Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)"

Transkript

1 Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah (6) Formulace LRM: Model (správná původní představa A): C t = β 1 + β 2 Y t-1 + u t (6) Model (původní představa B): C t = β 1 + β 2 Y t + u t (5) Model (původní představa C): Y t = β 1 + β 2 C t + u t (3) (2) Specifikace proměnných (2) Očekávaná znaménka a rozsahy hodnot 2. KVANTIFIKACE (5 bodů): (1) Odhad LRM pomocí MNČ (1) Konstanta β 1 je významná až na cca. 25 % hladině, proto jí vypustíme z modelu (2) MNČ: nový model (1) Vyčíslení odhadnutého modelu 3. VERIFIKACE (7 bodů): (1) ekonomická (1) statistická (5) ekonometrická o (1) Nulovost střední hodnoty reziduí o (1) Normalita náhodných složek o (0) Test specifikace modelu o (1) Multikolinearita o (1) Homoskedasticita o (1) Autokorelace Následně lze volit buď 4. Ochranovu-Orcuttovu transformaci nebo 5. Modelování pomocí ARMA modelů 4. COCHRANOVA-ORCUTTOVA TRANSFORMACE (15 bodů): (1) MNČ (1) Konstanta je opět statisticky nevýznamná a je třeba ji odstranit. (1) Nový model MNČ (1) Konečný model má tedy tvar: Ct = 0, Yt + u t (7) Verifikace:

2 (1) ekonomická (1) statistická (5) ekonometrická (1) Nulovost střední hodnoty reziduí (1) Normalita náhodných složek (0) Test specifikace modelu (1) Multikolinearita (1) Homoskedasticita (1) Autokorelace (1) Uvedený model je ekonomicky, statisticky i ekonometricky správný, z toho vyplývá, že odhad MNČ je nejlepším lineárním nestranným odhadem uvedeného modelu. Na základě tohoto modelu lze tedy předpovídat. (3) Prémie za použití tohoto modelu, nutno konstatovat, že je správný. 5. ARMA MODEL (15 bodů): (1) Test jednotkových kořenů pro Y t : (1) Test jednotkových kořenů pro C t : (1) Kořeny leží vně jednotkového kruhu, řady jsou tedy slabě stacionární, lze modelovat ARMA modely (1) Y t AR(1) proces, corelogram (1) C t AR(1) proces, corelogram (1) Model: C t = β 1 + β 2 C t 1 + β 3 Y t + β 4 Y t 1 + u t (1) Odhad MNČ (1) Konstanta je statisticky nevýznamná a je třeba ji z modelu odstranit. (1) Nový odhad MNČ (1) Konečný model: C t = 0, C t 1 + 0, Y t 0, Y t 1 + u t (5) VERIFIKACE modelu: (1) ekonomická (1) statistická (3) ekonometrická (1) Nulovost střední hodnoty reziduí (1) Normalita náhodných složek (1) Normalita reziduí 6. APLIKACE PŘEDPOVĚĎ (9 bodů): (1) Odhadnutý model má tvar: a) (C-O) Ct = 0, Yt + u t b) (ARMA) C t = 0, C t 1 + 0, Y t 0, Y t 1 + u t (1) V obou případech je třeba provést odhad vývoje příjmu Y t (nicméně pro ARMA to GRETL zvládne sám) v obou modelech jsou výsledné předpovědi C t identické: a) (7) C-O transformace (1) model Y t AR(1):

3 (1) Konstanta je statisticky nevýznamná, je třeba ji odstranit nový model. (1) Platí tedy: Yt = 1,03039 Y t-1 + u t (1) Předpověď Y t (1) Graf Y t (1) Předpověď C t (1) Graf C t rok Y t C t , , , , , , , , , ,72 b) (7) AR model (1) model Y t AR(1): (1) Konstanta je statisticky nevýznamná, je třeba ji odstranit nový model. (1) Platí tedy: Yt = 1,03039 Y t-1 + u t (1) Předpověď Y t (1) Graf Y t (1) Předpověď C t (1) Graf C t rok Y t C t , , , , , , , , , ,72 7. TEXT PRÁCE, ÚPRAVA A DALŠÍ PRÉMIOVÉ BODY (max. 2 body):

