Matematické základy fotogrammetrie, souřadnicové soustavy, transformace

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematické základy fotogrammetrie, souřadnicové soustavy, transformace"

Transkript

1 Mateatické áklad fotograetrie, souřadnicové soustav, transforace

2 oříení sníků ěření hodnot Fotograetrické pracování - transforace - vrovnání - korelace Fotograetrické výstup

3 Sníkové orientace Fotograetrie řeší přepočet poloh bodu e sníkových souřadnic do reálných souřadnic požadovaného sstéu. řed vlastní transforací souřadnic a následný vhodnocování LMS je nutné provést rekonstrukci poloh sníacího aříení v době poříení sníku tv. orientaci sníků. ro ěřické úkol a pro následnou tvorbu ap je nebtné přesně nát: polohu středu proítání vhlede k rovině sníku vnitřní orientaci polohu středu proítání k vnější souřadnicí a orientaci os áběru v prostoru vnější orientaci.

4 Souřadnicové soustav ve fotograetrii a hlavní souřadnicové soustav ssté sníkových souřadnic ssté odelových souřadnic ssté geodetických souřadnic b poocné souřadnicové soustav ssté fiktivních sníkových souřadnic ssté souřadnic svislého sníku

5 Ssté sníkových souřadnic dvě sníkové souřadnice rovinné!!, letecká poení FM počátek souřadnicové soustav střed sníku M, kde M je průsečík spojnic ráových naček souřadnicové os osa spojnice horiontálních R; vpravo osa na osu v rovině sníku;orientace v ateatické sslu česká konvence os letecký poení sníek

6 Sníkové souřadnice-schéa Charakteristik: 2D souřadnice v rovině sníku vsoká přesnost ěření řád µ H M ideál H M obecný případ Vni - d, d d

7 rientace os poení sníek rientace os letecký sníek

8 Ssté odelových souřadnic tři odelové souřadnice,, v ěřítku, pravoúhlé, prostorové počátek střed proítání souřadnicové os: osa ve sěru letu osa kolá v pravotočivé sěru osa orientace k enitu sěr nad.výšek

9 rovina - horiontální rovina rovnoběžná se sníkovou rovinou, nebo stejná rovina jako geodetický ssté rotace ω ϕ kole os priární kole os sekundární κ kole os terciální terciální kladný sěr pravotočivý on.: stereodvojice - počátek leží ve středu proítání levého sníku

10

11 Ssté geodetických souřadnic tři geodetické souřadnice,, nejčastěji prostorové, pravoúhlé výsledná souřadnicová soustava objektu, nejčastěji S-JTSK pro katastr, ákladní ap apod., WGS-84, ETRS89 aj. GS, u poení FM ožné i vlastní ístní souřadnicové soustav

12 rvk vnitřní orientace rvk vnitřní orientace přesně definují polohu středu proítání vhlede k rovině sníku. Uožňují rekonstruovat svaek paprsků, který v okažiku epoice vtvořil ěřický sníek. Střed proítání je střed výstupní pupil konstanta koor f určuje se s přesností na setin. poloha hlavního sníkového bodu, který le totožnit se střede sníku jako průsečíke ráových naček u správně seříené koor M H, jinak je potřeba určit d a d distore objektivu - je udána výrobce pro danou kooru či objektivu

13 rvk vnější orientace Vnější orientace určuje polohu sníacího sstéu středu proítání vstupní pupil vhlede k reálný souřadnicí. Určují i orientaci os áběru v prostoru Její prvk jsou většinou nenáé. K prvků vnější orientace patří šest následujících hodnot: tři souřadnice středu optického sstéu v dané souřadné soustavě o, o, o tři úhl definující polohu os áběru vůči souřadnicový osá sěr os áběru, sklon os áběru a pootočení sníku - ω,ϕ, κ

14 κ - pootočení sníku ve vlastní rovině rotace okolo os 3 ϕ - podélný sklon sklon os áběru od svislice ve sěru letu rotace okolo os 2 ω - příčný sklon sklon os áběru od svislice napříč sěru letu rotace okolo os

15 Určení prvků vnitřní orientace Kalibrační protokol obsahuje inforace o konstantě koor f, přesné souřadnice ráových naček a radiální kreslení. řesné ěření roěrů fotografie ráových naček, f je na okraji fotografie poto le rekonstruovat polohu středu proítání.

