Přednáška NOOE Rozptylové metody v optické spektroskopii

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška NOOE Rozptylové metody v optické spektroskopii"

Transkript

1 Přednáška NOOE 1 - Rozptylové metody v optiké spektoskopii ozsah: L, / Zk přednášejíí: do. RND. Vladimí Baumuk, D. (Fyzikální ústav UK) Přednáška je vhodná zejména po studenty navazujíího magisteského studia obou Biofyzika a hemiká fyzika a po studenty PGD. 1. Rozptylové jevy v příodě Základní klasifikae ozptylovýh jevů - pužný a nepužný ozptyl světla. Nepužný ozptyl světla a optiká spektoskopie.. pontánní Ramanův ozptyl Základní vztahy a pojmy - polaizovatelnost, tenzo Ramanova ozptylu, depolaizační fakto. Neezonanční Ramanův ozptyl - odvození základníh vlastností, výběová pavidla. Ramanův ozptyl jako metoda vibační spektoskopie - sovnání s infačevenou absopční spektoskopií. Rezonančně zesílený Ramanův ozptyl. Povhově zesílený Ramanův ozptyl (ER). Ramanova optiká aktivita (ROA). 3. Základy měření Ramanovýh spekte Lasey jako zdoje exitujíího záření, monohomátoy, fotonásobiče, mnohakanálové detektoy. Polaizovaná měření v Ramanově spektoskopii. Vzoky a jejih přípava - plynné, kapalné a pevné vzoky, monokystaly, pášky, tenké vstvy. Metody zvyšování poměu signál/šum. peiální tehniky. Difeenční Ramanův ozptyl. Časové ozlišení v Ramanově spektoskopii. Mikoskopiké tehniky v Ramanově spektoskopii. 4. Užití Ramanovy spektoskopie při studiu molekul ymetie molekul a výběová pavidla ve vibační spektoskopii. Intepetae vibačníh spekte. Konfomační itlivost. Příklady využití při studiu stuktuy biomolekul a jejih inteakí. 5. Nelineání metody Ramanova ozptylu Hype Ramanův ozptyl. Koheentní Ramanův ozptyl - stimulovaný Ramanův ozptyl, čtyřfotonové metody (CAR atd.) 6. Billouinův ozptyl Základní pojmy. Vlastnosti a způsob měření. Aplikae při studiu pevnýh látek a polymeníh systémů. 7. Kvazielastiký (dynamiký) ozptyl světla (QEL) Základy teoie dynamikého ozptylu světla. Vlastnosti a způsob měření, infomační obsah. Aplikae v biofyzie.

2 Dopoučená liteatua: Posse V. a kol.: Expeimentální metody biofyziky (kapitola 6 - Metody optiké spektoskopie), Aademia, Paha Fiše J.: Úvod do molekulové symetie (vybané kapitoly), NTL, Paha 198. Demtöde W: Lase spetosopy (kapitola 4 a 9), pinge, Belin Methods of Expeimental Physis vol. : Biophysis (Ehenstein G, and Lea H., Eds.) (kapitola 3 a 7), Aademi Pess, New Yok 198. Twadowski J., Anzenbahe P.: Raman and IR petosopy in Biology and Biohemisty, Ellis Howood, Chiheste Caey P. R.: Biohemial Appliations of Raman and Resonane Raman petosopies, Aademi Pess, New Yok 198. Infaed and Raman petosopy (hade B., Ed.) (vybané části), VCH Publishes, Weinheim MCeey R.L.: Raman petosopy fo Chemial Analysis, Wiley Intesiene, New Yok. Doplňková liteatua: Handbook of Vibational petosopy (Chalmes J.M., Giffiths P.R., Eds.), J, Wiley & ons, Chiheste 1. Enylopedia of petosopy and petomety, (Lindon J.C., Tante G.E., Holmes J.L., Eds.), Aademi Pess, London.

