Cvičení 1. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Cvičení 1. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc."

Transkript

1 1 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Rudolf Blažek 2011 BI-PST, LS 2010/11 Evropský sociální fond Praha & EU: Investujeme do vaší

2 Pravděpodobnost & Statistika Vše začalo hazardními hrami! 2

3 Věštění & Hazardní hry Starobylé Civilizace: Házení několika kostiček prstů s očíslovanými stranami (astragali = talus = knucklebone) Egyptské Hrobky Kostky nalezeny v hrobech z doby 2000 let před Kristem Renezance Hazardní hry s kostkami 3

4 Chevalier de Méré, 1654 Dva lidé, A a B, hrají opakovaně férové (50:50) náhodné hry dokud jeden hráč nevyhraje 6x. Oba hráči vsadili stejnou částku, vítěz bere vše. Série her je předčasně přerušena: A vyhrál 5x a B vyhrál 3x. Jak by si měli rozdělit vloženou sázku? 4

5 Blaire Pascal and Pierre de Fermat A by měl dostat 7/8 celkové výhry. Proč? 5

6 Blaire Pascal and Pierre de Fermat A by měl dostat 7/8 celkové výhry. Nápověda: A vyhrál 5x a B vyhrál 3x. Pokud by se ve hře pokračovalo, jak by B mohl vyhrát 6x? Hráči A stačí vyhrát pouze jednou Takže B už nesmí prohrát P(BBB) = 1/2 x 1/2 x 1/2 = 1/8 6

7 Házení mincí Měl bych hrát následující hru? Hoď 2x mincí (Head / Tail; Panna / Orel) Vyhraji, pokud se výsledky liší: HT or TH Pravděpodobnost výhry P(HT, TH) = P(HT) + P(TH) = P(H1)P(T2) + P(T1)P(H2) Vyvážená mince: (1/2) (1/2) + (1/2) (1/2) = 1/2 P(H) = 1/4: (1/4) (3/4) + (3/4) (1/4) = 3/8 P(H) = 3/4: (3/4) (1/4) + (1/4) (3/4) = 3/8 Ujistěte se, že mince je vyvážená! 7

8 Statistické Metody Pravděpodobnost versus statistické metody 8

9 Statistické Metody Pravděpodobnost Vyberu náhodně 30 kuliček (s vracením) Vidím do krabičky: V krabičče mám 60% červených kuliček Nevidím do dlaně P(20 z 30 je červených) =? (0.6) 20 (0.4) 10 =

10 Statistické Metody Statistika Vyberu náhodně 30 kuliček (s vracením) Vidím do dlaně: 20 z 30 je červených Nevidím do krabičky Kolik procent kuliček v krabičce je asi červených? 10

11 Statistické Metody Statistika: Bodové a intervalové odhady Vyberu náhodně 30 kuliček (s vracením) Vidím do dlaně: 20 z 30 je červených Kolik procent kuliček Nevidím do krabičky v krabičce je asi červených? Bodový odhad: cca 2/3 = 66.67% Intervalový odhad s 95% spolehlivostí: 48.76% 84.57% 11

12 Statistické Metody Statistika: Testování hypotéz Vyberu náhodně 30 kuliček (s vracením) Vidím do dlaně: 20 z 30 je červených Nevidím do krabičky Je v krabičce 40% červených kuliček? Závěr s 95% jistotou: NE Protože na 95% věřím: 48.76% 84.57% 12

13 Základy Pravděpodobnosti P (A) = size of A size of Vennův Diagram! A P (A) = area(a) area( ) Pravděpodobnost negace, doplňku P (Ā) =1 P (A) 13

14 Základy Pravděpodobnosti Pravděpodobnost sjednocení (A nebo B)! A B P (A B) = area(a B) area( ) area(a B) =area(a)+area(b) area(a B) P (A B) =P (A)+P (B) P (A B) P (A B) =P (A)+P (B) pro disjunktní jevy (A B = ) 14