16 Určení prvků vnější orientace rvk vnější orientace se určují dodatečně početně - analtické etod - a nebo epirick, nejčastěji poocí tv. vlícovacích bodů V ávislosti na konkrétních postupech orientace sníků jeden sníek, překrývající se dvojice, blok sníků je apotřebí ít jistý iniální počet bodů, u nichž je náa poloha,, resp.,,. Vlícovací bod ohu být načené či nenačené. Jejich přesné souřadnice se dříve jišťoval geodetick, V současné době převládají etod GS určují souřadnice středu proítání. Tři úhl rotace se určují ěření IMS inertial easuring unit. V některých případech je ožné s dostatečnou přesností určit prvk vnější orientace přío ěření GS v reálné čase s přesností cca 5 c.

17 Určení prvků vnější orientace Vnější orientace odelu a pooci vlícovacích bodů je ted aložena nejprve na procesu prostorového protínání pět a - vlícovacích bodů do odelu o vpočtení prvků vnější orientace a obnovení odelu je poto ožno určovat polohu všech ostatních bodů prostorový protínání vpřed b.

18 Relativní a absolutní orientace ředevší u pracování sníků analtickýi postup na stereoplotrech se určení prvků vnější orientace provádí ve dvou krocích. Relativní orientace orientace stereoskopického páru v přístroji tak, ab vtvořil stereoodel v relativních souřadnicích libovolně prostorově orientovaný, be vab na geodetické souřadnice. Absolutní orientace pootočení rotace a posun stereoodelu Absolutní orientace pootočení rotace a posun stereoodelu do geodetických souřadnic poocí vlícovacích bodů.

19

20 ákladní transforační vtah v FGM Transforace souřadnic vájené obraení ei 2 kartéskýi souřadnicovýi ssté a rovinné transforace shodnostní posun, otočení podobnostní posun, otočení, ěna ěřítka 2 identické bod, použití ve FM - např. převod aěřených vlícovacích bodů, ei ístní a geodet. soustavou afinní posun, otočení, ěna ěřítka, tvaru kosení 3 ident. bod, např. převod ěřených plošných souř. do soustav sníkových souřadnic poocí ráových naček kolineární středové obraení dvou rovinných souř. sstéů achovává dvojpoěr, 4 ident. bod, ve FM jednosníková fotograetrie b prostorové transforace

21

22 Vtah ei souřadnýi soustavai Fotograetrie řeší převod sníkových souřadnic objektu,, na souřadnice geodetické,,. Tento převod ahrnuje obecně tři dílčí úkol: postupnou ěnu orientace soustav sníkových souřadnic tv. rotaci, 2 posunutí tv. translaci počátku soustav sníkových souřadnic 3 ěnu ěřítka Celou transforaci le řešit postupně po krocích, které ahrnují převod sníku do ideální poloh kolý sníek, poté převod do soustav odelových souřadnic a konečně převod souřadnic odelových na geodetické.

23 Rotace ootočení sníkového souřadného sstéu tak, ab tento bl rovnoběžný se souřadný sstée geodetický. Modelové souřadnice,, jsou souřadnice rovnoběžné s reálný sstée,,. ískáe je rotací původního sstéu sníkových souřadnic f.,, Rotace je ve vtaích ei těito trojroěrnýi souřadnýi soustavai vjádřena tv. rotační aticí M o roěru 3 3: M

24 dvoení rotační atice Rotace v trojroěrné sstéu spočívá v trojí postupné pootočení vžd kole jedné os sstéu Nejprve se ssté otočí o úhel - ω kole os, poté o úhel ϕ kole os a konečně o úhel κ kole os

25 . ootočení kole os o úhel ω Souřadnice bodu A v nové soustavě, pootočené o úhel ω původní soustav, : nové souřadnice, původní souřadnice, cosω sinω sinω cosω v aticové ápisu: cosω sinω 0 sinω cosω a nebo kráceně: M

