TÉMATICKÝ OKRUH TZD, DIS a TIS

Rozměr: px
Začít zobrazení ze stránky:

Download "TÉMATICKÝ OKRUH TZD, DIS a TIS"

Transkript

1 TÉMATICKÝ OKRUH TZD, DIS a TIS Číslo otázky : 13. Otázka : Základní datové struktury (pole, zásobník, binární strom atd.), datové struktury vhodné pro fyzickou implementaci relačních dat v SŘBD (hašovací tabulky, B-strom).. Obsah : 1 Úvod 2 Základní datové struktury 2.1 lineární datové struktury Pole Zásobník Fronta Seznam 2.2 NElineární datové struktury Binární stromy AVL stromy Stromy Read-Black Stromy Uložení řetězců Trie Ternární stromy 3 Struktury vhodné pro fyzickou implementaci relačních dat v SŘBD 3.1 Hašování Přímo adresovatelné tabulky Hašovací tabulky 3.2 B-strom

2 2. Základní datové struktury Pole Datová struktura, která sdružuje daný počet prvků (čísel, textových řetězců, ) o stejné velikosti. K jednotlivým prvkům pole se přistupuje pomocí jejich indexu (celého čísla, označujícího pořadí prvku). Proto říkáme že pole je strukturou s přímým nebo náhodným přístupem.počet prvků pole může být učen pevně nebo se může měnit v době zpracování. V prvním případě nazýváme pole statickým a ve druhém dynamickým. Operace s polem: přístup k prvku probíhá v konstatním čase, pomocí indexu lze vypočítat přesnou adresu v paměti (viz pointerová aritmetika) vyhledávání prvku (lineární vyhledávání) probíhá v čase O(N); v nejhorším případě je nutné projít celé pole (sekvenční vyhledánání) vyhledávání prvku v seřazeném poli hledání metodou půlení intervalu indexů pole (binární hledání), složitost O(log N). (Vyhledávání s binárním půlením) Různé programovací jazyky se (mimo jiné) liší v tom, jakým indexem označují první prvek pole. C, C++, C#, Java a další indexují od nuly (a index vynásobený velikostí prvku v bytech vyjadřuje posunutí příslušného prvku v paměti od počátku pole) BASIC indexuje od jedničky, což odpovídá matematickému značení a přirozenému počítání Visual Basic, Pascal a umožňují nastavit horní a dolní meze pole individuálně vícerozměrná pole: V praktických úlohách, zejména v náročnějších výpočetních a grafických aplikacích, se uplatňují i vícerozměrná pole. Ta se indexují uspořádanou k-ticí celých čísel (souřadnic) - např. ''a[3, 2, 5]''. Obzvláště často se používají dvourozměrná pole (matice), přičemž počet rozměrů pole je v drtivé většině případů menší nebo roven Zásobník LIFO Pro zásobník je charakteristický způsob manipulace s daty - data uložena jako poslední budou čtena jako první. Proto se používá také výraz LIFO z anglického Last In First Out. Zásobník lze přirovnat k zásobníku v pistoli. Ukazatel na aktuální prvek v zásobníku se nazývá vrchol zásobníku (stack pointer). Opkem je pak ndo zásobníku.operace vložení prvku se nazývá Push a vyjmutí se nazývá Pop. Jako poslední se u zásobníku implemementuje doraz Empty, který identifikuje prázdnost zásobníku. Někdy se přidává dotaz Top, který vrací prvek z vrcholu zásobníku, aniz by ho vyjmul (nedestuktivní varianty Pop). Pokud provedeme opreaci Pop na prázdném zásobníku nastává chyba podtečení (underflow). Zásobník má teoreticky neomezenou kapacitu. Pokud ji omezíme a nelze přidat další prvek nastává chyba přetčení (overfolw). Všechny operace lze provést v konstantním čase, nzávisí tedy na velikosti zásobníku. Zásobník lze implementovat pomocí statických proměnných (v poli) nebo pomocí dynamických proměnných (dynamicky alokované záznamy a ukazatele na ně)