3 Vlastnosti kmitajíího dipólu Podle klasiké teoie je nejefektivnějším zdojem elektomagnetikého záření kmitajíí elektiký dipól. Intenzita jeho záření o několik řádů převyšuje intenzity ostatníh zdojů záření, jako jsou kmitajíí magnetiké dipóly, elektiké kvadupóly nebo vyšší multipóly. Elektiký dipól, sestávajíí z dvojie bodovýh nábojů momentem p definovaným jako p = qr kde R je vekto míříí od q k q a + q vzdálenýh od sebe R, je haakteizován dipólovým + q. Jestliže takový dipól kmitá s fekvení ν (odpovídajíí kuhové fekveni ω = πν nebo vlnočtu ν ν =, kde je yhlost světla), potom emituje elektomagnetiké záření o stejné fekveni. z E p θ y x ϕ Ob. 1. ouřadný systém a vzájemná oientae vektoů dipólového momentu p (v počátku) a intenzity elektikého pole E (ve vzdálenosti od počátku). 1

4 Mějme elektiký dipól v počátku souřadného systému, kteý kmitá ve směu osy z (ob. 1). V tzv. vlnové zóně, tj. při splnění podmínky λ (kde je vzdálenost bodu, ve kteém vyšetřujeme pole geneované kmitajíím dipólem od počátku, a λ je vlnová délka) bude po intenzitu elektiké a magnetiké komponenty pole geneovaného dipólem platit µ q Et (, ) = R et s s (1) 4π kde q H( t, ) = R et s 4π R et ( t) = R t je zyhlení náboje v etadovaném čase (tj. čase, kteý potřebuje elektomagnetiký signál na to, aby doazil z počátku souřadni (střed kmitajíího dipólu) do bodu pozoování), q je náboj, µ je pemeabilita vakua a s = je jednotkový vekto definujíí smě šíření. Poyntingův vekto potom můžeme vyjádřit jako Jestliže µ q et E H = s R s 16π R= Z t (,, osω ) kde ω je fekvene kmitů dipólu, potom () (3) (4) (5)

5 a tedy Potom Dále R et =,, ωz sinω t a R ;; et = ω Z osω t R et s = ω Zos ω t sy; ω Zos ω t sx; R s s Z os t s s ; Z os t ω ω ω ω s s ; ω Z osω t = s + s ( ) et x z y z x y µ q µ q E= R s s = ω Z os ω t s s ; ω Z os ω t s s ; ω Z osω t s + s 4π 4π ( ) et x z y z x y (6) µ µ µ E. E = Z os t s s s s s s Z os t s s s s s Z os t s s 4π = 4π = 4π + q q q ω ω x z y z x y ω ω x y z x y ω ω x y V poláníh souřadniíh ( ; ϕϑ ; ) můžeme jednotkový s vyjádřit jako potom a s = s s s = ϕ ϑ ϕ ϑ ϑ ( x; y; z) ( os sin ;sin sin ;os ) ( x y) ( ) s + s = os ϕ+ sin ϕ sin ϑ = sin ϑ ( ) ( )( ) ( ) 3

6 kde µ qzω µ pω sinϑ E = sin ϑ.os ω t os ω t 4π = 4π p = qz je amplituda dipólového momentu (pozo, nezaměňovat s pemanentním dipólovým momentem). užitím vztahů po vlnové číslo (velikost vlnového vektou) π ω k = λ a yhlost šíření elektomagnetikého záření 1 = εµ potom dostáváme pk sinϑ E = os ω t = E os ω t 4πε kde jsme označili E velikost amplitudy intenzity elektikého pole osilujíího dipólu (8) (7) pk sin p sin E = ϑ µ ω ϑ 4πε = 4π (9) 4