4

5 Řešení: Řešení Y = příjem C = spotřeba 1. SPECIFIKACE (12): Graf průběhu proměnných: Obě řady se chovají stejně, lze předpokládat jejich lineární vztah. Formulace LRM: Model (správná původní představa A): C t = β 1 + β 2 Y t-1 + u t Model (původní představa B): C t = β 1 + β 2 Y t + u t Specifikace proměnných: A) C t výše úspor, endogenní, [36x1] Y t-1 výše příjmu, predeterminovaná, [36x1] B) C t výše úspor, endogenní, [36x1] Y t výše příjmu, exogenní, [36x1] Očekávaná znaménka a rozsahy hodnot: β < β 2 < 1

6 2. KVANTIFIKACE (5): Odhad LRM pomocí MNČ: C t = β 1 + β 2 Y t + u t Konstanta β 1 je významná až na cca. 25 % hladině, proto jí vypustíme z modelu. Odhad LRM bez konstanty pomocí MNČ: C t = 0, Y t

7 3. VERIFIKACE (7): a) ekonomická člověk spotřebuje v daném období přibližně 90% z příjmu tohoto období, což je v souladu s ekonomickými předpoklady b) statistická odhadnutý regresní koeficient b 2 je statisticky významný i na 1% hladině koeficient vícenásobné determinace a korigovaného koeficientu vícenásobné determinace jsou statisticky významné (F-test) usuzujeme, že je model velmi kvalitní s vysokou vypovídací schopností. c) ekonometrická Nulovost střední hodnoty reziduí: E(e i ) = 1,20697 není sice 0, ale vzhledem k hodnotám Y, C je odchylka nevýznamná Normalita náhodných složek (nutná, neboť jinak nelze brát v úvahu výsledky testů): 0.03 Test statistic for normality: Chi-squared(2) = 3,999 pvalue = 0,13540 uhat2 N(1,207 18,888) Density Test for null hypothesis of normal distribution: Chi-square(2) = 3,999 with p-value 0,13540 Bohužel ani na 10% hladině ji nelze předpokládat, ale těžko si s ní poradíme. uhat2

8 Test specifikace modelu Test statistic: F = 16,112940, with p-value = P(F(2,33) > 16,1129) = 1,31e-005 Model je statisticky významný i na 1% hladině významnosti a lze předpokládat správnou specifikaci. Multikolinearita není přítomna, protože máme jen jednu vysvětlující proměnnou, která nemá s čím být lineárně závislá. Homoskedasticita: Spearmanův test nebo Whiteův test, oba testy prokazují homoskedasticitu Autokorelace: Durbin-Watson test autokorelace: ρ = 0, > 0 usuzujeme na pozitivní autokorelaci 1. řádu d = 0, d L = 1,4019 d H = 1,5191 d < d L autokorelace potvrzena -> ARMA model nebo C-O či P- W transformace (stačí jeden z nich, netřeba oba)

9 4. COCHRANOVA-ORCUTTOVA TRANSFORMACE (15): Odhad MNČ Konstanta je opět statisticky nevýznamná a je třeba ji odstranit. Konečný model má tedy tvar: Ct = 0, Yt + u t Verifikace: a) ekonomická člověk spotřebuje v daném období přibližně 90,5% z příjmu tohoto období, což je v souladu s ekonomickými předpoklady b) statistická odhadnutý regresní koeficient b 2 je statisticky významný i na 1% hladině koeficient vícenásobné determinace a korigovaného koeficientu vícenásobné determinace jsou statisticky významné (F-test) usuzujeme, že je model velmi kvalitní s vysokou vypovídací schopností.