3 2.1.3 Fronta FIFO Front uplatňuje mechanizmus přístupu FIFO First In First Out. Jako první j z frontyodebrán prvek, který do ní byl vložený jako první. Obdoba fronty jak ji známe z reálného života. Oprave vložení prvkuse nazývá Put, operace odebrání potom Get. Jako u zásobníku se definuje oprace Empty, inikující prázdnost fronty. Oprace ket nad prázdnou frontou vede kchybě podtečení. U velikostně omezené fronty může nastat hyba přetečení, překročíme.li při vkládání přidělený prostor. Pro implementaci fronty jsou potřeba 2 ukazatele. Jedna určuje začátek fronty hlavu (head), ukazuje na prvek, který je na řadě pro odebrání. Druhým ukazatelem je ocas (tail), ukazuje na poslední prvek ve frontě Seznam Dynamická datová struktura, vzdáleně podobná poli (umožňuje uchovat velké množství hodnot ale jiným způsobem), obsahující jednu a více datových položek (struktur) stejného typu, které jsou navzájem lineárně provázany vzájemnýmí odkazy pomocí ukazatelů nebo referencí. Aby byl seznam lineární, nesmí existovat cykly ve vzájemných odkazech. Lineární seznamy mohou existovat jednosměrné a obousměrné. V jednosměrném seznamu odkazuje každá položka na položku následující a v obousměrném seznamu odkazuje položka na následující i předcházející položky. Pokud prvek x nemá předchůdce tento prvek tvoří hlahou seznamu. Pokud prvek x nemá následovníka pak tvoří ocas seznamu.pokud vytvoříme cyklus tak, že konec seznamu navážeme na jeho počátek, jedná se o kruhový seznam. Seznam nazýváme setřízený jestliže prvky seznamu jsou setřízeny. V opačném případě je seznam nesetřízený. Seznamy tedy mohou být: jednosměrný obousměrný cyklické acyklické 2.2 NElineární datové struktury Binární stromy Binární strom je strom ve smyslu používaném v teorii grafů. Jedná se o orientovaný graf s jedním vrcholem (kořenem), z něhož existuje cesta do všech vrcholů grafu. Každý vrchol binárního stromu může mít maximálně dva orientované syny a s výjimkou kořene právě jednoho předka. Kořen předka nemá. Na binárních stromch lze implementovat oprace maximum, minimum. 1. pomocí dynamické struktury, kde jsou hrany reprezentovány ukazateli. Takto se reprezentuje například AVL-strom 2. pomocí pole, kde prvek s indexem i má následníky s indexem 2i a 2i+1 (za předpokladu, že pole je indexováno od 1). Takto je například reprezentovaná halda v algoritmu heapsort. Binární strom je nejčastěji používán jako binární vyhledávací strom a halda AVL stromy Je datová struktura pro uchovávání údajů a jejich vyhledávání. Pracuje v logaritmicky

4 omezeném čase. Jedná se o samovyvažující se binární vyhledávací strom. Vlastnosti vrcholů AVL stromu: Vrchol má maximálně dva následníky (je to binární strom). V levém podstromu vrcholu jsou pouze vrcholy s menší hodnotou klíče (je to binární vyhledávací strom). V pravém podstromu vrcholu jsou pouze vrcholy s větší hodnotou klíče (je to vyhledávací strom). Délka nejdelší větve levého a pravého podstromu se liší nejvýše o 1 (vyvážení AVL stromu). Hlavní vlastností AVL stromu je, že definice nedovoluje, aby strom zdegeneroval, tj. zajišťuje vyváženost stromu. Vyvažování: Operace potřebné pro vyvažování jsou realizovány cyklickými záměnami ukazatelů. Můžeme provádět jednoduché RR-rotace (pravá rotace), LL-rotace (levá rotace) nebo dvojité LRrotace (nejprve levá a potom pravá), RL-rotace (nejprve pravá a potom levá). Při rotaci je nutné aktualizovat koeficient vyváženosti každého rotovaného uzlu. Ukázka RR-rotace stromu Ukázka LL-rotace stromu

5 Ukázka RL-rotace stromu Ukázka LR-rotace stromu Stromy Uzly stromu mohou obsahovat více než jeden klíč. Přesněji řečeno vytvoříme strom se třemi novými typy uzlů 3-uzel a 4-uzel, které mají tři resp. čtyři ukazatele ukazující na potomky. 3-uzel resp. 4-uzel obsahuje dva resp. tři klíče. První ukazatel v 3- uzlu ukazuje na uzel s klíčí menšími než oba klíče aktuálního uzlu, druhý ukazuje na uzel s hodnotami klíčů mezi oběma klíčí aktuálního uzlu a třetí na uzel s klíčí vyššími. Obdobná situace nastává u 4-uzlu. (Uzly ve standardním vyhledávacím binárním stromu pak můžeme nazývat 2-uzly; jeden klíč, dva ukazatele). Dělení 4-uzlu