7 Analogiky po vekto H q q H(, t) = R et s= ω Zos ω t sy; ω Zos ω t sx; 4π 4π (1) ω qω Z p. = osω t ( sx + sy) = osω t sin ϑ 4π 4π HH pω sinϑ pk sinϑ H = osω t osω t H osω t 4π = 4π = kde jsme označili H velikost amplitudy intenzity magnetikého pole osilujíího dipólu H = pk sinϑ pω sinϑ 4π = 4π (11) Po Poyntingův vekto udávajíí hustotu toku enegie potom dostáváme ( x( x y) y( x y) z( x y) ) 4 µ pω = E H = os ω t s s s ; s s s ; s s s = π µ p ω p ω ϑ = os ω t s ; s ; s.sin ϑ = os ω t. s sin ( x y z) 3 π πε a po časovou střední hodnotu velikosti Poyntingova vektou (střední hodnota enegie přenesené za jednotku času přes jednotkovou plohu) p ω p ω = = 16πε sin ϑ sin os ω 3 t 3 πε ϑ (1) (13) neboť os 1 ω t = 5

8 Budeme-li používat, jak je v Ramanově spektoskopii obvyklé, namísto fekvene ω vlnočet ν ω = πν = π ν potom můžeme vztahy (9), (11) a (13) psát ve tvau E πν p sinϑ = (9a) ε sinϑ H = πν p (11a) π ν p ϑ = 4 sin ε (13a) Časová střední hodnota hustoty enegie záření v daném bodě ve směu šíření je u 1 πν p sin ϑ = ε = 4 E ε Rozdělení hustoty enegie má osovou symetii s otační osou míříí ve směu kmitů dipólu. Ze vztahu (14) je zřejmé, že hustota enegie je maximální v ekvatoiální ovině (ovina xy, ϑ = π,) a směem k pólům klesá a dosahuje nulové hodnoty (14) na póleh ( ϑ = ). třední výkon (zářivý tok) dφ 4 π ν p sin ϑ dφ= da = da ε (15) 6

9 ale da = d Ω je element postoového úhlu, a tedy d π ν p 4 Φ= sin ϑ. dω ε (16) z E smě šíření x,y ϑ Ob.. Úhlové ozložení amplitudy E (čeně) a zářivosti I (čeveně) kmitajíího elektikého dipólu p. 7

10 Celkový výkon vyzářený dipólem dostaneme z (16) integaí přes dω= sin ϑ. dϑ. dϕ π ν π ν π ν Φ= sin ϑ. d sin ϑ. dϑ. dϕ ε Ω= = ε 3ε 4 p p π π 3 4 p ϕ= ϑ= (17) neboť π π 3 sin. d. ϕ= ϑ= 8π ϑ ϑdϕ = 3 Po zářivost (iadiane) potom dostáváme dφ π ν p I = dω ε 4 sin ϑ V eálném expeimentu zpavidla detekujeme zářivý tok v konečném postoovém úhlu π 4 ϕ+ ϕϑ+ ϑ ν p 3 sin. d. ε ϕ ϕϑ ϑ Φ = ϑ ϑdϕ (18) (19) V ozptylovýh expeimenteh zavádíme veličinu účinný půřez ozptylu (satteing oss-setion) σ jako pomě ozptýleného světelného výkonu (totálního, tj. do elého postoového úhlu) a plošné hustoty zářivého toku dopadajíího Φ záření σ Po soubo ozptylujííh molekul zpavidla vztahujeme účinný půřez na jednu molekulu případně i na jednotkový inteval vlnočtů. Ještě zavádíme difeeniální účinný půřez ozptylu (diffeential satteing oss-setion) vztahem dσ dφ dω dω 8

11 Na závě této kapitoly ještě připomenutí jednotek někteýh fyzikálníh veličin: (objemová) hustota enegie 3 u Jm. hustota toku enegie 1 Js.. m Wm. = = světelný tok Φ = W postoový úhel Ω = s (steadián) 1 zářivost I W. s = dipólový moment p Cm. = W účinný půřez ozptylu σ Φ = m = = Wm. dσ 1 difeeniální účinný půřez ozptylu = m. s dω 9