15 Prostor elementárních jevů a pravděpodobnost Cvičení Pravděpodobnost Pravděpodobnostní zákon Každému náhodnému jevu A přiřadíme jeho pravděpodobnost P(A). Ta musí splňovat přirozené axiomy: Definice (Axiomy pravděpodobnosti) Nezápornost. P(A) 0 pro každý jev A. Normalizace. Pravděpodobnost souboru všech elementárních jevů je 1, P( ) =1. (Množina je ve svém souhrnu vyčerpávající.) Aditivita. Jsou-li A a B dva disjunktní jevy (jinými slovy vzájemně exklusivní), je pravděpodobnost jejich sjednocení součtem jejich pravděpodobností, P(A [ B) =P(A)+P(B). Obecněji, je-li A 1, A 2,... posloupnost disjunktních jevů (A i \ A j =? pro i 6= j), pak P([ i 1 A i )= X i 1 P(A i ). RomanRudolf Kotecký, Blažek, Rudolf Ph.D. Blažek (ČVUT) (FIT ČVUT) Základní Pravděpodobnost pojmy pravděpodobnosti a statistika BI-PST, LSBI-PST, 2010/11, LS2010/11 Přednáška 1 8 / 1815

16 Základy Pravděpodobnosti Dokažte, že pro jevy A, B a C platí P(A [ B [ C) =P(A) +P(B) +P c P(A \ B) P(B \ C) P(C \ A) + P(A \ B \ C) 16

17 Základy pravděpodobnosti Student si musí vybrat přesně dva ze tří volitelných předmětů Kreslení; Francoužština; Matematika Víme, že si vybere Kreslení s pravděpodobností 5/8 Francoužštinu s pravděpodobností 5/8 Kreslení a Francoužštinu zároveň s pravděpodobností 1/4 Jaká je pravděpodobnost, že student si vybere Matematiku? Kreslení nebo Matematiku? Rada: Nakreslete si Vennův diagram 17

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/2015

Více

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Intervalové Odhady Parametrů II Testování Hypotéz

Intervalové Odhady Parametrů II Testování Hypotéz Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení

Více

Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 10 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

SEMINÁRNÍ PRÁCE Z MATEMATIKY

SEMINÁRNÍ PRÁCE Z MATEMATIKY SEMINÁRNÍ PRÁCE Z MATEMATIKY PETROHRADSKÝ PARADOX TEREZA KIŠOVÁ 4.B 28.10.2016 MOTIVACE: K napsání této práce mě inspiroval název tématu. Když jsem si o petrohradském paradoxu zjistila nějaké informace

Více

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015)

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015) III Pravděpodobnost Pravděpodobnost Podmíněná p. Úplná p. Odkud se bere pravděpodobnost? 1. Pravděpodobnost, že z balíčku zamíchaných karet vytáhmene dvě esa je přibližně 0:012. Modely a teorie. 2. Pravděpodobnost,

Více

Informační a znalostní systémy

Informační a znalostní systémy Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina III Přednáška Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina Pravděpodobnost při existenci neslučitelných hypotéz Věta Mějme jev. Pokud H 1,H 2, : : :,H n tvoří úplnou skupinu

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Statistika úvodní přednáška Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle základního kurzu: seznámit posluchače se základy počtu pravděpodobnosti, seznámit posluchače s aspekty

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

Zákony pro lidi - Monitor změn (zdroj: https://apps.odok.cz/attachment/-/down/1ornamnbrspx) Návrh VYHLÁŠKA

Zákony pro lidi - Monitor změn (zdroj: https://apps.odok.cz/attachment/-/down/1ornamnbrspx) Návrh VYHLÁŠKA Návrh VYHLÁŠKA ze dne... 2017 o způsobu zasílání a oznamování informací a dat provozovateli hazardních her a jejich parametrů a rozsahu Ministerstvo financí stanoví podle 133 odst. 1 písm. a) zákona č.

Více

Diskrétní pravděpodobnost

Diskrétní pravděpodobnost Diskrétní pravděpodobnost Jiří Koula Definice. Konečným pravděpodobnostním prostorem nazveme dvojici(ω, P), kde Ω jekonečnámnožina {ω 1,..., ω n}apfunkcepřiřazujícíkaždépodmnožiněωčíslo zintervalu 0,1,splňujícíP(

Více

Historie matematiky a informatiky Cvičení 4

Historie matematiky a informatiky Cvičení 4 Historie matematiky a informatiky Cvičení 4 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Čísla speciálních tvarů a jejich

Více

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

Historie matematiky a informatiky Cvičení 1

Historie matematiky a informatiky Cvičení 1 Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor016 Vypracoval(a),

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

Cvičení z logiky I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Cvičení z logiky I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Cvičení z logiky I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr 2012 1

Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr 2012 1 ? Šárka Hudecová Katedra i a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1? Statistika = věda o získávání, zpracování a interpretaci informace obsažené v

Více

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných

Více

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost 6. Pravděpodobnost a statistika 6.1. Pravděpodobnost Pravděpodobnost (hovorově šance; značka je P z anglického probability) je hodnota vyčíslující jistotu resp. nejistotu výskytu určité události. K pojmu

Více

PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1.

PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1. Metodický list č 1. Název tématického celku: Elementární statistické zpracování 1 - Kolekce a interpretace statistických dat, základní pojmy deskriptivní statistiky. Cíl: Základním cílem tohoto tematického

Více

Pravděpodobnost a statistika pro SŠ

Pravděpodobnost a statistika pro SŠ Pravděpodobnost a statistika pro SŠ RNDr. Blanka Šedivá, Ph.D., katedra matematiky, Fakulta aplikovaných věd Západočeské univerzity v Plzni sediva@kma.zcu.cz 28. března 2012 Počátky teorie pravděpodobnosti

Více

náhodný jev je podmnožinou

náhodný jev je podmnožinou Pravděpodobnost Dovednosti a cíle - Chápat jev A jako podmnožinu množiny, která značí množinu všech výsledků náhodného děje. - Umět zapsat jevy pomocí množinových operací a obráceně umět z množinového

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Pravděpodobnost je Martina Litschmannová MODAM 2014

Pravděpodobnost je Martina Litschmannová MODAM 2014 ravděpodobnost je Martina Litschmannová MODAM 2014 Jak osedlat náhodu? Řecká mytologie: Bratři Zeus, oseidon, Hádes hráli v kostky astragalis. Zeus vyhrál nebesa, oseidon moře a Hádes peklo. Jak osedlat

Více

HERNÍ PLÁN A POPIS HRY

HERNÍ PLÁN A POPIS HRY Přijímané mince: 10, 20, 50 Kč Přijímané bankovky: 100, 200, 500, 1000, 2000, 5000 Kč Maximální sázka do hry: 50 Kč Maximální výhra z jedné hry: 50 000 Kč Výherní podíl: 93-97 % Výplata kreditu je možná

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

WORKSHOP III. Téma: Bonusy, hry nad rámec HP Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 4.

WORKSHOP III. Téma: Bonusy, hry nad rámec HP Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 4. WORKSHOP III. Téma: Bonusy, hry nad rámec HP Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 4. srpna 2016 Body tematického okruhu úvod novinky v zákoně č. 186/2016 Sb., o hazardních

Více

Testování a spolehlivost. 6. Laboratoř Ostatní spolehlivostní modely

Testování a spolehlivost. 6. Laboratoř Ostatní spolehlivostní modely Testování a spolehlivost ZS 2011/2012 6. Laboratoř Ostatní spolehlivostní modely Martin Daňhel Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Příprava studijního programu Informatika

Více

Návrh a vyhodnocení experimentu

Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav

Více

TEMATICKÝ PLÁN VÝUKY

TEMATICKÝ PLÁN VÝUKY TEMATICKÝ PLÁN VÝUKY Studijní obor: 23-41 - M/1 Strojírenství Zaměření: Předmět: Matematika Ročník: 4. Počet hodin týdně: 4 Počet hodin celkem: Tento plán vychází z rámcového vzdělávacího programu pro

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

Drsná matematika IV 7. přednáška Jak na statistiku?

Drsná matematika IV 7. přednáška Jak na statistiku? Drsná matematika IV 7. přednáška Jak na statistiku? Jan Slovák Masarykova univerzita Fakulta informatiky 2. 4. 2012 Obsah přednášky 1 Literatura 2 Co je statistika? 3 Popisná statistika Míry polohy statistických

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 3 Pravděpodobnost jevů Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola báňská Technická

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Cvičení ze statistiky - 4. Filip Děchtěrenko

Cvičení ze statistiky - 4. Filip Děchtěrenko Cvičení ze statistiky - 4 Filip Děchtěrenko Minule bylo.. Dokončili jsme deskriptivní statistiku Tyhle termíny by měly být známé: Korelace Regrese Garbage in, Garbage out Vícenásobná regrese Pravděpodobnost