6 2.2.4 Read-Black Stromy (Red-Black Stromy Binární Vyhledávací Stromy, u kterých jee časová...) Red Black strom je binární strom s jedním dvouhodnotovým příznakem v uzlu navíc. Tento příznak představuje barvu uzlu, která může být červená nebo černá. Red Black strom zajišt uje, že žádná cesta z kořene do libovolného listu stromu nebude dvakrát delší než kterákoli jiná, to znamená, že strom je přibližně vyvážený. Každý uzel se skládá z položek: key, color, left child, right child a parent. Jestliže potomek nebo rodič uzlu neexistují, příslušný ukazatel je nastaven na null/null. Je vhodné uvažovat ukazatele NULL jako listy binárního stromu. Definice (Red Black strom). Binární vyhledávací strom je Red Black strom, jestliže splňuje následující kritéria: 1 Každý uzel je bud černý nebo červený. 2 Každý list (NULL) je černý. 3 Jestliže je daný uzel červený, pak jeho potomci jsou černí. 4 Každá cesta z libovolného uzlu do listu obsahuje stejný počet černých uzlů Počet černých uzlů na cestě z uzlu x do listu (mimo uzel x) nazýváme černou výškou uzlu x, píšeme bh(x). Dále definujeme černou výšku stromu jako černou výšku kořene stromu. Rozeznáváme dva druhy rotací: levou a pravou. Levá rotace x pracuje s ukazatelem z x do y. Uzel y se stane novým kořenem stromu, s uzlem x jako svým levým potomkem a levý potomek y se napojí jako pravý potomek x Uložení řetězců Pro uložení množiny řetězců si můžeme vybrat z několika datových struktur. Jednou

7 z možností je použití hashovacích tabulek. Jejich výhodou je rychlý přístup k datům, ale nevýhodou je ztráta informace o relativním pořadí. Jinou možností je uložení řetězců do binárního vyhledávacího stromu, jehož výhodou je malá prostorová složitost. Dále můžeme použít tzv. vyhledávací trie, jsou rychlé ale mají velkou prostorovou složitost Trie Vyhledávací trie ukládají řetězce znak po znaku. Každé vstupní slovo je zobrazeno pod uzlem, který jej reprezentuje. Ve stromě, který reprezentuje např. slova skládající se jen z malých písmen, má každý uzel 26 následovníků (anglická abeceda). Vyhledávání je velmi rychlé, v každém uzlu vlastně přistupujeme k prvku pole (jednomu z 26), testujeme na NULL/null a vybíráme větev. Trie bohužel mají nadměrnou prostorovou složitost. Uzel, ze kterého vychází 26 větví typicky vyžaduje 104 bytů, uzel s 256 větvemi spotřebuje 1kB Ternární stromy Kombinuje přednosti ds trie a binárních vyhledávacích stromů - časovou efektivitu a prostorovou efektivitu. Stejně jako trie postupují znak po znaku. Stejně jako binární stromy jsou prostorově efektivní, každý uzel má 3 potomky (oproti dvěma u binárních stromůu). Při vyhledávání se porovnává aktuální znak řetězce se znakem v uzlu. Pokud hledaný znak je menší než aktuální uzel, pokračujeme levým potomkem. Je-li větší pokračujeme pravým potomkem. Pokud jsou si znaky rovny, pokračujeme prostředním potomkem a vyhledáváme následující znak v řetězci.

8 3. Struktury vhodné pro fyzickou implementaci relačních dat v SŘBD 3.1 Hašování KRÁTKÝ Hashovacı tabulky nabízí nástroje jak vytvaářet velice efektivní tabulky, kde složitost vyhledávání je, za několika rozumných předpokladů, rovna (1). I když nejhorší případ je stále (n). Přímo adresovatelné tabulky a hashovací tabulky jsou rozšířením standardních polí. Přímo adresovatelné tabulky používají přímo klíče jako indexy v poli, hashovací tabulky transformují prostor klíčů o velmi velké mohutnosti pomocıí hashovací funkce do relativně malého prostoru indexů pole Přímo adresovatelné tabulky Přímé adresování je jednoduchá technika, kteraá dobře funguje, pokud univerzum klíčů U má malou mohutnost. Pro reprezentaci takové množiny použijeme pole nebo přímo adresovatelnou tabulku Hašovací tabulky KRÁTKÝ: Hlavní problém s přímým adresováním je zřejmý: jestliže univerzum U je velké, udržování tabulky T velikosti U je nepraktické, většině počítačů ne-li přímo nemožné. V přímo adresovatelné tabulce je prvek s klíčem k uložen ve slotu k. V hashovací tabulce je uložen ve slotu h(k), kde h je hashovací funkce. Hashovací funkce h zobrazuje univerzum klíčů U na sloty hashovací tabulky T[0...m 1]: h : U -> {0, 1,...,m 1}

