VYHODNOCENÍ MĚŘENÍ (varianta "soulodí")

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "VYHODNOCENÍ MĚŘENÍ (varianta "soulodí")"

Transkript

1 VYHODNOCENÍ MĚŘENÍ (varanta "soulodí") Měřl (Jméno, Příjmení, skuna):... Datum:... Vyhodnocení hydrometrckého měření na Berounce (soulodí) Z vyočtených rychlostí ve všech bodech svslce určíme střední svslcovou rychlost v s : u tříbodové metody: vs 0, 5 v0, H v0, 4H v0, 8H (1) u jednobodové metody: v () vs 0, 4h Průtok otom vyočteme naříklad metodou mezsvslcových ásů: vs vs 1 H H 1 b (3) kde v s a v s+1 jsou střední svslcové rychlost v -té a +1 svslc, H a H +1 jsou celkové měřené hloubky říslušných svslc a b je vodorovná šířka mez svslcem (v našem říadě vždy 3,0 m; na krajích otom vzdálenost L nebo P).

2 hodnoty z formuláře HYDROMETROVÁNÍ ze soulodí (A + B) nové výočty H (m) v 0.H v 0.4H v 0.8H v s vz rovnce (1), () (m 3 s -1 ) vz rovnce (3) LB celk =... m 3 s -1 (4) Dále určíme: šířku roflu v hladně B = (očet svslc -1)3,0 + L + P =... m (5) růtočnou lochu S =... m (6) omočený obvod O =... m (7) hydraulcký oloměr R = S/O =... m (8) střední růřezová rychlost v = /S =... ms -1, ( vz rovnce 4) (9) maxmální hloubku v roflu H max =... m (10)

3 Vyhodnocení růtoku z měření ovrchových rychlostí lováky Rychlost lováků v jednotlvých drahách se vyočtou z rovnce E v (11) t kde E je celková délka trat (m), a t je růměrný čas (s) rolutí lováku tratí v dané ln. Určíme lochu olygonu růměrných rychlostí A (m s -1 ) v jednotlvých drahách ntegrací. Dílčí lochy mezlnových ásů se vyočtou naříklad: A v kde b je vodorovná šířka mez sondovacím lnem (v našem říadě vždy 5 m; na krajích otom vzdálenost L nebo P). v 1 b (1) hodnoty z formuláře MĚŘENÍ RYCHLOSTÍ PLOVÁKY nové výočty t (s) LB v vz rovnce (11) 0 A (m s -1 ) vz rovnce (1) Celková locha růměrných rychlostí (součet dílčích loch v osledním slouc tabulky): A m s -1 (13) A Průměrná ovrchová rychlost roudění je otom

4 kde B je šířka toku v hladně (rovnce 5). A v..ms -1 (14) B Protože se růměrná ovrchová rychlost od střední růřezové rychlost lší, redukuje se součntelem vyjadřujícím oměr střední růřezové rychlost a růměrné ovrchové rychlost. Součntel nabývá hodnot v rozmezí 0,84 0,90 v závslost na tvaru rychlostního roflu. Průtok zjštěný z rychlostí měřených hladnovým lováky tedy vyočteme ze vzorce lov v S (15) kde S je růtočná locha říčného roflu v měrné trat na Berounce (rovnce 6). o dosazení: lov 0. 84v S =. m 3 s -1 (16) resektve: lov 0. 90v S =. m 3 s -1 (17) Vyhodnocení odélného sklonu hladny Zaměřeným body hladny roložte římku. Rovnce římky: y x c, kde je odélný sklon hladny hodnoty z formuláře NIVELACE HLADINY nové výočty kolík č. výšková kóta odélná yx hladny vzdálenost bodu (m y (m) x (m) ) x (m ) růměr y... x 45 m y x... x 850 m odélný sklon hladny ro 10 bodů vzdálených od sebe vždy 10 m: y x y x y x y 45 y x y (18) x x c y x... m (19)

5 Vyhodnocení drsnostního součntele n Berounky Chézyho rovnce (ředoklad rovnoměrného roudění): C S R (0) kde je růtok (m 3 s -1 ) vyhodnocený na základě hydrometrckého měření (rovnce 4), S je růtočná locha (m ) (rovnce 6), R je hydraulcký oloměr (m) (rovnce 8), je odélný sklon hladny (výsledek nvelačního měření na Berounce, rovnce 18). C =... m 0.5 s -1 (1) S R Chézyho rychlostní součntel je možno vyjádřt jako kde n je Mannngův drsnostní součntel 1 R 1 6 C () n = R n C 1 6 =... m -1/3 s (3) Grafcké řílohy vynesené ve vhodně zvoleném měřítku vyznačeném na osaných osách 1) Vykreslený říčný rofl s vyznačením rychlostních a sondovacích svslc. Na svslcích vyznačeny body měření hydrometrckou vrtulí. Nad říčným roflem navíc vykresleny střední rychlost ve svslc. ) Graf funkce ovrchových rychlostí s vyznačením rychlostí lováků. 3) Podélný rofl hladny určený nvelací s vykreslením římkového růběhu hladny získaného lneární regresí.