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

SHOWDOWN. Podpora hodiny Netradiční hry

SHOWDOWN. Podpora hodiny Netradiční hry SHOWDOWN Ročník: 4. Vzdělávací obor: Zdravotní tělesná výchova Tematický okruh: Netradiční hry Téma: Hry pro slabozraké a nevidomé Jméno autora: Mgr. Tomáš Vacek Vytvořeno dne: 24. dubna 2012 Metodický

Více

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné

Více

Metodický průvodce k výukovému materiálu

Metodický průvodce k výukovému materiálu Metodický průvodce k výukovému materiálu Autor: Škola: Mgr. Kateřina Kvapilová ZŠ, Liberec, ul. 5. května 64/49, přísp. org. Předmět: Vzdělávací oblast: Věková skupina: Anotace: Francouzský jazyk (2. cizí

Více

Herní plán BREAK THE BANK

Herní plán BREAK THE BANK Herní plán BREAK THE BANK Break The Bank 1. Úvod Break The Bank je hra se třemi válci a 5 statickými výherními liniemi. Hra obsahuje 10 různých symbolů-včetně bonusového symbolu. 2. Pravidla hry a její

Více

Herní plán QUICK PAY JACKPOTS

Herní plán QUICK PAY JACKPOTS Herní plán QUICK PAY JACKPOTS Quick Pay Jackpots 1. Úvod Quick Pay Jackpots je hra s 5 válci a 10 výherními liniemi. Hra obsahuje 15 různých symbolů. 2. Pravidla hry a její průběh Ve hře Quick Pay Jackpots

Více

Herní plán. Hot as Hell

Herní plán. Hot as Hell Herní plán Hot as Hell Hot as Hell 1. Úvod Hot as Hell je hra s pěti válci a 5 výherními liniemi. Hra obsahuje 7 různých symbolů, jeden divoký symbol Wild a bonusový symbol Pyramid of Joy. 2. Pravidla

Více

Kredit: aktuální stav kreditu, zde jsou zobrazeny hodnoty všech vhozených mincí a vložených bankovek

Kredit: aktuální stav kreditu, zde jsou zobrazeny hodnoty všech vhozených mincí a vložených bankovek TOTAL HOT DELUXE válcová video hra s 4 otáčejícími se válci a 25 výherními liniemi Maximální výhra z jedné hry: 20 000 Výherní linie: 25 Lines: počet aktivních linií Lines bet: sázka na jednu linii Všechny

Více

Kde se vzala pravděpodobnost? Jaroslav Horáček

Kde se vzala pravděpodobnost? Jaroslav Horáček Kde se vzala pravděpodobnost? Jaroslav Horáček Pravděpodobnost Mezi veřejností synonymum pro neurčitost Mihlo se kolem ní spousta význačných matematiků Starověk a středověk málo materiálů Jeden z mála

Více

TGH13 - Teorie her I.

TGH13 - Teorie her I. TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,

Více

S U P E R G A M E S HERNÍ PLÁN

S U P E R G A M E S HERNÍ PLÁN Zadávání kreditů : S U P E R G A M E S HERNÍ PLÁN Přístroj přijímá mince v hodnotě 5, 10 a 20 Kč. Akceptor bankovek přijímá bankovky dle nastavení provozovatele v hodnotách : 50,100, 200, 500, 1000 a 2000

Více

Výskyt sázkového hraní v populaci

Výskyt sázkového hraní v populaci Výskyt sázkového hraní v populaci Mgr. Pavla Chomynová 7/11/2013 Obsah zdroje dat prevalence hraní v obecné populaci výsledky studií charakteristika hráčů prevalence problémového hraní PGSI škála hraní

Více

Nová hra od Sazky JEDINÁ KASIČKA, KTERÁ NÁSOBÍ VKLADY. Splňte si svůj sen

Nová hra od Sazky JEDINÁ KASIČKA, KTERÁ NÁSOBÍ VKLADY. Splňte si svůj sen Nová hra od Sazky JEDINÁ KASIČKA, KTERÁ NÁSOBÍ VKLADY Splňte si svůj sen KASIČKA je nová hra od SAZKY! Kasička je nová hra, ve které může sázející tipovat tři, čtyři nebo pět čísel. V systému kombinované

Více

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost Soukromá střední škola a jazyková škola s právem státní jazykové zkoušky Č. Budějovice,

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Učitelství 2. stupně ZŠ tématické plány předmětů matematika