10 c) ekonometrická Nulovost střední hodnoty reziduí: E(e i ) = 3,21571e-013 lze považovat za 0. Normalita náhodných složek (nutná, neboť jinak nelze brát v úvahu výsledky testů): 0.03 Test statistic for normality: Chi-squared(2) = 8,331 pvalue = 0,01553 uhat6 N(3,2157e ,991) Density uhat6 Test for null hypothesis of normal distribution: Chi-square(2) = 8,331 with p-value 0,01553 Na 2% hladině lze předpokládat normalitu reziduí. Test specifikace modelu Model již byl testován na specifikaci v předchozím kroku a je správný Multikolinearita Není přítomna, protože máme jen jednu vysvětlující proměnnou, která nemá s čím být lineárně závislá. Homoskedasticita: oba testy prokazují homoskedasticitu Autokorelace: Durbin-Watson test autokorelace: ρ = -0, usuzujeme na pozitivní autokorelaci 1. řádu d = 1,96273 d L = 1,4019 d H = 1,5191 d 2, d H < d < 4 d H sériová nezávislost Uvedený model je ekonomicky, statisticky i ekonometricky správný, z toho vyplývá, že odhad MNČ je nejlepším lineárním nestranným odhadem uvedeného modelu. Na základě tohoto modelu lze tedy předpovídat.

11 5. ARMA MODEL (15): Test jednotkových kořenů pro Y t : Augmented Dickey-Fuller tests, order 1, for Y sample size 39 unit-root null hypothesis: a = 1 test without constant model: (1 - L)y = (a-1)*y(-1) e 1st-order autocorrelation coeff. for e: 0,007 estimated value of (a - 1): 0, test statistic: tau_nc(1) = 4,87748 asymptotic p-value 1 test with constant model: (1 - L)y = b0 + (a-1)*y(-1) e 1st-order autocorrelation coeff. for e: 0,002 estimated value of (a - 1): 0, test statistic: tau_c(1) = 2,16059 asymptotic p-value 0,9999 P-values based on MacKinnon (JAE, 1996) Test jednotkových kořenů pro C t : Augmented Dickey-Fuller tests, order 1, for C sample size 34 unit-root null hypothesis: a = 1 test without constant model: (1 - L)y = (a-1)*y(-1) e 1st-order autocorrelation coeff. for e: 0,107 estimated value of (a - 1): 0, test statistic: tau_nc(1) = 3,56745 asymptotic p-value 0,9999 test with constant model: (1 - L)y = b0 + (a-1)*y(-1) e 1st-order autocorrelation coeff. for e: 0,105 estimated value of (a - 1): 0, test statistic: tau_c(1) = 1,34133 asymptotic p-value 0,9989 P-values based on MacKinnon (JAE, 1996) Kořeny leží vně jednotkového kruhu, řady jsou tedy slabě stacionární, lze modelovat ARMA modely

12 Y t AR(1) proces: Autocorrelation function for Y ACF for Y LAG ACF PACF Q-stat. [p-value] ,96/T^0,5 1 0,9264 *** 0,9264 *** 37,8275 [0,000] 2 0,8536 *** -0, ,7626 [0,000] 3 0,7817 *** -0, ,1117 [0,000] 4 0,7111 *** -0, ,2037 [0,000] 5 0,6413 *** -0, ,3455 [0,000] 6 0,5735 *** -0, ,9152 [0,000] 7 0,5047 *** -0, ,1238 [0,000] 8 0,4417 *** -0, ,5459 [0,000] lag PACF for Y ,96/T^0, lag C t AR(1) proces: Autocorrelation function for C LAG ACF PACF Q-stat. [p-value] 1 0,9182 *** 0,9182 *** 32,9494 [0,000] 2 0,8359 *** -0, ,0647 [0,000] 3 0,7581 *** -0, ,8912 [0,000] 4 0,6863 *** -0, ,0271 [0,000] 5 0,6118 *** -0, ,5461 [0,000] 6 0,5365 *** -0, ,6708 [0,000] 7 0,4546 *** -0, ,4214 [0,000] 8 0,3709 ** -0, ,1434 [0,000] ACF for C ,96/T^0, lag PACF for C ,96/T^0, lag Nový model: C t = β 1 + β 2 C t 1 + β 3 Y t + β 4 Y t 1 + u t Odhad MNČ Konstanta je statisticky nevýznamná a je třeba ji z modelu odstranit. Nový odhad bez konstanty Konečný model: C t = 0, C t 1 + 0, Y t 0, Y t 1 + u t VERIFIKACE modelu: a) ekonomická vyšší spotřeba v předchozím období znamená vyšší spotřebu v současnosti vyšší současné příjmy způsobí vyšší současnou spotřebu vyšší předchozí příjmy (znamenají nákup zásob v předchozích období a tedy nižší současnou potřebu a tak) způsobí nižší současnou spotřebu všechny koeficienty jsou v absolutní hodnotě mezi nulou a jedničkou, což je v souladu s obecnými předpoklady b) statistická všechny odhadnuté regresní koeficienty jsou statisticky významné i na 1% hladině c) ekonometrická