12 (a) (b) Rozptyl lineáně polaizovaného světla molekulou 8

13 Rozptyl nepolaizovaného světla molekulou 9

14 λ a < 1

15 I 4 ω I 1 4 λ I ω I 1 λ 13

16 I 1 4 λ Obloha a 1 hodinu po západu lune v nadmořské výše 5 m 14

k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající

k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající Vlastnosti kmitajíího dipólu Podle klasiké teoie je nejefektivnějším zdojem elektomagnetikého záření kmitajíí elektiký dipól. Intenzita jeho záření o několik řádů převyšuje intenzity ostatníh zdojů záření

Více

do strukturní rentgenografie e I

do strukturní rentgenografie e I Úvod do stuktuní entgenogafie e I Difakce tg záření na kystalu Metody chaakteizace nanomateiálů I RND. Věa Vodičková, PhD. Studium kystalové stavby Difakce elektonů, neutonů, tg fotonů Kystal ideální mřížka

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Učební text k přednášce UFY102

Učební text k přednášce UFY102 Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy

Více

5. Světlo jako elektromagnetické vlnění

5. Světlo jako elektromagnetické vlnění Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech

Více

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických

Více

IV. Magnetické pole ve vakuu a v magnetiku. 1. Magnetické pole el. proudu 2. Vlastnosti mg. pole 3. Magnetikum

IV. Magnetické pole ve vakuu a v magnetiku. 1. Magnetické pole el. proudu 2. Vlastnosti mg. pole 3. Magnetikum IV. Magnetické pole ve vakuu a v magnetiku Osnova: 1. Magnetické pole el. poudu 2. Vlastnosti mg. pole 3. Magnetikum 1. Magnetické pole el. poudu histoický úvod podivné expeimenty ukazující neznámé silové

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu

Více

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné. Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností

Více

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku II. Statické elektické pole v dielektiku Osnova: 1. Dipól 2. Dielektikum 3. Polaizace dielektika 4. Jevy v dielektiku 1. Dipól Konečný dipól 2 bodové náboje stejné velikosti a opačného znaménka ve vzdálenosti

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

Konstrukční a technologické koncentrátory napětí

Konstrukční a technologické koncentrátory napětí Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem

Více

do jednotkového prostorového úhlu ve směru svírajícím úhel ϑ s osou dipólu je dán vztahem (1) a c je rychlost světla.

do jednotkového prostorového úhlu ve směru svírajícím úhel ϑ s osou dipólu je dán vztahem (1) a c je rychlost světla. Induované oscilující eletricé dipóly jao zdroje rozptýleného záření Ja v lasicém, ta i v vantově-mechanicém přístupu jsou za původce rozptýleného záření považovány oscilující eletricé a magneticé multipólové

Více

Metody nelineární optiky v Ramanově spektroskopii

Metody nelineární optiky v Ramanově spektroskopii Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu

Více

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H.

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H. 7 Vlnovody Běžná vedení (koaxiální kabel, dvojlinka) jsou jen omezeně použitelná v mikovlnné části kmitočtového spekta. S ůstem kmitočtu přenášeného signálu totiž významně ostou ztáty v dielektiku těchto

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19 34 Elektomagnetické pole statické, stacionání, nestacionání zásady řešení v jednoduchých geometických stuktuách, klasifikace postředí (lineaita, homogenita, dispeze, anizotopie). Vypacoval: Onda, otja@seznam.cz

Více

Trivium z optiky Vlnění

Trivium z optiky Vlnění Tivium z optiky 7 1 Vlnění V této kapitole shnujeme základní pojmy a poznatky o vlnění na přímce a v postou Odvolávat se na ně budeme často v kapitolách následujících věnujte poto vyložené látce náležitou