6 VYHODNOCENÍ MĚŘENÍ (varanta "Kačák") Měřl (Jméno, Příjmení, skuna):... Datum:... Vyhodnocení hydrometrckého měření na Kačáku Z vyočtených rychlostí ve všech bodech svslce určíme střední svslcovou rychlost v s : u tříbodové metody: vs 0, 5 v0, H v0, 4H v0, 8H (1) u jednobodové metody: v () vs 0, 4h Průtok otom vyočteme naříklad metodou mezsvslcových ásů: vs vs 1 H H 1 b (3) kde v s a v s+1 jsou střední svslcové rychlost v -té a +1 svslc, H a H +1 jsou celkové měřené hloubky říslušných svslc a b je vodorovná šířka mez svslcem (ro krajní svslce b = L res. b = P).

7 Profl 1 hodnoty z formuláře HYDROMETROVÁNÍ NA KAČÁKU - říčný rofl 1 H (m) v 0.H v 0.4H v 0.8H v s vz rovnce (1), () nové výočty (m 3 s -1 ) vz rovnce (3) LB PB celk =... m 3 s -1 (4) Profl hodnoty z formuláře HYDROMETROVÁNÍ NA KAČÁKU - říčný rofl H (m) v 0.H v 0.4H LB PB celk v 0.8H v s vz rovnce (1), () nové výočty (m 3 s -1 ) vz rovnce (3) =... m 3 s -1 (5) Dále ro rofl určíme: šířku roflu v hladně B = (očet svslc -1)b + L + P =... m (6) růtočnou lochu S =... m (7) omočený obvod O =... m (8) hydraulcký oloměr R = S/O =... m (9) střední růřezová rychlost v = /S =... ms -1 (10)

8 Vyhodnocení růtoku z měření ovrchových rychlostí lováky Rychlost lováků v jednotlvých drahách se vyočtou z rovnce E v (11) t kde E je celková délka trat (m), a t je růměrný čas (s) rolutí lováku tratí v dané ln. Určíme lochu olygonu růměrných rychlostí A (m s -1 ) v jednotlvých drahách ntegrací. Dílčí lochy mezlnových ásů se vyočtou naříklad: A v kde b je vodorovná šířka mez sondovacím lnem (v našem říadě vždy 5 m; na krajích otom vzdálenost L nebo P). v 1 b (1) hodnoty z formuláře MĚŘENÍ RYCHLOSTÍ PLOVÁKY nové výočty t (s) LB v vz rovnce (11) 0 A (m s -1 ) vz rovnce (1)

9 Celková locha růměrných rychlostí (součet dílčích loch v osledním slouc tabulky): A m s -1 (13) A Průměrná ovrchová rychlost roudění je otom A v..ms -1 (14) B kde B je šířka toku v hladně (údaj získáte od skuny A). Protože se růměrná ovrchová rychlost od střední růřezové rychlost lší, redukuje se součntelem vyjadřujícím oměr střední růřezové rychlost a růměrné ovrchové rychlost. Součntel nabývá hodnot v rozmezí 0,84 0,90 v závslost na tvaru rychlostního roflu. Průtok zjštěný z rychlostí měřených hladnovým lováky tedy vyočteme ze vzorce lov v S (15) kde S je růtočná locha říčného roflu v měrné trat na Berounce (údaj získáte od skuny A). o dosazení: lov 0. 84v S =. m 3 s -1 (16) resektve: lov 0. 90v S =. m 3 s -1 (17) Vyhodnocení odélného sklonu hladny Zaměřeným body hladny roložte římku. Rovnce římky: y x c, kde je odélný sklon hladny hodnoty z formuláře NIVELACE HLADINY nové výočty kolík č. výšková kóta odélná yx hladny vzdálenost bodu (m y (m) x (m) ) x (m ) růměr y... x 45 m y x... x 850 m odélný sklon hladny ro 10 bodů vzdálených od sebe vždy 10 m: y x y x y x y 45 y x y (18) x x c y x... m (19)

10 Vyhodnocení drsnostního součntele n Berounky Chézyho rovnce (ředoklad rovnoměrného roudění): C S R (0) kde je růtok (m 3 s -1 ) vyhodnocený z měření ovrchových rychlostí lováky (uvažujte růměr výsledků z rovnc 16 a 17), S je růtočná locha (m ) (údaj získáte od skuny A), R je hydraulcký oloměr (m) (údaj získáte od skuny A), je odélný sklon hladny (výsledek nvelačního měření na Berounce, rovnce 18). C =... m 0.5 s -1 (1) S R Chézyho rychlostní součntel je možno vyjádřt jako kde n je Mannngův drsnostní součntel 1 R 1 6 C () n = R n C 1 6 =... m -1/3 s (3) Grafcké řílohy vynesené ve vhodně zvoleném měřítku vyznačeném na osaných osách 1) Pro rofl : Vykreslený říčný rofl s vyznačením rychlostních a sondovacích svslc. Na svslcích vyznačeny body měření hydrometrckou vrtulí. Nad říčným roflem navíc vykresleny střední rychlost ve svslc. ) Graf funkce ovrchových rychlostí s vyznačením rychlostí lováků. 3) Podélný rofl hladny určený nvelací s vykreslením římkového růběhu hladny získaného lneární regresí. Do grafu našte rovnc ímky aroxmovanou změřeným body (s dosazením konkrétních hodnot a c)