13 Nulovost střední hodnoty reziduí: E(e i ) = 0, nelze zodpovědně považovat za 0, nicméně vzhledem k hodnotám proměnných ji lze považovat za zanedbatelnou. Normalita náhodných složek (nutná, neboť jinak nelze brát v úvahu výsledky testů):

14 0.03 Test statistic for normality: Chi-squared(2) = 1,307 pvalue = 0,52011 uhat11 N(0, ,487) Density uhat11 Test for null hypothesis of normal distribution: Chi-square(2) = 1,307 with p-value 0,52011 Bohužel ani na 10% hladině ji nelze předpokládat, je třeba brát výsledky testů s rezervou.

15 6. APLIKACE PŘEDPOVĚĎ (9): Odhadnutý model má tvar: a) (C-O) Ct = 0, Yt + u t b) (ARMA) C t = 0, C t 1 + 0, Y t 0, Y t 1 + u t V obou případech je třeba provést odhad vývoje příjmu Y t (nicméně pro ARMA to GRETL zvládne sám) v obou modelech jsou výsledné předpovědi C t identické: a) C-O transformace Již bylo ukázáno, že Y t lze modelovat pomocí AR(1): Odhad MNČ Konstanta je statisticky nevýznamná, je třeba ji odstranit. Model 2: ARMA estimates using the 35 observations Estimated using BHHH method (conditional ML) Dependent variable: Y VARIABLE COEFFICIENT STDERROR T STAT P-VALUE phi_1 1, , ,986 <0,00001 *** Mean of dependent variable = 1578,56 Standard deviation of dep. var. = 535,642 Mean of innovations = 2,58415 Variance of innovations = 995,347 Log-likelihood = -170,46695 Akaike information criterion (AIC) = 344,934 Schwarz Bayesian criterion (BIC) = 348,045 Hannan-Quinn criterion (HQC) = 346,008 Real Imaginary Modulus Frequency AR Root 1 0,9705 0,0000 0,9705 0, Platí tedy: Yt = 1,03039 Y t-1 + u t rok Y t Y t , , , , , , , , , , , , Y fitted 95 percent confidence interval

16 Uvedených 5 předpovědí doplníme nakonec řady Y t (a uděláme znovu C-O transformaci pro MNČ, abychom z GRETLu dostali předpověď). Nyní již lze podle vztahu Ct = 0, Yt + u t předpovědět chování Ct: rok Y t C t , , , , , , , , , , C fitted 95 percent confidence interval b) AR model rok Y t C t , , , , , , , , , , C fitted 95 percent confidence interval TEXT PRÁCE, ÚPRAVA A DALŠÍ PRÉMIOVÉ BODY (2):

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základ ekonometrie Odhad klasického lineárního regresního modelu I Cvičení 2 Zuzana Dlouhá Metodologický postup tvor EM 1. Specifikace modelu určení proměnných určení vzájemných vaze mezi proměnnými

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního

Více

Přílohy. Spotřeba elektřiny. Model závislosti spotřeby elektřiny

Přílohy. Spotřeba elektřiny. Model závislosti spotřeby elektřiny Přílohy Spotřeba elektřiny Model závislosti spotřeby elektřiny Model 24: OLS, za použití pozorování 22-213 (T = 12) Závisle proměnná: C_ele_domkWH koeficient směr. chyba t-podíl p-hodnota ------------------------------------------------------------------

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:

Zadání Máme data hdp.wf1, která najdete zde:  Bodová předpověď: Intervalová předpověď: Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst

Více

Karta předmětu prezenční studium

Karta předmětu prezenční studium Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 10: Heteroskedasticita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Heteroskedasticita - teorie Druhý

Více

SPC v případě autokorelovaných dat. Jiří Michálek, Jan Král OSSM,

SPC v případě autokorelovaných dat. Jiří Michálek, Jan Král OSSM, SPC v případě autokorelovaných dat Jiří Michálek, Jan Král OSSM, 2.6.202 Pojem korelace Statistická vazba mezi veličinami Korelace vs. stochastická nezávislost Koeficient korelace = míra lineární vazby

Více

PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ. Příloha A. Metoda nejmenších čtverců Prodej bytů

PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ. Příloha A. Metoda nejmenších čtverců Prodej bytů PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ Příloha A Metoda nejmenších čtverců Prodej bytů i PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ 1 2 3 TOT. 1 7 33 40 2 1 18 125 144 2.5 1 72 73 3.5 1

Více

AVDAT Geometrie metody nejmenších čtverců

AVDAT Geometrie metody nejmenších čtverců AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

Modely stacionárních časových řad

Modely stacionárních časových řad Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Proces bílého šumu Proces {ɛ t} nazveme bílým šumem s nulovou střední hodnotou a rozptylem σ 2 a

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých

Více

Ekonometrie. Jiří Neubauer

Ekonometrie. Jiří Neubauer Úvod do analýzy časových řad Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Úvod do analýzy

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015

KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015 UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce KALIBRACE

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat

Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat Semestrální práce 1 3.3 Tvorba nelineárních regresních modelů v analýze dat Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného výzkumu Řež, a. s. Husinec Řež 130 250 68 Řež V Řeži, únor

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Modely pro nestacionární časové řady

Modely pro nestacionární časové řady Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Modely ARIMA Transformace Proces náhodné procházky Random Walk Process Proces Y t = Y t 1 + ɛ t je

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou

Více

Ekonomický a ekonometrický model. Předpoklady, formulace EKO modelu a očekávání o chování proměnných

Ekonomický a ekonometrický model. Předpoklady, formulace EKO modelu a očekávání o chování proměnných Exogenní (γ) Simultánní dynamický model Tento model zkoumá vzájemné závislosti vývoje tempa růstu/poklesu HDP, míry nezaměstnanosti a míry inflace v České republice v závislosti na indexu spotřebitelských

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický

Více

Přepoklady KLM a Gauss Markov teorém. Blue odhad - GM. KLM Klasický lineární model. 1) Lineární v parametrech. 2) E ε = 0

Přepoklady KLM a Gauss Markov teorém. Blue odhad - GM. KLM Klasický lineární model. 1) Lineární v parametrech. 2) E ε = 0 Heteroskedasticita Přepoklady KLM a Gauss Markov teorém KLM Klasický lineární model 1) Lineární v parametrech ) E ε = 0 Blue odhad - GM Nezkreslený odhad 1) Lineární v parametrech ) E ε = 0 3) E( ȁ ε X)=

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, úvod do časových řad LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Multikolinearita

Více

Tvorba nelineárních regresních modelů v analýze dat

Tvorba nelineárních regresních modelů v analýze dat Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba nelineárních regresních modelů v analýze dat Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza

Více

UNIVERZITA KARLOVA V PRAZE. Flexicurita na českém trhu práce: aplikace v evropském kontextu

UNIVERZITA KARLOVA V PRAZE. Flexicurita na českém trhu práce: aplikace v evropském kontextu UNIVERZITA KARLOVA V PRAZE FAKULTA SOCIÁLNÍCH VĚD Institut ekonomických studií Jindřich Matoušek Flexicurita na českém trhu práce: aplikace v evropském kontextu Přílohy k bakalářské práci Praha 2011 8.