Více

je amplituda indukovaného dipólového momentu s frekvencí ω

je amplituda indukovaného dipólového momentu s frekvencí ω Induované oscilující eletricé dipóly jao zdroje rozptýleného záření Ja v lasicém, ta i v vantově-mechanicém přístupu jsou za původce rozptýleného záření považovány oscilující eletricé a magneticé multipólové

Více

11. Měření s polarizovaným světlem

11. Měření s polarizovaným světlem 11. Měření s polaizovaným světlem Polaizované světlo E B smě šíření smě šíření λ Světlo el.-mag. vlna Přiozené světlo el. vekto může mít libovolný smě Polaizáto optický pvek, kteý dokáže izolovat jeden

Více

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,

Více

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

Ampérův zákon (1a) zákon elektromagnetické indukce. Gaussův zákon. zákon o neexistenci magnetických nábojů (1d)

Ampérův zákon (1a) zákon elektromagnetické indukce. Gaussův zákon. zákon o neexistenci magnetických nábojů (1d) Učební text k přednáše UFY v obeném tvaru D rot H = j( r, t ) Ampérův zákon (a) B rot E + = zákon elektromagnetiké induke (b) div D = ρ ( r, t ) Gaussův zákon () div B = zákon o neexisteni magnetikýh nábojů

Více

1.8. Mechanické vlnění

1.8. Mechanické vlnění 1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát

Více

Fabryův-Perotův rezonátor

Fabryův-Perotův rezonátor Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Fabyův-Peotův ezonáto Fabyův-Peotův ezonáto je optiké zařízení tvořené dvěma plan-paalelními (ovnoběžnými) ovinnými částečně odaznými plohami (ideálně

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita

Více

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal 4. konfeence o matematice a fyzice na VŠT Bno, 15. 9. 25 Faktály ve fyzice Oldřich Zmeškal Ústav fyzikální a spotřební chemie, Fakulta chemická, Vysoké učení technické, Pukyňova 118, 612 Bno, Česká epublika

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

DIPLOMOVÁ PRÁCE. Generace koherentního krátkovlnného (l<160nm) záření pomocí konvenčních laserů

DIPLOMOVÁ PRÁCE. Generace koherentního krátkovlnného (l<160nm) záření pomocí konvenčních laserů Univezita Kalova v Paze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Jaomí Chalupský Geneace koheentního kátkovlnného (l

Více

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice

Více

Rutherfordův experiment s multikanálovým analyzátorem

Rutherfordův experiment s multikanálovým analyzátorem Ruthefodův expeiment s multikanálovým analyzátoem Úkol Ověřte Ruthefodův vztah po ozptyl poměřením počtu alfa částic ozptýlených tenkou zlatou fólií do ůzných úhlů mezi cca 0 a 90. Zjistěte, jak ovlivňuje

Více

3.1. Magnetické pole ve vakuu a v látkovém prostředí Elektromagnetická indukce Energie a silové účinky magnetického pole...

3.1. Magnetické pole ve vakuu a v látkovém prostředí Elektromagnetická indukce Energie a silové účinky magnetického pole... Obsah Předmluva... 4. Elektostatika.. Elektostatické pole ve vakuu... 5.. Elektostatické pole v dielektiku... 9.3. Kapacita. Kondenzáto....4. Enegie elektostatického pole... 6. Elektický poud.. Elektický

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ PROF. ING. BOHUMIL KOKTAVÝ, CSC., DOC. ING. PAVEL KOKTAVÝ, CSC., PH.D. GB FYZIKA II MODUL M1 ELEKTŘINA A MAGNETISMUS STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

Stojaté a částečně stojaté vlny

Stojaté a částečně stojaté vlny Stojaté a částečně stojaté vlny Interference 2 postupných vln Dokonalá stojatá vlna: interference 2 vln stejné amplitudy a antiparalelních vlnových vektorů Problém s radiometrickou definicí intensity pomocí

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 2 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografické zobrazení kartografické zobrazení vzájemné přiřazení polohy bodů na dvou různých referenčních