11

12

13

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

Příklady z přednášek Statistické srovnávání

Příklady z přednášek Statistické srovnávání říklad z řednášek Statstcké srovnávání Jednoduché ndvduální ndex říklad V následující tabulce jsou uveden údaje o očtu závažných závad v areálu určté frm zjštěných a oravených v letech 9-998. Závažná závada

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie Příloha č. 2 k vyhlášce č. 439/2005 Sb. Zůsob určení množství elektřiny z kombinované výroby vázané na výrobu teelné energie Maximální množství elektřiny z kombinované výroby se stanoví zůsobem odle následujícího

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

Hodnocení tepelné bilance a evapotranspirace travního porostu metodou Bowenova poměru návod do praktika z produkční ekologie PřF JU

Hodnocení tepelné bilance a evapotranspirace travního porostu metodou Bowenova poměru návod do praktika z produkční ekologie PřF JU Hodnocní tlné bilanc a vaotransirac travního orostu mtodou Bownova oměru návod do raktika z rodukční kologi PřF JU Na základě starších i novějších matriálů uravil a řiravil Jakub Brom V Čských Budějovicích,

Více

CVIČENÍ Z ELEKTRONIKY

CVIČENÍ Z ELEKTRONIKY Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97

Více

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou Konference ANSYS 2009 Numerické výočty roudění v kanále stálého růřezu ři ucání kanálu válcovou sondou L. Tajč, B. Rudas, a M. Hoznedl ŠKODA POWER a.s., Tylova 1/57, Plzeň, 301 28 michal.hoznedl@skoda.cz

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace Princi iltrace Povrchová vs. hloubková iltrace» Dělení evných částic od tekutiny na orézní iltrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka Tyy

Více

T8OOV 03 STANOVENÍ PLYNNÝCH EMISÍ ORGANICKÝCH ROZPOUŠTĚDEL V ODPADNÍM VZDUCHU

T8OOV 03 STANOVENÍ PLYNNÝCH EMISÍ ORGANICKÝCH ROZPOUŠTĚDEL V ODPADNÍM VZDUCHU ávody na laboratorní cvičení z ředmětu T8OOV Ochrana ovzduší T8OOV 03 STAOVEÍ PLYÝCH EMISÍ ORGAICKÝCH ROZPOUŠTĚDEL V ODPADÍM VZDUCHU 3.1. ÚVOD Stanovení sočívá v adsorci ar těkavých organických látek na

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

ρ hustotu měřeného plynu za normálních podmínek ( 273 K, (1) ve které značí

ρ hustotu měřeného plynu za normálních podmínek ( 273 K, (1) ve které značí Měření růtou lynu rotametrem a alibrace ailárního růtooměru Úvod: Průtoy lynů se měří lynoměry, rotametry nebo se vyočítávají ze změřené tlaové diference v místech zúžení růřezu otrubí nař.clonou, Venturiho

Více

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla. říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním

Více

HYDROMECHANIKA 3. HYDRODYNAMIKA

HYDROMECHANIKA 3. HYDRODYNAMIKA . HYDRODYNAMIKA Hydrodynamika - část hydromechaniky zabývající se říčinami a důsledky ohybu kaalin. ZÁKLADY PROUDĚNÍ Stavové veličiny roudění Hustota tekutin [kgm - ] Tlak [Pa] Telota T [K] Rychlost [ms

Více

Výpo ty Výpo et hmotnostní koncentrace zne ující látky ,

Výpo ty Výpo et hmotnostní koncentrace zne ující látky , "Zracováno odle Skácel F. - Tekáč.: Podklady ro Ministerstvo životního rostředí k rovádění Protokolu o PRTR - řehled etod ěření a identifikace látek sledovaných odle Protokolu o registrech úniků a řenosů

Více

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY MODELOVÁÍ POPTÁVKY, ABÍDKY A TRŽÍ ROVOVÁHY Schéma tržní rovnováhy Modely otávky na trhu výrobků a služeb Formulace otávkové funkce Komlexní model Konstrukce modelu otávky Tržní otávka Dynamcké modely otávky

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

http://www.fch.ft.utb.cz/ps_lab_grafika.php

http://www.fch.ft.utb.cz/ps_lab_grafika.php Grafické zpracování závislostí laboratorní cvičení z FCH II Než začnete zpracovávat grafy, prostudujte si níže uvedený odkaz, na kterém jsou obecné zásady vyhodnocení experimentálně zjištěných a vypočtených

Více

Třídění a významné hodnoty

Třídění a významné hodnoty Lekce Třídění a významné hodnoty Ponechme nyní oněkud stranou různorodé oznatky rvní lekce týkající se zjšťování a tyů dat a omezme se jen na nejjednodušší říad datových souborů tvořených hodnotam kardnálních