9 Říkáme, že prvek s klíčem k je hashován do slotu h(k), říkáme také, že h(k) je hashovací hodnota klíče k. Hlavním účelem hashovací funkce je transformace klíčů z univerza U do jednotlivých slotů. Tím se také zmenšují nároky na pamě t. Místo původních U klíčů stačí udržovat jen m hodnot. Je jasné, že celá tato konstrukce má jednu vadu. Dva klíče se mohou hashovací funkcí zobrazit na tentýž slot dojde ke kolizi. Naštěstí existují učinné techniky jak kolize prvků řešit. Řešení konfliktů: 1. Technika separátního řetězení řeší kolize velice jednoduše. V hashovací tabulce je v každém slotu pointer na seznama prvky se stejnou hodnotou hashovací funkce se vkládají do příslušného seznamu 2. Pří použití otevřeného adresování jsou všechny prvky uloženy přímo v hashovací tabulce. Každý slot tabulky obsahuje bud nějaký prvek nebo je prázdný. Při hledání prvku v tabulce systematicky prohledáváme sloty tabulky dokud nenajdeme hledaný prvek nebo najdeme prázdný slot. Na rozdíl od separátního řetězení nejsou ke slotům připojeny žádné seznamy, tabulka je jen průběžně plněna. Hlavní výhodou otevřeného adresování je úspora místa, poněvadž místo pointerů tato metoda vypočítává posloupnost slotů, které je nutno prozkoumat. Při vkládání prvku do hashovací tabulky provádíme takzvané pokusy dokud nenajdeme hledaný prvek nebo prázdný slot. (Lineární pokusy, Kvadratické pokusy, Dvojité hashování) WIKI: Je datová struktura, která asociuje hashovací klíče s odpovídajícími hodnotami. Hodnota klíče je spočtena z obsahu položky podle takového pravidla (viz hashovací funkce), aby klíč byl co nejjednoznačněji určen, tj. aby pravděpodobnost přiřazení stejného klíče dvěma a více rozdílným položkám byla co nejnižší a aby rozptyl hodnot klíčů pro dvě obsahově blízké položky byl co nejvyšší. 3.2 B-Stromy Je specifický tím, že má řád n a limity na maximální (n), i minimální (n/2) počet potomků vrcholu. B-strom je díky této vlastnosti vyvážený, operace přidání, vyjmutí i vyhledávání tedy probíhají v logaritmickém čase. Tato struktura je často používána v aplikacích, kdy není celá struktura uložena v paměti RAM, ale v nějaké sekundární paměti, jako je pevný disk (například databáze). Protože přístup do tohoto typu paměti je náročný na čas (hlavně vyhledání náhodné položky), snažíme se minimalizovat počet přístupů do této paměti. Příklad: Máme-li B-strom hloubky 2 a počet potomků každého uzlu je 1001, můžeme do něj uložit milion klíčů a ke každé položce se dostaneme maximálně po dvou diskových operacích. KRÁTKÝ B-strom řádu n je (2n+1)-ární strom, který splňuje následující kritéri 1. Každá stránka obsahuje nejvýše 2n položek (klíčů ). 2. Každá stránka, s vyjímkou kořenové obsahuje alespoň n položek. 3. Každá stránka je bud listovou tj. nemá žádné následovníky nebo má m+1 násleodvníků, kde m je počet klíčů ve stránce. 4. Všechny listové stránky jsou na stejné úrovni.

Red Black strom (Red Black Tree) Úvod do programování. Rotace. Red Black strom. Rotace. Rotace

Red Black strom (Red Black Tree) Úvod do programování. Rotace. Red Black strom. Rotace. Rotace Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Red Black strom je binární strom s jedním dvouhodnotovým příznakem

Více

2 Datové struktury. Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky

2 Datové struktury. Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky 25 Pole Datová struktura kolekce elementů (hodnot či proměnných), identifikovaných jedním nebo více indexy, ze kterých

Více

Lineární datové struktury

Lineární datové struktury Lineární datové struktury doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Lineární datové

Více

Základní datové struktury

Základní datové struktury Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013

Více

AVL stromy. pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1 stromy jsou samovyvažující

AVL stromy. pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1 stromy jsou samovyvažující Stromy 2 AVL AVL stromy jména tvůrců stromů: dva Rusové Adelson-Velskii, Landis vyvážené binární stromy pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1

Více

ADT STROM Lukáš Foldýna

ADT STROM Lukáš Foldýna ADT STROM Lukáš Foldýna 26. 05. 2006 Stromy mají široké uplatnění jako datové struktury pro různé algoritmy. Jsou to matematické abstrakce množin, kterou v běžném životě používáme velice často. Příkladem

Více

Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti.

Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti. Seznamy a stromy Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti. Klíčové pojmy: Seznam, spojový seznam, lineární seznam, strom, list, uzel. Úvod

Více

Datové struktury 2: Rozptylovací tabulky

Datové struktury 2: Rozptylovací tabulky Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy

Více

Maturitní téma: Programovací jazyk JAVA

Maturitní téma: Programovací jazyk JAVA Maturitní téma: Programovací jazyk JAVA Insert Sort (třídění vkládáním) 1. Jako setříděnou část označíme první prvek pole. Jako nesetříděnou část označíme zbytek pole. 2. Vezmeme první (libovolný) prvek

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný

Více

Algoritmy II. Otázky k průběžnému testu znalostí

Algoritmy II. Otázky k průběžnému testu znalostí Algoritmy II Otázky k průběžnému testu znalostí Revize ze dne 19. února 2018 2 Lineární datové struktury 1 1. Vysvětlete co znamená, že zásobník představuje paměť typu LIFO. 2. Co je to vrchol zásobníku?

Více

Základy algoritmizace. Hašování

Základy algoritmizace. Hašování Základy algoritmizace Hašování Problematika hašování Hašování - nástroj na jednoduchý způsob "zakódování vstupních dat. Vstupní data jsou zpracována hašovací funkcí jsou jistým způsobem komprimována. Relativně

Více

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Procesor Procesorem je objekt, který vykonává algoritmem popisovanou

Více

Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015

Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Programování 3. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Implementace zásobníku a fronty pomocí

Více

Úvod. Úvod do programování. Úvod. Hashovací tabulky

Úvod. Úvod do programování. Úvod. Hashovací tabulky do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava do programování, 2004/2005 Mnohé aplikace nepotřebují ke svému provozu celou škálu operací podporovaných

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová

Více

Základní datové struktury III: Stromy, haldy

Základní datové struktury III: Stromy, haldy Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní

Více

Dynamické datové struktury I.

Dynamické datové struktury I. Dynamické datové struktury I. Seznam. Fronta. Zásobník. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

Datové typy a struktury

Datové typy a struktury atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro

Více

Fronta (Queue) Úvod do programování. Fronta implementace. Fronta implementace pomocí pole 1/4. Fronta implementace pomocí pole 3/4

Fronta (Queue) Úvod do programování. Fronta implementace. Fronta implementace pomocí pole 1/4. Fronta implementace pomocí pole 3/4 Fronta (Queue) Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Fronta uplatňuje mechanismus přístupu FIFO first

Více

Dynamické datové struktury IV.

Dynamické datové struktury IV. Dynamické datové struktury IV. Prioritní fronta. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová

Více

ABSTRAKTNÍ DATOVÉ TYPY

ABSTRAKTNÍ DATOVÉ TYPY Jurdič Radim ABSTRAKTNÍ DATOVÉ TYPY Veškeré hodnoty, s nimiž v programech pracujeme, můžeme rozdělit do několika skupin zvaných datové typy. Každý datový typ představuje množinu hodnot, nad kterými můžeme

Více

Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce)

Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce) 13. Metody vyhledávání. Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce). Asociativní vyhledávání (sekvenční, binárním půlením, interpolační, binární vyhledávací

Více

Anotace. Spojové seznamy, haldy. AVL-stromy, A-B stromy. Martin Pergel,

Anotace. Spojové seznamy, haldy. AVL-stromy, A-B stromy. Martin Pergel, Anotace Spojové seznamy, fronta a zásobník. Vyvážené binární stromy, AVL-stromy, červeno-černé stromy, A-B stromy. Hashování, haldy. Typologie spojových seznamů jednosměrný a obousměrný prvek ukazuje jen

Více

Da D to t v o é v ty t py IB111: Datové typy

Da D to t v o é v ty t py IB111: Datové typy Datové typy IB111: Datové typy Data a algoritmizace jaká data potřebuji pro vyřešení problému? jak budu data reprezentovat? jaké operaci s nimi potřebuji provádět? Navržení práce s daty je velice důležité