Více

Referenční zářič s indukčním ohřevem

Referenční zářič s indukčním ohřevem Poceedings of Intenational Scientific Confeence of FME Session 4: Automation Contol and Applied Infomatics Pape 24 Refeenční zářič s indukčním ohřevem LYSENKO, Vladimí 1 1 Doc, Ing, CSc, Kateda fyziky,

Více

11. cvičení z Matematiky 2

11. cvičení z Matematiky 2 11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv

Více

5. Elektromagnetické kmitání a vlnění

5. Elektromagnetické kmitání a vlnění 5. Elektomagnetické kmitání a vlnění 5.1 Oscilační obvod Altenáto vyábí střídavý poud o fekvenci 50 Hz. V paxi potřebujeme napětí ůzných fekvencí. Místo fekvence používáme pojem kmitočet. Různé fekvence

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice

Více

Vibrace vícečásticových soustav v harmonické aproximaci. ( r)

Vibrace vícečásticových soustav v harmonické aproximaci. ( r) Paktikum z počítačového modelování ve fyzice a chemii Úloha č. 5 Vibace vícečásticových soustav v hamonické apoximaci Úkol Po zadané potenciály nalezněte vibační fekvence soustavy několika částic diagonalizací

Více

F r. Umístěme do P jinou elektricky nabitou částici. Síla na ni působící Elektromagnetická interakce

F r. Umístěme do P jinou elektricky nabitou částici. Síla na ni působící Elektromagnetická interakce . ELEKTROMAGNETISMUS.0. Elektomagnetická inteakce vzájemné působení elekticky nabitých částic Mechanismus: Každá pohybující se elekticky nabitá částice vytváří v okolním postou elektomagnetické pole, kteé

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan

Více

3.7. Magnetické pole elektrického proudu

3.7. Magnetické pole elektrického proudu 3.7. Magnetické pole elektického poudu 1. Znát Biotův-Savatův zákon a umět jej použít k výpočtu magnetické indukce v jednoduchých případech (okolí přímého vodiče, ve středu oblouku apod.).. Pochopit význam

Více

TELMG Modul 03: Maxwellovy rovnice. I. a II. MR: aplikací plošného integrálu a Stokesovy věty integrálního počtu

TELMG Modul 03: Maxwellovy rovnice. I. a II. MR: aplikací plošného integrálu a Stokesovy věty integrálního počtu Difereniální a integrální tvar Maxwellovýh rovni kot James Clerk Maxwell (1831-1879) Integrální tvar Difereniální tvar d I Hdl = I + d dt D D rot H = j+ d II Edl = d dt B B rot E = III D d = Q div D =

Více

8. Antény pro pásma DV, SV, KV

8. Antény pro pásma DV, SV, KV 8. Antény po pásma DV, SV, KV hlediska po výbě - kmitočtové pásmo, šíření vln, směové vlastnosti, výkony, cena 8.1 Vysílací antény po pásma DV, SV - povchová vlna - vetikální polaizace - ozhlas AM všesměové

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2) Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném

Více

Kinematika. Hmotný bod. Poloha bodu

Kinematika. Hmotný bod. Poloha bodu Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

Geometrická optika. Aberace (vady) optických soustav

Geometrická optika. Aberace (vady) optických soustav Geometická optika Abeace (vady) optických soustav abeace (vady) optických soustav jsou odchylky zobazení eálné optické soustavy od zobazení ideální optické soustavy v důsledku abeací není obazem bodu bod,

Více

Vznik a šíření elektromagnetických vln

Vznik a šíření elektromagnetických vln Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův

Více

I. Statické elektrické pole ve vakuu

I. Statické elektrické pole ve vakuu I. Statické elektické pole ve vakuu Osnova:. Náboj a jeho vlastnosti 2. Coulombův zákon 3. Intenzita elektostatického pole 4. Gaussova věta elektostatiky 5. Potenciál elektického pole 6. Pole vodiče ve

Více

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..