Učitelství 2. stupně ZŠ tématické plány předmětů matematika Učitelství 2. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematická analýza I (KMD/MANA1)...2 Úvod do teorie množin (KMD/TMNZI)...4 Algebra 2 (KMD/ALGE2)...6 Konstruktivní geometrie

Více

Ranní úvahy o statistice

Ranní úvahy o statistice Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Seminář z matematiky. jednoletý volitelný předmět

Seminář z matematiky. jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Seminář z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je koncipován pro přípravu studentů k úspěšnému zvládnutí profilové (školní)

Více

Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára

Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Odhady parametrů základního souboru Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Motivační příklad Mám průměrné roční teploty vzduchu z 8 stanic

Více

TEORIE HER

TEORIE HER TEORIE HER 15. 10. 2014 HRA HRA Definice Hra je činnost jednoho či více lidí, která nemusí mít konkrétní smysl, ale přitom má za cíl radost či relaxaci. HRA Definice Hra je činnost jednoho či více lidí,

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Teoretická rozdělení

Teoretická rozdělení Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor001 Vypracoval(a),

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl

Více

Eufrat a Tigris HRACÍ MATERIÁL PŘÍPRAVA NA HRU. Sestavení monumentů. Příprava hrací desky. Výběr dynastie

Eufrat a Tigris HRACÍ MATERIÁL PŘÍPRAVA NA HRU. Sestavení monumentů. Příprava hrací desky. Výběr dynastie HRACÍ MATERIÁL Eufrat a Tigris 1 hrací deska 153 civilizačních kartiček - 30 černých osady - 57 červených chrámy - 36 modrých farmy - 30 zelených tržiště 8 kartiček katastrof 4 spojovací kartičky 4 kartičky

Více

MAGIC FOX MULTIGAME V.2.3 CZ(750)

MAGIC FOX MULTIGAME V.2.3 CZ(750) MAGIC FOX MULTIGAME V.2.3 CZ(750) OBSAHUJE NÁSLEDUJÍCÍ HRY: HOT COINS ULTRA HEAT CRYSTAL FRUITS SPARKLING HOT WATER WORLD JOKERS DELUXE ROYAL POKER EUROPEAN POKER DELUXE FRUIT POKER TUTTI FRUTTI + HI LO

Více

Statistika Pravděpodobnost

Statistika Pravděpodobnost Statistika Pravděpodobnost Irena Budínová Růžena Blažková Základy matematické statistiky 1 Kurikulární dokumenty Tématický okruh: Závislosti, vztahy, práce s daty Očekávané výstupy: Žák: vyhledává, vyhodnocuje,

Více

Odpřednesenou látku naleznete v dodatku A skript Abstraktní a konkrétní lineární algebra.

Odpřednesenou látku naleznete v dodatku A skript Abstraktní a konkrétní lineární algebra. Perfektní lineární kódy Odpřednesenou látku naleznete v dodatku A skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B01LAG 18.5.2016: Perfektní lineární kódy 1/18 Minulé přednášky 1 Detekce

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza

Více

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů? 0. Kombinatorika, pravděpodobnost, statistika Kombinatorika ) V restauraci mají na jídelním lístku 3 druhy polévek, 7 možností výběru hlavního jídla, druhy moučníku. K pití si lze objednat kávu, limonádu

Více

TOTAL HOT DELUXE VLT CZK

TOTAL HOT DELUXE VLT CZK TOTAL HOT DELUXE VLT CZK Typ hry: válcová video hra s 4 otáčejícími se válci a 25 výherními liniemi Maximální sázka na 1 hru: 1000 Kč Maximální výhra z jedné hry: 200 000 Kč Maximální výhra s double up

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

WORKSHOP III. Téma: Vzory herních plánů Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 4. srpna 2016

WORKSHOP III. Téma: Vzory herních plánů Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 4. srpna 2016 WORKSHOP III. Téma: Vzory herních plánů Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 4. srpna 2016 Body tematického okruhu úvod novinky v zákoně č. 186/2016 Sb., o hazardních

Více

Herní plán AGE OF VIKINGS

Herní plán AGE OF VIKINGS Herní plán AGE OF VIKINGS AGE OF VIKINGS 1. Úvod Age of Vikings je hra s pěti válci a 9 statickými výherními liniemi. Hra obsahuje 12 různých symbolů včetně bunusového a divokého symbolu. 2. Pravidla hry

Více