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Pokračování z minula:

Více

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Matematické modelování Náhled do ekonometrie. Lukáš Frýd Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)

Více

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,

Více

Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese

Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese Závěrečná práce 12. licenčního studia Pythagoras Fakulta chemicko-technologická, katedra

Více

Beáta Stehlíková Časové rady, FMFI UK, 2013/2014. CvičenievR-kuI.:ARIMAmodely p.1/15

Beáta Stehlíková Časové rady, FMFI UK, 2013/2014. CvičenievR-kuI.:ARIMAmodely p.1/15 Cvičenie v R-ku I.: ARIMA modely Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 CvičenievR-kuI.:ARIMAmodely p.1/15 Príklad 1: dáta Použité dáta: Počet používatel ov prihlásených na server, dáta po minútach,

Více

Studentská limitovaná verze je ke stažení na stránkách GiveWin otevření datového souboru

Studentská limitovaná verze je ke stažení na stránkách  GiveWin otevření datového souboru Veškeré postupy na souboru data.in7 Studentská limitovaná verze je ke stažení na stránkách http://www.timberlake.co.uk/ Načtení databáze Databázi načítáme přes hlavní nabídku : File Open Data File. GiveWin

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tabulka č. 1 95%ní intervaly Úsek Směrnice model L1 L2 L1 L2 Leco1-0, , , ,15618 OES -0, , , ,21271

Tabulka č. 1 95%ní intervaly Úsek Směrnice model L1 L2 L1 L2 Leco1-0, , , ,15618 OES -0, , , ,21271 1 Příklad 1. Porovnání dvou regresních přímek Při výrobě automatových ocelí dané jakosti byla porovnávána závislost obsahu uhlíku v posledním zkušebním vzorku (odebraném z mezipánve na ZPO a analyzovaném

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Politická ekonomie 45: (2), str. 281-289, VŠE Praha, 1997. ISSN 0032-3233. (Rukopis) REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Josef ARLT, Vysoká škola ekonomická, Praha 1. Úvod Pro modelování

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 2.1 Tvorba lineárních regresních modelů při analýze dat Autor práce: Přednášející:

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 6: Multikolinearita, umělé proměnné LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Otevřete si data z

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Hornicko-geologická fakulta institut geoinformatiky STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 Speciální metody

Více

Analýza časových řad pomoci SAS82 for Win

Analýza časových řad pomoci SAS82 for Win Analýza časových řad pomoci SAS82 for Win 1) Vstupní data Vstupní data musí mít vhodný formát, tj. žádný oddělovač tisíců, správně nastavený desetinný oddělovač. Název proměnné pro SAS nesmí obsahovat

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Fakulta chemicko technologická Katedra analytické chemie

Fakulta chemicko technologická Katedra analytické chemie Fakulta chemicko technologická Katedra analytické chemie Licenční studium statistické zpracování dat Tvorba lineárních a kalibračních modelů při analýze dat Pavel Valášek Školní rok 2001 02 OBSAH 1 POROVNÁNÍ

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu 1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 6 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. vorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR KORELACE A REGRESE 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/..00/8.001)

Více

T T. Think Together 2013. Marta Gryčová THINK TOGETHER

T T. Think Together 2013. Marta Gryčová THINK TOGETHER Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Doktorská vědecká konference 4. února 2013 T T THINK TOGETHER Think Together 2013 Mzdová disparita v českém agrárním sektoru v období od

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

2.2 Kalibrace a limity její p esnosti

2.2 Kalibrace a limity její p esnosti UNIVERZITA PARDUBICE Òkolní rok 000/001 Fakulta chemicko-technologická, Katedra analytické chemie LICEN NÍ STUDIUM STATISTICKÉ ZPRACOVÁNÍ DAT PÌI MANAGEMENTU JAKOSTI P EDM T:. Kalibrace a limity její p

Více

Vliv úrokové sazby na objem poskytnutých hypotečních úvěrů

Vliv úrokové sazby na objem poskytnutých hypotečních úvěrů Mendelova univerzita v Brně Provozně ekonomická fakulta Vliv úrokové sazby na objem poskytnutých hypotečních úvěrů Bakalářská práce Vedoucí práce: Ing. Luboš Střelec Ph.D. Autor práce: Andrea Korbičková

Více

Úloha 1: Lineární kalibrace

Úloha 1: Lineární kalibrace Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Pearsonův korelační koeficient

Pearsonův korelační koeficient I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních

Více

Mendelova univerzita v Brně Provozně ekonomická fakulta. Ekonometrie 2

Mendelova univerzita v Brně Provozně ekonomická fakulta. Ekonometrie 2 Mendelova univerzita v Brně Provozně ekonomická fakulta Ekonometrie 2 Odhad regresního modelu výnosnosti akcií společnosti ČEZ, a.s. vícefaktorovým modelem Vypracovali: Bc. Jiří Klement Bc. Václav Klepáč

Více

Tvorba nelineárních regresních modelů v analýze dat

Tvorba nelineárních regresních modelů v analýze dat Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Tvorba nelineárních regresních

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA EKONOMIKY, MANAŽERSTVÍ A HUMANITNÍCH VĚD DIPLOMOVÁ PRÁCE Srovnání krátkodobých prognóz HDP ČR na základě lineárních regresních a simultánních

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti Precheza a.s. Přerov 2005 Ing. Miroslav Štrajt 1. Zadání Úloha 1. Lineární kalibrace: u přímkové

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

Analýza akciových indexů USA a Velké Británie, zkoumání možnosti predikce pomocí vývoje HDP. Josef Rajdl josef_rajdl@canada.com

Analýza akciových indexů USA a Velké Británie, zkoumání možnosti predikce pomocí vývoje HDP. Josef Rajdl josef_rajdl@canada.com Analýza akciových indexů USA a Velké Británie, zkoumání možnosti predikce pomocí vývoje HDP Josef Rajdl josef_rajdl@canada.com Obsah: Úvod...1 Dílčí analýza časových řad...2 Analýza závislosti...6 Dodatek:

Více

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113 ÚKOL 2 Jméno a příjmení: UČO: Imatrik. ročník: Úkol 2.1: V souboru EVS99_cvicny.sav zjistěte, zdali rozložení názoru na to, kdo by měl být odpovědný za zajištění bydlení (proměnná q54h), je normální. Řešte

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

FORUM STATISTICUM SLOVACUM 7/

FORUM STATISTICUM SLOVACUM 7/ FORUM STATISTICUM SLOVACUM 7/2012 167 Možnosti testování sezonních jednotkových kořenů demografických časových řad v systému GRETL The possibilities in testing of seasonal unit roots in demographic time

Více

Daňové modely MAB/KMA. 25.1.2009 A07136 Jindrich Bek

Daňové modely MAB/KMA. 25.1.2009 A07136 Jindrich Bek Daňové modely MAB/KMA 25.1.2009 A07136 Jindrich Bek Obsah Základní souhrn... 4 1. Upřesněné zadání schválené vyučujícím... 5 1.1. Zadání... 5 1.2. Cíle práce... 5 2. Zdroj problému... 5 3. Popis současného

Více

V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů).

V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů). 1. Příklad V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů). Náklady 835 63 240 1005 184 213 313 658 195 545 Cena 136 24 52 143 42 43 67 106 61 99 a.) Modelujte závislost

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

Základy ekonometrie. II. Netechnický úvod do regrese. Základy ekonometrie (ZAEK) II. Netechnický úvod do regrese Podzim / 67

Základy ekonometrie. II. Netechnický úvod do regrese. Základy ekonometrie (ZAEK) II. Netechnický úvod do regrese Podzim / 67 Základy ekonometrie II. Netechnický úvod do regrese Základy ekonometrie (ZAEK) II. Netechnický úvod do regrese Podzim 2015 1 / 67 Obsah tématu 1 Regrese Úvod do regrese Příklady 2 Jednoduchý regresní model

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA Katedra ekonomiky Prognostické metody Seminární práce Autor: Miloš Uldrich Cvičící: Ing. Lukáš Čechura, Ph.D. ČT 12:15 (su) 2009 ČZU v Praze

Více

Univerzita Pardubice Fakulta chemicko-technologická. Licenční studium Statistické zpracování dat

Univerzita Pardubice Fakulta chemicko-technologická. Licenční studium Statistické zpracování dat Univerzita Pardubice Fakulta chemicko-technologická Licenční studium Statistické zpracování dat 3.3 Tvorba nelineárních regresních modelů v analýze dat RNDr. Lada Kovaříková České technologické centrum

Více