Více

Úvodní list. Prezentace pro interaktivní tabuli, pro projekci pomůcka pro výklad

Úvodní list. Prezentace pro interaktivní tabuli, pro projekci pomůcka pro výklad Úvodní list Název školy Integrovaná střední škola stavební, České Budějovice, Nerudova 59 Číslo šablony/ číslo sady 32/09 Poř. číslo v sadě 18 Jméno autora Období vytvoření materiálu Název souboru Zařazení

Více

Vzorové příklady - 4.cvičení

Vzorové příklady - 4.cvičení Vzoroé říklady -.cičení Vzoroý říklad.. V kruhoém řiaděči e mění růřez z hodnoty = m na = m (obrázek ). Ve tuním růřezu byla ři utáleném roudění změřena růřezoá rychlot = m. -. Vyočítejte růtok a růřezoou

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

Nelineární model pneumatického pohonu

Nelineární model pneumatického pohonu XXVI. SR '1 Seminar, Instruments and Control, Ostrava, ril 6-7, 1 Paer 48 Nelineární model neumatického ohonu NOSKIEVIČ, Petr Doc.,Ing., CSc., Katedra TŘ-35, VŠ-TU Ostrava, 17. listoadu, Ostrava - Poruba,

Více

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t)

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t) MARKOVOVY PROCESY JAKO APARÁT PRO ŘEŠENÍ SPOLEHLIVOSTI VÍCESTAVOVÝCH SYSTÉMŮ Náhodné rocesy Náhodným (stochastckým) rocesem nazveme zobrazení, které každé hodnotě náhodnou velčnu X ( t). Proměnná t má

Více

ÚSTAV ORGANICKÉ TECHNOLOGIE

ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) B Měření secifického ovrchu sorbentů Vedoucí ráce: Doc. Ing. Bohumír Dvořák, CSc. Umístění ráce: S31 1 MĚŘENÍ SPECIFICKÉHO POVRCHU SORBENTŮ 1. CÍL PRÁCE

Více

Hydrologické a hydrotechnické výpočty

Hydrologické a hydrotechnické výpočty Akce : Stude odtokových poměrů pro údolí od Radostova po Olešncký potok - hydrovýpočty Hydrologcké a hydrotechncké výpočty Obsah výpočtů: Výpočet rovnoměrného a nerovnoměrného proudění v obecných korytech

Více

Frézování. Podstata metody. Zákl. způsoby frézování rovinných ploch. Frézování válcovými frézami

Frézování. Podstata metody. Zákl. způsoby frézování rovinných ploch. Frézování válcovými frézami Fréování obrábění rovinných nebo tvarových loch vícebřitým nástrojem réou mladší ůsob než soustružení (rvní réky 18.stol., soustruhy 13.stol.) Podstata metody řený ohyb: složen e dvou ohybů cykloida (blížící

Více

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin.

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin. Tekutiny Dorava tekutin Filtrace Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka 1 Povrchová vs. hloubková filtrace

Více

Větrání hromadných garáží

Větrání hromadných garáží ětrání hromadných garáží Domácí ředis: ČSN 73 6058 Hromadné garáže, základní ustanovení, latná od r. 1987 Zahraniční ředisy: ÖNORM H 6003 Lüftungstechnische Anlagen für Garagen. Grundlagen, Planung, Dimensionierung,

Více

Úvěr a úvěrové výpočty 1

Úvěr a úvěrové výpočty 1 Modely analýzy a syntézy lánů MAF/KIV) Přednáška 8 Úvěr a úvěrové výočty 1 1 Rovnice úvěru V minulých řednáškách byla ro stav dluhu oužívána rovnice 1), kde ředokládáme, že N > : d = a b + = k > N. d./

Více

uvažujte jen jedno časové období let se stejnou vlhkostí vzduchu v celém období (s výjimkou ztrát, kdy se jedná o vnesení předpětí v 5 dnech)

uvažujte jen jedno časové období let se stejnou vlhkostí vzduchu v celém období (s výjimkou ztrát, kdy se jedná o vnesení předpětí v 5 dnech) Předjatý beton Postu Vzhledem k tomu, že jsme ještě vše nerobrali, můžete zatím sočítat toto (ne nutně v tomto ořadí): růřezové charakteristiky, vlastnosti materiálů všechny ztráty ředětí krátkodobé i

Více

Tok ř.km záznam č. č. úseku/profilu: Dne : hod Délka úseku (m): Provedl

Tok ř.km záznam č. č. úseku/profilu: Dne : hod Délka úseku (m): Provedl POPIS ŘÍČNÍHO ÚSEKU/PŘÍČNÉHO PROFILU č. úkolu:. Tok ř.km záznam č. Místo Dne : hod Délka úseku (m): Provedl Bližší lokalizace :... číslo listu: vh mapy:...... mapy 1:... :... fotografie: 1) celkový charakter

Více

Protokol o provedeném měření

Protokol o provedeném měření Fyzikální laboratoře FLM Protokol o rovedeném měření Název úlohy: Studium harmonického ohybu na ružině Číslo úlohy: A Datum měření: 8. 3. 2010 Jméno a říjmení: Viktor Dlouhý Fakulta mechatroniky TU, I.