26 2. ootočení kole os o úhel ϕ φ sinφ cos 2 2 φ cosφ sin 2 sin 0 cos φ φ v aticové ápisu: Souřadnice bodu A v dvakrát rotované sstéu budou: cos 0 sin 0 0 sin 0 cos φ φ φ φ M a nebo kráceně:

27 3. ootočení kole os 2 o úhel κ v aticové ápisu: Souřadnice bodu A v již třikrát rotované sstéu,, : κ sinκ cos 2 2 κ cosκ sin sin cos κ κ a nebo kráceně: cos sin 0 sin cos κ κ κ κ M

28 Celý proces postupných rotací původního sstéu souřadnic,, do nového sstéu, který bude rovnoběžný se sstée geodetických souřadnic le vjádřit následovně: M M M M M M M M a nebo kráceně

29 Vlastnosti rotační atice Jednotlivé prvk atice představují tv. sěrové cosin rotace a jsou určen následujících vtahů: cosφ cosκ 2 - cosφ sinκ 3 sinφ 2 cosω sinκ sinω sinφ cosκ 22 cosω cosκ sinω sinφ sinκ 23 -sinω cosφ 3 sinω sinκ cosω sinφ cosκ 32 sinω cosκ cosω sinφ sinκ 33 cosω cosφ Rotační atice je aticí ortogonální, která á následující vlastnost: M M ted inverní atice se rovná atici transponované. Tato vlastnost je ve fotograetrii důležitá pro sestavení vtahu určujícího sníkové souřadnice bodu: M T a nebo: T

30 odínka kolinearit Bod na eské povrchu, obra tohoto bodu na sníku a střed proítání leží na jedné příce. sníkové souřadnice libovolného bodu p, p. sníkové souřadnice středu proítání,, f. a geodetické souřadnice středu proítání,,. a je vektor e středu proítání do bodu p na sníku A je vektor bodu do bodu na eské povrchu odínka kolinearit: a k A A k ěřítkové číslo

31 Rovnice kolinearit Velikost vektoru a vjádřená sníkovýi souřadnicei: Velikost vektoru A vjádřená skutečnýi souřadnicei: o p o p o p A f a o p o p Vtah ei sníkovýi souřadnicei libovolného bodu a skutečnýi souřadnicei tohoto bodu vjádřený poocí rotační atice M: A M k a tj.aticově: M k f p p p p p

32 Rovnice kolinearit Výše uvedený vtah le vjádřit jako soustavu tří rovnic: [ ] 3 2 o p k [ ] o p k [ ] k f odělíe-li první a druhou rovnici rovnicí třetí, obdržíe tv. rovnice kolinearit. Tto definují vtah ei sníkovýi a skutečnýi souřadnicei: o p f o p f

33 Analogick le kolineární vtah vužít inverně pro určení skutečných souřadnic bodu následovně: Rovnice kolinearit f f o p f f o p Kolineárních rovnic je ve fotograetrii ožné vužít k určování prvků vnější orientace a dále předevší k transforaci souřadnic každého bodu na sníku do nové poloh vjádřené v geodetické souřadné sstéu ted např. k tvorbě ortofoto.

34 Je ta ale jeden problé: Rovnice kolinearit f f o p f f o p ro každý sníkový bod eistuje nekonečné nožství řešení e dvou ěřených hodnot potřebujee vpočítat 3 nenáé souřadnice jednoho sníku nele rekonstruovat polohu 3D objektu 2D souřadnic sníkových Co s tí? potřebujee inforaci o souřadnici nebo potřebujee ještě jeden sníek

35 působ určení prvků vnější orientace V ávislosti na počtu pracovávaných sníků jeden sníek či stereopár a s tí související potřebné počtu lícovacích bodů le k fotograetrický prace vužít následujících řešení, která vužívají výše odvoených kolineárních rovnic: pětné proítání space resection určení prvků vnější orientace saostatně pro jeden sníek prostorové protínání vpřed space forward intersection určení prvků vnější orientace společně pro dvojici překrývajících se sníků blokové vrovnání bundle block adjustent určení prvků vnější orientace bloku sníků etodai aerotriangulace