Více

Hašování. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Hašování. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Hašování doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. února 2019 Jiří Dvorský (VŠB TUO) Hašování 375 / 397 Osnova přednášky

Více

Lineární datové struktury

Lineární datové struktury Lineární datové struktury doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 5. března 2019 Jiří Dvorský (VŠB TUO) Lineární datové

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu

Více

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří

Více

Základy algoritmizace c2007 Michal Krátký, Jiří Dvorský 1/57

Základy algoritmizace c2007 Michal Krátký, Jiří Dvorský 1/57 Základy algoritmizace Michal Krátký 1, Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Základy algoritmizace, 2006/2007 Základy algoritmizace c2007 Michal Krátký, Jiří Dvorský 1/57

Více

Dynamicky vázané metody. Pozdní vazba, virtuální metody

Dynamicky vázané metody. Pozdní vazba, virtuální metody Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:

Více

Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39

Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39 Základy algoritmizace Michal Krátký 1, Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Základy algoritmizace, 2006/2007 Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39

Více

Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz

Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz (2 + 5) * (13-4) * + - 2 5 13 4 - listy stromu obsahují operandy (čísla) - vnitřní uzly obsahují operátory (znaménka)

Více

Kolekce, cyklus foreach

Kolekce, cyklus foreach Kolekce, cyklus foreach Jen informativně Kolekce = seskupení prvků (objektů) Jednu již známe pole (Array) Kolekce v C# = třída, která implementuje IEnumerable (ICollection) Cyklus foreach ArrayList pro

Více

1. Databázové systémy (MP leden 2010)

1. Databázové systémy (MP leden 2010) 1. Databázové systémy (MP leden 2010) Fyzickáimplementace zadáníaněkterářešení 1 1.Zkolikaajakýchčástíseskládáčasprovstupněvýstupníoperaci? Ze tří částí: Seektime ječas,nežsehlavadiskudostanenadsprávnou

Více

Dynamické datové struktury III.

Dynamické datové struktury III. Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované

Více

TÉMATICKÝ OKRUH Počítače, sítě a operační systémy

TÉMATICKÝ OKRUH Počítače, sítě a operační systémy TÉMATICKÝ OKRUH Počítače, sítě a operační systémy Číslo otázky : 12. Otázka : Metody fyzické organizace dat Obsah : 1.Úvod 2.Vnější paměti 3.Sekvenční soubory 3.1 Setříděné sekvenční soubory 4.Zřetězené

Více

Stromy. Jan Hnilica Počítačové modelování 14

Stromy. Jan Hnilica Počítačové modelování 14 Stromy Jan Hnilica Počítačové modelování 14 1 Základní pojmy strom = dynamická datová struktura, složená z vrcholů (uzlů, prvků) propojených hranami hrany chápeme jako orientované, tzn. vedou z uzlu A

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

Prioritní fronta, halda

Prioritní fronta, halda Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje

Více

Datové struktury 1: Základní datové struktury

Datové struktury 1: Základní datové struktury Datové struktury 1: Základní datové struktury prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní

Více

Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost

Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost Amortizovaná složitost. Prioritní fronty, haldy binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost 1. Asymptotické odhady Asymptotická složitost je deklarována na základě

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

autoři: Rudolf Bayer, Ed McCreight všechny vnější uzly (listy) mají stejnou hloubku ADS (abstraktní datové struktury)

autoři: Rudolf Bayer, Ed McCreight všechny vnější uzly (listy) mají stejnou hloubku ADS (abstraktní datové struktury) definice ( tree) autoři: Rudolf Bayer, Ed McCreight vyvážený strom řádu m ( ) každý uzel nejméně a nejvýše m potomků s výjimkou kořene každý vnitřní uzel obsahuje o méně klíčů než je počet potomků (ukazatelů)

Více

Programování v C++ 2, 4. cvičení

Programování v C++ 2, 4. cvičení Programování v C++ 2, 4. cvičení statické atributy a metody, konstruktory 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled Přístupová práva

Více

Reprezentace dat v informačních systémech. Jaroslav Šmarda

Reprezentace dat v informačních systémech. Jaroslav Šmarda Reprezentace dat v informačních systémech Jaroslav Šmarda Reprezentace dat v informačních systémech Reprezentace dat v počítači Datové typy Proměnná Uživatelské datové typy Datové struktury: pole, zásobník,

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Vyhledávací stromy. Slouží jako pomůcka pro organizaci dat umožňující efektivní vyhledávání.