Více

Elektromagnetické vlnění

Elektromagnetické vlnění Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit

Více

Modelování blízkého pole soustavy dipólů

Modelování blízkého pole soustavy dipólů 1 Úvod Modelování blízkého pole soustavy dipólů J. Puskely, Z. Nováček Ústav radioelektroniky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně Purkyňova 118, 612 00 Brno Abstrakt Tento

Více

ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ

ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ V celé této kapitole budeme předpokládat, že se pohybujeme v neomezeném lineáním homogenním izotopním postředí s pemitivitou = 0, pemeabilitou = 0 a měnou vodivostí.

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

Vybrané kapitoly z fyziky. Zdeněk Chval

Vybrané kapitoly z fyziky. Zdeněk Chval Vybané kapitoly z fyziky Zdeněk Chval Kateda zdavotnické fyziky a biofyziky (KBF) Boeckého 7, č.dv. 49 tel. 389 037 6 e-mail: chval@jcu.cz Konzultační hodiny: čtvtek 5:00-6:30, příp. po dohodě Obsahové

Více

Otázka 17. 17.1 Základy vyzařování elektromagnetických vln

Otázka 17. 17.1 Základy vyzařování elektromagnetických vln Otázka 17 Základy vyzařování elektomagnetických vln, přehled základních duhů antén a jejich základní paamety (vstupní impedance, směový diagam, zisk) liniové, plošné, eflektoové stuktuy, anténní řady.

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

Příklady elektrostatických jevů - náboj

Příklady elektrostatických jevů - náboj lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém

Více

Měření koaxiálních kabelů a antén

Měření koaxiálních kabelů a antén Jihočeská Univezita v Českých Budějovicích Pedagogická fakulta Kateda fyziky Měření koaxiálních kabelů a antén BAKALÁŘSKÁ PRÁCE České Budějovice 2010 Vedoucí páce: Ing. Michal Šeý Auto: Zdeněk Zeman Anotace

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

Diferenciální operátory vektorové analýzy verze 1.1

Diferenciální operátory vektorové analýzy verze 1.1 Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek

Více

Dynamika tuhého tělesa. Petr Šidlof

Dynamika tuhého tělesa. Petr Šidlof Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se

Více

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka

Více

ELT1 - Přednáška č. 4

ELT1 - Přednáška č. 4 ELT1 - Přednáška č. 4 Statická elektřina a vodivost 2/2 Rozložení elektostatických nábojů Potenciál el. pole, el. napětí, páce Coulombův zákon Bodový náboj - opakování Coulombův zákon - síla, kteou působí

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Světlo, Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. 2 Fotorealistická syntéza obrazu

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava

DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava Elektromagnetické záření Nositelem informace v DPZ je EMZ elmag vlna zvláštní případ elmag pole,

Více

Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt

Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt DALŠÍ TYPY VLN Iotozvukové vly (elektostatiké ízkofekvečí vly) jsou to podélé vly podobé klasikému zvuku v plyu ω γ kt k M B s = = plazma zvuk pomalý po elektoy, yhlý po ioty hustota elektoů je v každém

Více

Gravitační a elektrické pole

Gravitační a elektrické pole Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole

Více

DVĚ METODY ŘEŠENÍ PROBLEMATIKY ŠÍŘENÍ ELEKTROMAGNETICKÝCH VLN

DVĚ METODY ŘEŠENÍ PROBLEMATIKY ŠÍŘENÍ ELEKTROMAGNETICKÝCH VLN DVĚ TODY ŘŠNÍ ROBLTIKY ŠÍŘNÍ LKTROGNTICKÝCH VLN. ikš J. Novák. Novák České vsoké učení technické v ae Fakulta stavební Kateda fik bstakt V páci jsou uveden dvě etod řešení šíření elektoagnetického pole

Více

B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo.