36 Ve fotograetrii eistuje několik postupů k určení šesti nenáých prvků vnější orientace o, o, o, ω,ϕ, κ. Tto postup le rodělit na:. očetní - skládá se e dvou kroků. Nejprve se provede relativní orientace, jejíž áklade je ěření tv. vertikálních parala na in. pěti bodech ve vhodnocovací přístroji. oté následuje výpočet šesti nenáých prvků a tv. absolutní orientace 2. Analtické vužívá se příého vtahu ei sníkovýi a geodetickýi souřadnicei áklade je ěření sníkových souřadnic. 3. Epirické relativní orientace aložená na postupné ruční odstraňování vertikálních parala na orientačních bodech a následná absolutní orientace posun, otočení a určení ěřítka.

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SOUŘADNICOVÉ SOUSTAVY VE FTM hlavní souřadnicové soustavy systém snímkových souřadnic systém modelových

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU MĚŘICKÝ SNÍMEK Základem měření je fotografický snímek, který je v ideálním případě

Více

Stereofotogrammetrie

Stereofotogrammetrie Stereootogrammetrie Princip stereoskopického vidění a tzv. yziologické paralaxy Paralaxa je relativní změna v poloze stacionárních objektů způsobená změnou v geometrii pohledu. horizontální yziologická

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE PŘÍPRAVA STEREODVOJICE PRO VYHODNOCENÍ Příprava stereodvojice pro vyhodnocení

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé.

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé. 1 Určování poloh bodů pomocí souřadnic Souřadnicové výpočt eodetických úloh řešíme v pravoúhlém souřadnicovém sstému S-JTSK, ve kterém osa +X je orientována od severu na jih a osa +Y od východu na západ.

Více

Souřadnicové výpočty. Geodézie Přednáška

Souřadnicové výpočty. Geodézie Přednáška Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických

Více

FAKULTA STAVEBNÍ VUT V BRNĚ

FAKULTA STAVEBNÍ VUT V BRNĚ FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP GEODÉZIE A KARTOGRAFIE PRO AKADEMICKÝ ROK 009 010 OBOR: GEODÉZIE A KARTOGRAFIE 1. tg ( α ) = o tg α B) cot gα C) tgα D) sin( 90 α) o. cotg 70 = B) 0

Více

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2.

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2. 1. kapitola Stavební echanika Janek Faltýnek SI J (43) Vnitřní síl v průřeu prostorového prutu eoretická část: ) erinologie ejdříve bcho si ěli říci co se rouí pod poje prut. Jako prut se onačuje konstrukční

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

4. Souřadnicové soustavy ve fotogrammetrii, vlivy působící na geometrii letecké fotografie

4. Souřadnicové soustavy ve fotogrammetrii, vlivy působící na geometrii letecké fotografie 4. Souřadnicové soustavy ve fotogrammetrii, vlivy působící na geometrii letecké fotografie Podle orientace osy záběru dělíme snímky ve fotogrammetrii na snímky svislé (kolmé), šikmé, ploché a horizontální

Více

Souřadnicové výpočty I.

Souřadnicové výpočty I. Geodézie přednáška 7 Souřadnicové výpočt I. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Výpočet směrníku a délk stran v základním i podrobném bodovém poli

Více

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze 4.5 eakce staticky určitých konstrukcí Úloha: posoudit statickou určitost / navrhnout podepření konstrukce jistit jakými silami jsou namáhanéčásti konstrukce, jakými silami působí konstrukce na áklady

Více

Transformace dat mezi různými datovými zdroji

Transformace dat mezi různými datovými zdroji Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení .. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE MATEMATICKÉ ZÁKLADY FOTOGRAMMETRIE fotogrammetrie využívá ke své práci fotografické snímky, které

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK OBOR: GEODÉZIE A KARTOGRAFIE TEST.

