Ě Á Í ř ř é č č ř ů ě ě ž ů Š č ř ý ě č č ě č ú Í Í š č Ě é ř ě é é č ř č ř Í ý Š Í Á Ž Ě Ý ť ř ě ú ň Ě Á Í Í š ě ř č č ú ř Ě ř Š Í Č ě é ř ř ě ý ý ř ě ý ř é ř ě ř ě ů ý ř ě ý ů ř ý ů ř ý Š Á Ž Ě Ý ř žé

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

ě ý ú é é ě ř ý ž ý ě ú ý ěř ž Ř é ý ú é ý ě ú ř ě ř é ř ě ř é ú ě é ý š ě ů ř ýš ú ě ó ř ú ě ě ěř ž é Í ěš ř ř ř ě é ěž ř ěř é ů ěž éž Ý ř ž É ě úř é é ř é ž é é é řš ý Ě ď éž ý ěř ř é ý ě ú ř é é ř ý

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha Občejé erecálí rovce Caucova úloa Drcletova úloa Občejé erecálí rovce - Caucova úloa Úlo: I. = s omíou = jea rovce. řáu II. soustava rovc. řáu III. = - jea rovce -téo řáu = = = - = - Hleáme uc res. uce

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

É Í ů š ó č ž ě ě š ř Ž š ů č ř š ř š ů ů ů ě ů č Ž č úč ů ů č ů Ž úč ů č Ž ó č Ž ě š ě ř ř ě š ě ě ě ů š ě š ů ě ů č č ů š ů Ž ř ě ě Ž č ě řň č č Ž ů ř ěť ť ř ě ř Ž ů č č č ě ů ř š ů Ž ú ů ř Í č ě ě Ž

Více

Č ý é é Č ó ě ě ť ů ě ý ů ě é ý é ť ó ó ě ý ě ě Ť ů ť ě ě ů ý ě é é ě ě ů ž Š é Š ž Š Š Š é ě Š ý ó Č é ů ě ž ě ž ť Š ě Š ý Š Š ě ť é é ď Š ý Š žň é ž ů ž ů ě ěž ý žé Č é ě ž Š Š ý Š ě Š ť ě ý ý ž ý ů

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

č ě č ě Ž Ž č č Ť ě Ú ě Ž ě ě ě ě ž ě ď ě Ť ě ě ě Ť Ť ž č ě Ř Á Ř Ě Á ÁŘ Á Á Ť ě Š Š ě ť čď č Ě Í Á Ť Žč Ť č Ť Ť Ť Ť č Ó Ť ě Ť č Š ě ě č č ě č ě č ď ě ě Í ř Ť ď ě ě ě ě ě ť Ě Í Ť ě č Í ě č ě Ť č Í ě Ť

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

ě ž ý ě é ž ý ě š ě ú ě ě ž ě ý ě ů š ě š ě é é ě ž ý é ý ž ě ě é ň ů Ř ě ě ž žď ů ů ů ů ě ů š ů ý ž ý ů ě ň úě ů ě ů é ů ě ů ý é ě ž ů ě é ý ů ž ě ů ý ě ě ě ů Č ě ýš ě ý ě ů é ž ě é ě š é ě ů Č ě é ý

Více

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie Uivezit ov Příodovědecká fkut ted ytické chemie Sttitické vyhodoceí výedků Picip: Výedky opkových zkoušek, kteé jou ztížey áhodými chybmi, mjí učité ozděeí (ditibuci). Rozděeím e zde ozumí záviot pvděpodoboti

Více

Č Í Á ž Ř š ě š ó ě Á Ř Í ú ž š ě š ě ý ý ů ž Ž Ý ú ý š ě ě ě ě Ý ě ž š ě š ě ů ť ť Ž ť ě ť ě ě ě ě ú ž ž ě ý ý ě ó Ťú ě ě ó ž ž ó ť ě ž ů ě ě ě ý ě ý ě ě ě ť š Ř ů ě ě ě ú ý ý ú ť Ť š ů ě ě ě ě Ť ě ě

Více

ř ý ý ř é č ě é ě ě é ě č ě ř ů é ř ě č Šč é ě ě é š ú ů ů š é ýš é ř é ř é ě ě č ů é ů š ě é é é ů ě ů ě č ř ý ý š č ř č čů č é ů č ů č ě ýš č ý ů č é é ů ů ů ř š ě č ě ě ř é ř š ů š ú ů ř Šč š ě é ě

Více