Více

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody Předmět: Ročník: Vytvořil: Datum: Stavba a rovoz strojů Třetí Dušan Hložanka 6.. 03 Název zracovaného celku: Řetězové řevody Řetězové řevody A. Pois řevodů Převody jsou mechanismy s tuhými členy, které

Více

Inženýrství chemicko-farmaceutických výrob

Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace 1 Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrační koláč Filtrační řeážka Filtrát Povrchová vs. hloubková filtrace

Více

ELEKTRICKÝ SILNOPROUDÝ ROZVOD V PRŮMYSLOVÝCH PROVOZOVNÁCH

ELEKTRICKÝ SILNOPROUDÝ ROZVOD V PRŮMYSLOVÝCH PROVOZOVNÁCH VŠB TU Ostrava Fakulta elektrotechniky a informatiky Katedra elektrotechniky ELEKTRCKÝ SLNOPROUDÝ ROZVOD V PRŮMYSLOVÝCH PROVOZOVNÁCH 1. ZÁKLADNÍ USTANOVENÍ, NÁZVOSLOVÍ 2. STUPNĚ DODÁVKY ELEKTRCKÉ ENERGE

Více

POSOUZENÍ NAVRŽENÝCH VARIANT (provést pro obě varianty!!!) 1. Ovlivňující veličiny a) podélný sklon a jízdní rychlost vj [km/h]: podle velikosti a

POSOUZENÍ NAVRŽENÝCH VARIANT (provést pro obě varianty!!!) 1. Ovlivňující veličiny a) podélný sklon a jízdní rychlost vj [km/h]: podle velikosti a POSOUZENÍ NAVRŽENÝCH VARIANT (provést pro obě varianty!!!) 1. Ovlivňující veličiny a) podélný sklon a jízdní rychlost vj [km/h]: podle velikosti a délky na sebe navazujících úseků s konstantním podélným

Více

Cvičení 1 (Opakování základních znalostí z pružnosti a pevnosti)

Cvičení 1 (Opakování základních znalostí z pružnosti a pevnosti) VŠ Techncká unverzta Ostrava akulta strojní Katedra ružnost a evnost (9 Pružnost a evnost v energetce (Návod do cvčení Cvčení (Oakování základních znalostí z ružnost a evnost utor: aroslav ojíček Verze:

Více

7 Usazování. I Základní vztahy a definice. Lenka Schreiberová, Pavlína Basařová

7 Usazování. I Základní vztahy a definice. Lenka Schreiberová, Pavlína Basařová 7 Usazování Lenka Schreiberová, Pavlína Basařová I Základní vztahy a definice Usazování neboli sedimentace slouží k oddělování částic od tekutiny v gravitačním oli. Hustota částic se roto musí lišit od

Více

Základní konvenční technologie obrábění SOUSTRUŽENÍ. Technologie III - OBRÁBĚNÍ

Základní konvenční technologie obrábění SOUSTRUŽENÍ. Technologie III - OBRÁBĚNÍ Tento materiál vznikl jako součást rojektu EduCom, který je soluinancován Evroským sociálním ondem a státním rozočtem ČR. Základní konvenční technologie obrábění SOUSTRUŽENÍ Technická univerzita v Liberci

Více

PROCESY V TECHNICE BUDOV cvičení 1, 2

PROCESY V TECHNICE BUDOV cvičení 1, 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AKULTA APLIKOVANÉ INORMATIKY PROCESY V TECHNICE BUDOV cvičení, část Hana Charvátová, Dagmar Janáčová Zlín 03 Tento studijní materiál vznikl za finanční odory Evroského sociálního

Více

Hydrologie cvičení Měření průtoku hydrometrickou vrtulí

Hydrologie cvičení Měření průtoku hydrometrickou vrtulí Hydrologie cvičení Michal Jeníček Univerzita Karlova v Praze, Přírodovědecká fakulta michal.jenicek@natur.cuni.cz, http://hydro.natur.cuni.cz/jenicek/ 2011 Měření hydrometrickou vrtulí tekoucí voda svým

Více

3 Základní modely reaktorů

3 Základní modely reaktorů 3 Základní modely reaktorů Rovnce popsující chování reakční směs v reaktoru (v čase a prostoru) vycházejí z blančních rovnc pro hmotu, energ a hybnost. Blanc lze formulovat pro extenzvní velčnu B v obecném

Více

Řetězy Vysokovýkonné IWIS DIN 8187

Řetězy Vysokovýkonné IWIS DIN 8187 Vysokovýkonné válečkové řetězy IWIS Přednosti a výhody Všechny komonenty jsou vyrobeny z vysokojakostních ušlechtilých ocelí s maximální řesností. V souladu s ředokládaným namáháním komonentu jsou teelně

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

II. Stavové chování látkových soustav

II. Stavové chování látkových soustav II. Stavové chování látkových soustav 1 II. Stavové chování látkových soustav Stavové chování látkové soustavy vztah mez telotou, tlakem, objemem a množstvím látky v soustavě Proč tyto velčny? Defnce:

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza

Více

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1 ZADÁNÍ Č. Potrubí růměru a élky l je nalněno voou ři atmosférickém tlaku. Jak velký objem V je nutno vtlačit o otrubí ři tlakové zkoušce, aby se tlak zvýšil o? Potrubí ovažujte za tué, měrná motnost voy

Více

Hydraulické odpory třecí odpory místní odpory třecí odpory laminární proudění turbulentní proudění

Hydraulické odpory třecí odpory místní odpory třecí odpory laminární proudění turbulentní proudění Hyrauické oory Při rouění reáných tekutin znikají násekem iskozity hyrauické oory, tj. síy, které ůsobí roti ohybu částic tekutiny. Hyrauický oor ři rouění zniká zájemným třením částic rouící tekutiny

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

PRŮTOK PLYNU OTVOREM

PRŮTOK PLYNU OTVOREM PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy

Více

PROCESNÍ INŽENÝRSTVÍ 7

PROCESNÍ INŽENÝRSTVÍ 7 UNIERZITA TOMÁŠE BATI E ZÍNĚ AKUTA APIKOANÉ INORMATIKY PROCENÍ INŽENÝRTÍ 7 ýočty sojené s filtrací Dagmar Janáčová Hana Carvátová Zlín 01 Tento studijní materiál vznikl za finanční odory Evroskéo sociálnío

Více

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební stavební obzor 9 10/2014 115 Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FRER doc. Ing. artina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební Článek oisuje exerimentální analýzu hybridních

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT Praze, akulta staební katedra hydrauliky a hydrologie (K4) Přednáškoé slidy předmětu 4 HYA (Hydraulika) erze: 09/008 K4 FS ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu pd souborů složených

Více

(režimy proudění, průběh hladin) Proudění s volnou hladinou II

(režimy proudění, průběh hladin) Proudění s volnou hladinou II Proudění s volnou hladinou (režimy proudění, průběh hladin) PROUDĚNÍ KRITICKÉ, ŘÍČNÍ A BYSTŘINNÉ Vztah mezi h (resp. y) a v: Ve žlabu za různých sklonů α a konst. Q: α 1 < α < α 3 => G s1 < G s < G s3

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Opakování základních znalostí z pružnosti a pevnosti

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Opakování základních znalostí z pružnosti a pevnosti VŠ Technická univerzita Ostrava akulta strojní Katedra ružnosti a evnosti (9) Oakování základních znalostí z ružnosti a evnosti utor: Jaroslav Rojíček Verze: Ostrava 00 PP ouhrn Oakování základní ružnosti:

Více

Sbírka A - Př. 1.1.5.3

Sbírka A - Př. 1.1.5.3 ..5 Ronoměrný ohyb říklady nejnižší obtížnosti Sbírka A - ř...5. Kolik hodin normální chůze (rychlost 5 km/h) je od rahy zdálen Řím? Kolik dní by tuto zdálenost šel rekreační chodec, který je schoen ujít

Více

þÿ P a r a m e t r i c k é v ý p o t y ú n o s n o s t i þÿ p o u~ i t e l n o s t i py e d p j a t é s ty ea n

þÿ P a r a m e t r i c k é v ý p o t y ú n o s n o s t i þÿ p o u~ i t e l n o s t i py e d p j a t é s ty ea n DSace VSB-TUO htt://www.dsace.vsb.cz þÿx a d a s t a v e b n í / C i v i l E n g i n e e r i n g S e r i e s þÿx a d a s t a v e b n í. 2 0 1 0, r o. 1 0 / C i v i l E n g i n e e r i n g þÿ P a r a m

Více

STATISTICKÉ METODY. (kombinovaná forma, 8.4., 20.5. 2012) Matěj Bulant, Ph.D., VŠEM

STATISTICKÉ METODY. (kombinovaná forma, 8.4., 20.5. 2012) Matěj Bulant, Ph.D., VŠEM STATISTICKÉ METODY A DEMOGRAFIE (kombinovaná forma, 8.4., 2.5. 22) Matěj Bulant, Ph.D., VŠEM Řekli o statistice Věřím ouze těm statistikám, které jsem sám zfalšoval. Tři stuně lži - lež, hnusná lež, statistika.

Více

Berounka a Mže - levostranný přítok vodního toku Vltavy - podélný profil ovlivnění vodního toku

Berounka a Mže - levostranný přítok vodního toku Vltavy - podélný profil ovlivnění vodního toku Graf č. 1 Berounka a Mže - levostranný přítok vodního toku Vltavy - podélný profil ovlivnění vodního toku významný vodní tok; délka toku 246,4 km; plocha povodí 8 855,1 km 2 ; největší přítok - Radbuza

Více

Teorie. iars 1/9 Čepové a kolíkové spoje

Teorie. iars 1/9 Čepové a kolíkové spoje Čeové a kolíkové soje V článku jsou oužita ata, ostuy, algoritmy a úaje z oborné literatury a norem ANSI, ISO, DIN a alších. Seznam norem: ANSI B8.8., ANSI B8.8., ISO 338, ISO 339, ISO 30, ISO 3, ISO 8733,