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK OBOR: GEODÉZIE A KARTOGRAFIE TEST. FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 0 0 OBOR: GEODÉZIE A KARTOGRAFIE Část A TEST A) cos cos b) tg c) ( ) A) cos b) c) cotg cotg cotg A3) Hodnota

Více

Protínání vpřed - úhlů, směrů, délek GNSS metody- statická, rychlá statická, RTK Fotogrammetrické metody analytická aerotriangulace

Protínání vpřed - úhlů, směrů, délek GNSS metody- statická, rychlá statická, RTK Fotogrammetrické metody analytická aerotriangulace Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Protínání vpřed - úhlů, sěrů, délek GNSS etody- statická, rychlá statická, RTK Fotograetrické etody analytická aerotriangulace +y 3 s 13 1 ω 1 ω σ 1 Používá se

Více

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence :

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence : Skládání různoběžných kmitů Uvědomme si principiální bod tohoto problému : na jediný hmotný bod působí dvě nezávislé pružné síl ve dvou různých směrech. Jednotlivé mechanické pohb, které se budou skládat,

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné

Více

2.8.6 Parametrické systémy funkcí

2.8.6 Parametrické systémy funkcí .8.6 Parametrické sstém funkcí Předpoklad:, 0,, 50, 60 Stejně jako parametrická rovnice zastupuje mnoho rovnic najednou, parametrick zadaná funkce zastupuje mnoho funkcí. Pedagogická poznámka: Názornost

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž FAKULTA ELEKTROTECHNKY A KOMUNKAČNÍCH TECHNOLOGÍ VYSOKÉ UČENÍ TECHNCKÉ V BRNĚ MULTKOPTÉRY ng. Vlastiil Kříž Koplení inoace studijních prograů a šoání kalit ýuk na FEKT VUT Brně OP VK CZ.1.07/2.2.00/28.0193

Více

Rovinná napjatost a Mohrova kružnice

Rovinná napjatost a Mohrova kružnice Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují

Více

57. Pořízení snímku pro fotogrammetrické metody

57. Pořízení snímku pro fotogrammetrické metody 57. Pořízení snímku pro fotogrammetrické metody Zpracoval: Tomáš Kobližek, 2014 Z{kladní informace Letecká fotogrammetrie nad 300 m výšky letu nad terénem (snímkovací vzdálenosti) Uplatnění mapování ve

Více

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma Výukové texty pro předmět Automatické řízení výrobní techniky (KKS/ARVT) na téma Podklady a grafická vizualizace k určení souřadnicových systémů výrobních strojů Autor: Doc. Ing. Josef Formánek, Ph.D.

Více

Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky.

Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky. 5 Vektor II Předpoklad: 4 Umíme už vektor sčítat, teď zkusíme opačnou operací rozklad vektoru na složk Př : Na obrázku je nakreslena síla Nakresli do obrázku síl a tak, ab platilo = + Kolik má úloha řešení?

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Lineární transformace

Lineární transformace Lineární transformace 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.c http://cgg.mff.cuni.c/~pepca/ 1 / 28 Požadavk běžně používané transformace posunutí, otočení, většení/menšení, kosení,..

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

Rovinná a prostorová napjatost

Rovinná a prostorová napjatost Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových

Více

Odhad přesnosti rotačního laserového skeneru a optimalizace jeho konfigurace

Odhad přesnosti rotačního laserového skeneru a optimalizace jeho konfigurace 1 Úvod Odhad přesnosti rotačního laserového skeneru a optializace jeho konfigurace V této práci je řešena probleatika odhadu a posouzení přesnosti laserového a optického rotačního skeneru dále jen LaORS.

Více

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky Jiří Petržela příklad pro příčkový filtr na obrázku napište aditanční atici etodou uzlových napětí zjistěte přenos filtru identifikujte tp a řád filtru Obr. : Příklad na příčkový filtr. aditanční atice

Více

6.2.1 Zobrazení komplexních čísel v Gaussově rovině

6.2.1 Zobrazení komplexních čísel v Gaussově rovině 6.. Zobraení komplexních čísel v Gaussově rovině Předpoklad: 605 Pedagogická ponámka: Stihnout obsah hodin je poměrně náročné. Při dostatku času je lepší dojít poue k příkladu 7 a btek hodin spojit s úvodem

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník JEDNOSNÍMKOVÁ FOTOGRAMMETRIE