Vyhledávací stromy. Slouží jako pomůcka pro organizaci dat umožňující efektivní vyhledávání. Vyhledávací stromy Slouží jako pomůcka pro organizaci dat umožňující efektivní vyhledávání. Vytvářejí se vždy nad již existující datovou strukturou (zpravidla tabulkou). Vyhledávací stromy můžeme rozdělit

Více

ADT/ADS = abstraktní datové typy / struktury

ADT/ADS = abstraktní datové typy / struktury DT = datové typy obor hodnot, které může proměnná nabývat, s operacemi na tomto oboru určen: obor hodnot + výpočetní operace např. INT = { 2 147 483 648 až +2 147 483 647} + {+,,*,/,} ADT/ADS = abstraktní

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620

Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 1. Vymezení pojmů Strom: Strom je takové uspořádání prvků - vrcholů, ve kterém lze rozeznat předchůdce - rodiče a následovníky - syny.

Více

Algoritmy výpočetní geometrie

Algoritmy výpočetní geometrie Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

Semestrální práce 2 znakový strom

Semestrální práce 2 znakový strom Semestrální práce 2 znakový strom Ondřej Petržilka Datový model BlockFileRecord Bázová abstraktní třída pro záznam ukládaný do blokového souboru RhymeRecord Konkrétní třída záznamu ukládaného do blokového

Více

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Maturitní témata. IKT, školní rok 2017/18. 1 Struktura osobního počítače. 2 Operační systém. 3 Uživatelský software.

Maturitní témata. IKT, školní rok 2017/18. 1 Struktura osobního počítače. 2 Operační systém. 3 Uživatelský software. Maturitní témata IKT, školní rok 2017/18 1 Struktura osobního počítače Von Neumannova architektura: zakreslete, vysvětlete její smysl a popište, jakým způsobem se od ní běžné počítače odchylují. Osobní

Více

TGH07 - Chytré stromové datové struktury

TGH07 - Chytré stromové datové struktury TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním

Více

Lineární spojový seznam (úvod do dynamických datových struktur)

Lineární spojový seznam (úvod do dynamických datových struktur) Lineární spojový seznam (úvod do dynamických datových struktur) Jan Hnilica Počítačové modelování 11 1 Dynamické datové struktury Definice dynamické struktury jsou vytvářeny za běhu programu z dynamicky

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Strom

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Strom 8 Podklady ředmětu ro akademický rok 2013/2014 Radim Farana Obsah 2 Dynamické datové struktury. Strom. Binární stromy. Vyhledávací stromy. Vyvážené stromy. AVL stromy. Strom 3 Název z analogie se stromy.

Více

Programování v C++, 2. cvičení

Programování v C++, 2. cvičení Programování v C++, 2. cvičení 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 Operátory new a delete 2 3 Operátory new a delete minule

Více

Časová a prostorová složitost algoritmů

Časová a prostorová složitost algoritmů .. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová

Více

bfs, dfs, fronta, zásobník, prioritní fronta, halda

bfs, dfs, fronta, zásobník, prioritní fronta, halda bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší

Více

Binární Vyhledávací Stromy, u kterých je. složitost operací v nejhorším. rovná O(log n)

Binární Vyhledávací Stromy, u kterých je. složitost operací v nejhorším. rovná O(log n) Stromy Binární Vyhledávací Stromy, u kterých je č asová složitost operací v nejhorším případě rovná O(log n) Vlastnosti Red-Black Stromů Vlastnosti Red-Black stromů Každý uzel stromu je obarven červenou

Více

5 Rekurze a zásobník. Rekurzivní volání metody

5 Rekurze a zásobník. Rekurzivní volání metody 5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení

Více

Kapitola 11: Indexování a hešování. Základní představa

Kapitola 11: Indexování a hešování. Základní představa - 11.1 - Kapitola 11: Indexování a hešování Základní představa Řazené indexy (ordered indices) B+-strom indexový soubor B-strom indexový soubor Hešování Porovnání řazených indexů a hešování Definice indexů

Více

Pokročilá algoritmizace amortizovaná složitost, Fibonacciho halda, počítačová aritmetika

Pokročilá algoritmizace amortizovaná složitost, Fibonacciho halda, počítačová aritmetika amortizovaná složitost, Fibonacciho halda, počítačová aritmetika Jiří Vyskočil, Marko Genyg-Berezovskyj 2009 Amortizovaná složitost Asymptotická složitost často dostatečně nevypovídá o složitosti algoritmů,

Více

Definice. B-stromu. B-strom řádu m je strom, kde každý uzel má maximálně m následníků a ve kterém platí:

Definice. B-stromu. B-strom řádu m je strom, kde každý uzel má maximálně m následníků a ve kterém platí: B-Strom Definice B-stromu B-strom řádu m je strom, kde každý uzel má maximálně m následníků a ve kterém platí: 1. Počet klíčů v každém vnitřním uzlu, je o jednu menší než je počet následníků (synů) 2.