B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo. B. Výpočetní geometie a počítačová gafika 9. Pomítání., světlo. Pomítání Převedení 3D objektu do 2D podoby je ealizováno pomítáním, při kteém dochází ke ztátě infomace. Pomítání (nebo též pojekce) je tedy

Více

ε ε [ 8, N, 3, N ]

ε ε [ 8, N, 3, N ] 1. Vzdálenost mezi elektonem a potonem v atomu vodíku je přibližně 0,53.10-10 m. Jaká je velikost sil mezi uvedenými částicemi a) elektostatické b) gavitační Je-li gavitační konstanta G = 6,7.10-11 N.m

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT pof. Ing. Jiří Holčík, CSc. INVESTICE Intitut DO biotatitiky OZVOJE VZDĚLÁVÁNÍ a analýz II. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obaz zpacovávaných dat je

Více

Balmerova série vodíku

Balmerova série vodíku Balmerova série vodíku Josef Navrátil 1, Barbora Pavlíková 2, Pavel Mičulka 3 1 Gymnázium Ivana Olbrachta, pepa.navratil.ez@volny.cz 2 Gymnázium Jeseník, barca@progeo-sys.cz 3 Gymnázium a SOŠ Frýdek Místek,

Více

Napětí horninového masivu

Napětí horninového masivu Npětí honinového msivu pimání npjtostí sekundání npjtostí účinky n stbilitu podzemního díl Dále můžeme uvžovt * bobtnání honiny * teplotní stv honiny J. Pušk MH 6. přednášk 1 Pimání npjtost gvitční (vyvolán

Více

Radiometrie. Úvod do radiometrie. Olomouckém kraji CZ.1.07/1.3.13/ Detekce světla SLO/RCPTM 1 / 30

Radiometrie. Úvod do radiometrie. Olomouckém kraji CZ.1.07/1.3.13/ Detekce světla SLO/RCPTM 1 / 30 Detekce světla Úvod do radiometrie Ondřej Haderka Antonín Černoch Společná laboratoř optiky Regionální centrum pokročilých technologií a materiálů Rozvoj profesních kompetencí učitelů fyziky základních

Více

Základy pyrometrie. - pyrometrie = bezkontaktní měření teloty

Základy pyrometrie. - pyrometrie = bezkontaktní měření teloty Základy pyrometrie - pyrometrie bezkontaktní měření teloty výhody: zanedbatelný vliv měříí tehniky na objekt možnost měření rotujííh nebo pohybujííh se těles možnost měření ryhlýh teplotníh změn lze snímat

Více

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci

Více

2.1 Shrnutí základních poznatků

2.1 Shrnutí základních poznatků .1 Shnutí základních poznatků S plnostěnnými otujícími kotouči se setkáváme hlavně u paních a spalovacích tubín a tubokompesoů. Matematický model otujících kotoučů můžeme s úspěchem využít např. i při

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

5. Měření vstupní impedance antén

5. Měření vstupní impedance antén 5. Měření vstupní impedance antén 5.1 Úvod Anténa se z hlediska vnějších obvodů chová jako jednoban se vstupní impedancí Z vst, kteou můžeme zjistit měřením. U bezeztátové antény ve volném postou by se

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný

Více

Fyzika pro chemiky II

Fyzika pro chemiky II Fyzika pro chemiky II P. Klang, J. Novák, R. Štoudek, Ústav fyziky kondenzovaných látek, PřF MU Brno 18. února 2004 1 Optika 1. Rovinná elektromagnetická vlna o frekvenci f = 5.45 10 14 Hz polarizovaná

Více

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí r r Další předpoklad: nemagnetické prostředí B = µ 0 H izotropně. Veškerá anizotropie pochází od interakce elektrických

Více

Fyzika laserů. 4. dubna Katedra fyzikální elektroniky.

Fyzika laserů. 4. dubna Katedra fyzikální elektroniky. Fyzika laserů Přitahováni frekvencí. Spektrum laserového záření. Modelocking Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 4. dubna 2013 Program přednášek 1.

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více