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník JEDNOSNÍMKOVÁ FOTOGRAMMETRIE SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník JEDNOSNÍMKOVÁ FOTOGRAMMETRIE MATEMATICKÉ ZÁKLADY JEDNOSNÍMKOVÉ FTM Matematickým vyjádřením skutečnosti je kolineární transformace, ve které

Více

QUADROTORY. Ing. Vlastimil Kříž

QUADROTORY. Ing. Vlastimil Kříž QUADROTORY ng. Vlastiil Kříž Obsah 2 Mateatický odel, říení transforace ei báei (rotace) staoý popis říení Eistující projekt unieritní hobb koerční Quadrotor 3 ožnost isu iniu pohbliých součástek dobrý

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka. OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

2.5 Rovnováha rovinné soustavy sil

2.5 Rovnováha rovinné soustavy sil Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice

Více

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model

Více

6.16. Geodetické výpočty - GEV

6.16. Geodetické výpočty - GEV 6.16. Geodetické výpočty - GEV Obor: 36-46-M/01 Geodézie a katastr nemovitostí Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 8 Platnost učební osnovy: od 1.9.2010 1) Pojetí vyučovacího

Více

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015

Více

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů

Více

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice

Více

Hledané složky vektoru tvoří odvěsny pravoúhlého trojúhelníku:

Hledané složky vektoru tvoří odvěsny pravoúhlého trojúhelníku: 7 Vektor III Předpoklad: 006 Pedagogická ponámka: Příklad, 4, 5 je možné vnechat, důležité je, ab alespoň 5 minut blo na příklad 7 Pedagogická ponámka: Úvodní příklad vužívám k prokoušení látk minulé hodin

Více

Střední škola automobilní Ústí nad Orlicí

Střední škola automobilní Ústí nad Orlicí Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,

Více

10. PŘEVODY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS

10. PŘEVODY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS 10. PŘEVOY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS Jedná se o převody s tvarový styke výhody - relativně alé roěry - dobrá spolehlivost a životnost - dobrá echanická účinnost - přesné dodržení

Více

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem 7 Transformace 2D Studijní cíl Tento blok je věnován základním principům transformací v rovinné grafice. V následujícím textu bude vysvětlen rozdíl v přístupu k transformacím u vektorového a rastrového

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

VÝPOČET VÝMĚR. Zpracováno v rámci projektu CTU 0513011 (2005)

VÝPOČET VÝMĚR. Zpracováno v rámci projektu CTU 0513011 (2005) VÝPOČET VÝMĚR Zpracováno v rámci projektu CTU 0513011 (2005) Výměry se určují: Početně: - z měr odsunutých z mapy (plánu), - z měr, přímo měřených v terénu, - z pravoúhlých souřadnic, - z polárních souřadnic.

Více

Transformace (v OpenGL) příklady a knihovna GLM

Transformace (v OpenGL) příklady a knihovna GLM Transforace (v OpenGL) příklady a knihovna GLM Petr Felkel, Jaroslav Sloup Katedra počítačové grafiky a interakce, ČVUT FEL ístnost KN:E-413 (Karlovo náěstí, budova E) E-ail: felkel@fel.cvut.cz Poslední

Více

Zjednodušená deformační metoda (2):

Zjednodušená deformační metoda (2): Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

geometrická (trigonometrická, nebo goniometrická) metoda (podstata, vhodnost)

geometrická (trigonometrická, nebo goniometrická) metoda (podstata, vhodnost) 1. Nalezení pólu pohybu u mechanismu dle obrázku. 3 body 2. Mechanismy metoda řešení 2 body Vektorová metoda (podstata, vhodnost) - P:mech. se popíše vektor rovnicí suma.ri=0 a následně provede sestavení

Více

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21 2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Podrobné polohové bodové pole (1)

Podrobné polohové bodové pole (1) Podrobné polohové bodové pole (1) BUDOVÁNÍ NEBO REVIZE A DOPLNĚNÍ PODROBNÉHO POLOHOVÉHO BODOVÉHO POLE Prohloubení nabídky dalšího vzdělávání v oblasti Prohloubení nabídky zeměměřictví dalšího vzdělávání