Více

Vyrovnání měření přímých stejné přesnosti

Vyrovnání měření přímých stejné přesnosti Vyrovnání měření přímých stejné přesnost 1) Určíme přblžnou hodnotu x pro přehlednější výpočet v pracovní tabulce: x ) Vypočteme hodnoty doplňků δ k přblžné hodnotě x : δ l x, protože l x + δ 3) Výpočet

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 65. ročník Matematické olymiády Úlohy domácí části I. kola kategorie C. Najděte všechny možné hodnoty součinu rvočísel, q, r, ro která latí (q + r) = 637. Řešení. evou stranu dané rovnice rozložíme na

Více

POHYB SPLAVENIN. 8 Přednáška

POHYB SPLAVENIN. 8 Přednáška POHYB SPLAVENIN 8 Přenáška Obsah: 1. Úvo 2. Vlastnosti splavenin 2.1. Hustota splavenin a relativní hustota 2.2. Zrnitost 2.3. Efektivní zrno 3. Tangenciální napětí a třecí rychlost 4. Počátek eroze 5.

Více

ze dne 2016, Nejlepší dostupné technologie v oblasti zneškodňování odpadních vod a podmínky jejich použití

ze dne 2016, Nejlepší dostupné technologie v oblasti zneškodňování odpadních vod a podmínky jejich použití I I I. N á v r h N A Ř Í Z E N Í V L Á D Y ze dne 2016, kterým se mění nařízení vlády č. 401/2015 Sb., o ukazatelích a hodnotách říustného znečištění ovrchových vod a odadních vod, náležitech ovolení k

Více

IDENTIFIKAČNÍ ÚDAJE AKCE...

IDENTIFIKAČNÍ ÚDAJE AKCE... Obsah 1. IDENTIFIKAČNÍ ÚDAJE AKCE... 2 2. ÚVOD... 2 3. POUŽITÉ PODKLADY... 2 3.1 Geodetické podklady... 2 3.2 Hydrologické podklady... 2 3.2.1 Odhad drsnosti... 3 3.3 Popis lokality... 3 3.4 Popis stavebních

Více

Základní stereometrické pojmy

Základní stereometrické pojmy ákladní stereometrické ojmy (ákladní ojmy a jejich modely) uer dvojče 01 a) hrací kostka, krabice; cihla, akvárium; c) trám, komín; d) střecha kostelní věže, svíčka (vhodného tvaru) e) střecha nad válcovou

Více

STATISTICKÉ METODY A DEMOGRAFIE

STATISTICKÉ METODY A DEMOGRAFIE STATISTICKÉ METODY A DEMOGRAFIE (kombinovaná forma, 8.4., 2.5., 7.6. 22) Matěj Bulant, Ph.D., VŠEM Řekli o statistice Věřím ouze těm statistikám, které jsem sám zfalšoval. Tři stuně lži - lež, hnusná lež,

Více

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927) Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách

Více

Rovinný průtokoměr. Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013. Jakub Filipský

Rovinný průtokoměr. Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013. Jakub Filipský Rovinný průtokoměr Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013 Autor: Vedoucí DP: Jakub Filipský Ing. Jan Čížek, Ph.D. Zadání práce 1. Proveďte rešerši aktuálně používaných způsobů a

Více

NUMERICKÝ VÝPOČET DYNAMICKÉHO CHOVÁNÍ KOMBINOVANÉHO SMĚŠOVACÍHO VENTILU

NUMERICKÝ VÝPOČET DYNAMICKÉHO CHOVÁNÍ KOMBINOVANÉHO SMĚŠOVACÍHO VENTILU NUMERICKÝ VÝPOČET DYNAMICKÉHO CHOVÁNÍ KOMBINOVANÉHO SMĚŠOVACÍHO VENTILU Václav DVOŘÁK 1 Abstract: The research object s a combned mxng valve develoed for mxng of natural gas and hydrogen as a gas fuel

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

Základní konvenční technologie obrábění SOUSTRUŽENÍ

Základní konvenční technologie obrábění SOUSTRUŽENÍ Tento materiál vznikl jako součást rojektu, který je solufinancován Evroským sociálním fondem a státním rozočtem ČR. Základní konvenční technologie obrábění SOUSTRUŽENÍ Technická univerzita v Liberci Technologie

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

3.1.8 Přeměny energie v mechanickém oscilátoru

3.1.8 Přeměny energie v mechanickém oscilátoru 3..8 Přeěny energie v echanické oscilátoru Předoklady: 0050, 03007 Pedagogická oznáka: Odvození zákona zachování energie rovádí na vodorovné ružině, rotože je říočařejší. Pro zájece je uvedeno na konci

Více

GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s?

GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? GRAF 1: s (m) a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? e) Jakou dráhu ujede automobil za 5 s? f) Za jak

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA HYDRAULIKY A HYDROLOGIE DIPLOMOVÁ PRÁCE Modelování proudění vod kort se složeným profl Praha 007 Prohlášení Prohlašu, že sem tuto prác vpracoval

Více

Zadání úlohy: Schéma zapojení: Střední průmyslová škola elektroniky a informatiky, Ostrava, příspěvková organizace. Třída/Skupina: / Měřeno dne:

Zadání úlohy: Schéma zapojení: Střední průmyslová škola elektroniky a informatiky, Ostrava, příspěvková organizace. Třída/Skupina: / Měřeno dne: Číslo úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Název úlohy: Zobrazení hysterézní smyčky feromagnetika pomocí osciloskopu Spolupracovali ve skupině.. Zadání úlohy: Proveďte zobrazení hysterezní

Více

Určení tvaru vnějšího podhledu objektu C" v areálu VŠB-TU Ostrava

Určení tvaru vnějšího podhledu objektu C v areálu VŠB-TU Ostrava Acta Montanstca lovaca Ročník 0 (005), číslo, 3-7 Určení tvaru vnějšího podhledu objektu C" v areálu VŠB-TU Ostrava J. chenk, V. Mkulenka, J. Mučková 3, D. Böhmová 4 a R. Vala 5 The determnaton of the

Více

METODICKÉ POZNÁMKY VÝPOČET BAZICKÉHO CENOVÉHO INDEXU *100

METODICKÉ POZNÁMKY VÝPOČET BAZICKÉHO CENOVÉHO INDEXU *100 METODICKÉ POZNÁMKY Index cen tržních služeb v rodukční sféře (Service Producer Price Index - SPPI) je ukazatel ro sledování cenových ohybů a měření inflačních tlaků na trhu služeb. Cenové indexy tržních

Více

HYDROTECHNICKÝ VÝPOČET

HYDROTECHNICKÝ VÝPOČET Výstavba PZS Chrást u Plzně - Stupno v km 17,588, 17,904 a 18,397 SO 5.01.2 Rekonstrukce přejezdová konstrukce v km 17,904 Část objektu: Propustek v km 17,902 Hydrotechnický výpočet HYDROTECHNICKÝ VÝPOČET

Více

Měření zrychlení volného pádu

Měření zrychlení volného pádu Měření zrychlení volného pádu Online: http://www.sclpx.eu/lab1r.php?exp=10 Pro tento experiment si nejprve musíme vyrobit hřeben se dvěma zuby, které budou mít stejnou šířku (např. 1 cm) a budou umístěny

Více

PODÉLNÝ PROFIL KOMPLETACE

PODÉLNÝ PROFIL KOMPLETACE PODÉLNÝ PROFIL KOMPLETACE Průběh dna příkopů zjistit pomocí nakreslených příčných řezů zakreslování (viz obr. 0630) podle směru staničení: pravostranný... tečkovaná čára levostranný... čárkovaná čára oboustranný...

Více

Sada 2 Geodezie II. 12. Výpočet kubatur

Sada 2 Geodezie II. 12. Výpočet kubatur S třední škola stavební Jihlava Sada 2 Geodezie II 12. Výpočet kubatur Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Stanovení sedimentační stability a distribuce velikosti částic na přístroji LUMisizer

Stanovení sedimentační stability a distribuce velikosti částic na přístroji LUMisizer Návody pro laboratorní cvičení z technologie mléka 1/6 Stanovení sedimentační stability a distribuce velikosti částic na přístroji LUMisizer Popis zařízení LUMisizer je temperovaná odstředivka, která umožňuje

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

Zkoušení a dimenzování chladicích stropů

Zkoušení a dimenzování chladicích stropů Větrání klimatizace Ing. Vladimír ZMRHAL, Ph.D. ČVUT v Praze, Fakulta strojní, Ústav techniky rostředí Zkoušení a dimenzování chladicích stroů Ústav techniky rostředí Chilled Ceilings Testing and Dimensioning

Více

KLUZNÁ LOŽISKA. p s. Maximální měrný tlak p Max (MPa) Střední měrný tlak p s (Mpa) Obvodová rychlost v (m/s) Součin p s a v. v 60

KLUZNÁ LOŽISKA. p s. Maximální měrný tlak p Max (MPa) Střední měrný tlak p s (Mpa) Obvodová rychlost v (m/s) Součin p s a v. v 60 KLUZNÁ LOŽIKA U PM oužití ro uložení ojnic, klikovýc a vačkovýc řídelů, vaadel a kol rovodů, Zde dnes výradně kluná ložiska s řívodem tlakovéo maacío oleje. Pro rvní návr se oužívá nejjednoduššíc metod

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

Hoblování a obrážení

Hoblování a obrážení Hoblování a obrážení Charakteristické ro tyto metody obrábění je odebírání materiálu jednobřitým nástrojem hoblovacím res. obrážecím nožem, řičemž hlavní ohyb je římočarý vratný a vedlejší ohyb osuv je

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

1. Zadání Pracovní úkol Pomůcky

1. Zadání Pracovní úkol Pomůcky 1. 1. Pracovní úkol 1. Zadání 1. Ověřte měřením, že směry výletu anihilačních fotonů vznikajících po β + rozpadu jader 22 Na svírají úhel 180. 2. Určete pološířku úhlového rozdělení. 3. Vysvětlete tvar

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více