Více

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in

Více

2. Bodové pole a souřadnicové výpočty

2. Bodové pole a souřadnicové výpočty 2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Obr Princip přímé a nepřímé obrazové transformace

Obr Princip přímé a nepřímé obrazové transformace 10. Transformace digitálního obrazu Digitální podoba snímků a výkonná výpočetní technika umožnila realizovat řadu algoritmů sloužících k jejich geometrické transformaci. Vhodnost použití konkrétního algoritmu

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

2. Vyplňování. Transformace.

2. Vyplňování. Transformace. 2. Vplňování, transformace Cíl Po prostudování této kapitol budete umět vplňovat a šrafovat ohraničenou oblast zobrazovat objekt 3D do rovin odvodit vztah pro zobrazení 3D objektů do rovin Výklad 2.. Algoritm

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

6 Samodružné body a směry afinity

6 Samodružné body a směry afinity 6 Samodružné body a směry afinity Samodružnými body a směry zobrazení rozumíme body a směry, které se v zobrazují samy na sebe. Například otočení R(S má jediný samodružný bod, střed S, anemá žádný samodružný

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fzikálních praktik při Kabinetu výuk obecné fzik MFF UK Praktiku I Mechanika a olekulová fzika Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Matáš Řehák stud.sk.:

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Předloha č. 2 podrobné měření

Předloha č. 2 podrobné měření Předloha č. 2 podrobné měření 1. Zadání 2. Zápisník 3. Stručný návod Groma 4. Protokol Groma 5. Stručný návod Geus 6. Protokol Geus 7. Stručný návod Kokeš 8. Protokol Kokeš 1 Zadání 1) Vložte dané body

Více

ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 4

ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 4 ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ZÁKLADNÍ PŘEDPOKLADY A POJMY. Látka, která vtváří příslušné těleso je dokonale lineárně pružné, mei napětím a přetvořením je lineární ávislost.. Látka hmotného tělesa

Více

Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na. x 2 x 1

Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na. x 2 x 1 Kapitola 4 Rasterizace objektů Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na rastrově definované obrazy. Při zobrazení reálného modelu ve světových souřadnicích na výstupní

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v rovině Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace shodné transformace (shodnosti, izometrie) převádějí objekt

Více

3. Obecný rovinný pohyb tělesa

3. Obecný rovinný pohyb tělesa . Obecný rovinný pohyb tělesa Při obecném rovinném pohybu tělesa leží dráhy jeho jednotlivých bodů v navzájem rovnoběžných rovinách. Těmito dráhami jsou obecné rovinné křivky. Všechny body ležící na téže

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací kouška na MFF UK v Prae Studijní program Matematika, bakalářské studium Studijní program Informatika, bakalářské studium 2013, varianta A U každé deseti úloh je nabíeno pět odpovědí: a, b, c,

Více

7 Analytické vyjádření shodnosti

7 Analytické vyjádření shodnosti 7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +

Více

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2) Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM

MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM WORLD GEODETIC SYSTEM 1984 - WGS 84 MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM Pro projekt CTU 0513011 (2005) s laskavou pomocí Ing. D. Dušátka, CSc. Soustava základních geometrických a

Více

Měření výkonu jednofázového proudu

Měření výkonu jednofázového proudu Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL

2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL . VOJROZMĚRNÝ (VOJNÝ) INTEGRÁL Úvodem připomenutí základních integračních vzorců, bez nichž se neobejdete: [.] d = C [.] d = + C n+ n [.] d = + C n + [4.] d = ln + C [5.] sin d = cos + C [6.] cos d = sin

Více

Deskriptivní geometrie pro střední školy

Deskriptivní geometrie pro střední školy Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl

Více

Centrovaná optická soustava

Centrovaná optická soustava Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě

Více

Obsah a průběh zkoušky 1PG

Obsah a průběh zkoušky 1PG Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY

GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY VOJENSKÝ GEOGRAFICKÝ A HYDROMETEOROLOGICKÝ ÚŘAD Popis a zásady používání světového geodetického referenčního systému 1984 v AČR POPIS A ZÁSADY POUŽÍVÁNÍ V AČR

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok

Více