Více

Vyvažování a rotace v BVS, všude se předpokládá AVL strom

Vyvažování a rotace v BVS, všude se předpokládá AVL strom Vyvažování a rotace v BVS, všude se předpokládá AVL strom 1. Jednoduchá levá rotace v uzlu u má operační složitost a) závislou na výšce levého podstromu uzlu u b) mezi O(1) a Θ(n) c) závislou na hloubce

Více

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT binární vyhledávání a bst Karel Horák, Petr Ryšavý 23. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Naimplementujte binární vyhledávání. Upravte metodu BinarySearch::binarySearch. 1 Příklad 2 Mysĺım

Více

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky

Více

Konstruktory a destruktory

Konstruktory a destruktory Konstruktory a destruktory Nedostatek atributy po vytvoření objektu nejsou automaticky inicializovány hodnota atributů je náhodná vytvoření metody pro inicializaci, kterou musí programátor explicitně zavolat,

Více

Prohledávání do šířky = algoritmus vlny

Prohledávání do šířky = algoritmus vlny Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé

Více

Datové struktury. alg12 1

Datové struktury. alg12 1 Datové struktury Jedna z klasických knih o programování (autor prof. Wirth) má název Algorithms + Data structures = Programs Datová struktura je množina dat (prvků, složek, datových objektů), pro kterou

Více

Stromové struktury v relační databázi

Stromové struktury v relační databázi Stromové struktury v relační databázi Stromové struktury a relační databáze Zboží Procesory Paměti Intel AMD DDR DIMM Pentium IV Celeron Duron Athlon http://interval.cz/clanky/metody-ukladani-stromovych-dat-v-relacnich-databazich/

Více

Jazyk C++ II. STL knihovna kontejnery část 2

Jazyk C++ II. STL knihovna kontejnery část 2 Jazyk C++ II STL knihovna kontejnery část 2 AR 2013/2014 Jazyk C++ II Asociativní kontejnery Slovníky u kterých pořadí dat nemá smysl. Kontejner si sám určuje, kam který údaj uloží. Údaje mají tvar klíč/hodnota.

Více

IB111 Úvod do programování skrze Python

IB111 Úvod do programování skrze Python Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Jednoduché datové struktury a stromy

Jednoduché datové struktury a stromy 155OB poznámky 2015-10-25 Jednoduché datové struktury a stromy 2015-10-25 1 / 69 Obsah 1 Jednoduché datové struktury a stromy Jednoduché datové struktury Binární stromy AVL stromy Quadtrees a Octrees B-stromy

Více

Složitosti základních operací B + stromu

Složitosti základních operací B + stromu Složitosti základních operací B + stromu Radim Bača VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky ŠKOMAM 2010-1- 28/1/2010 Složitosti základních operací B +

Více

bfs, dfs, fronta, zásobník, prioritní fronta, halda

bfs, dfs, fronta, zásobník, prioritní fronta, halda bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší

Více

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11 333LP - lgoritmy a programování - Zkouška z předmětu 333LP Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8]

Více

Vzdálenost uzlů v neorientovaném grafu

Vzdálenost uzlů v neorientovaném grafu Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující

Více

Algoritmizace I. Ak. rok 2015/2016 vbp 1. ze 132

Algoritmizace I. Ak. rok 2015/2016 vbp 1. ze 132 Ak. rok 2015/2016 vbp 1. ze 132 Ing. Vladimír Beneš, Ph.D. vedoucí katedry Petrovický K101 katedra informatiky a kvantitativních metod E-mail: vbenes@bivs.cz Telefon: 251 114 534, 731 425 276 Konzultační

Více

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11 Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8] count=0 for i in range(1,len(data)):

Více

ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)

ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel

Více

Datový typ prioritní fronta Semestrální práce z předmětu 36PT

Datový typ prioritní fronta Semestrální práce z předmětu 36PT Datový typ prioritní fronta Semestrální práce z předmětu 36PT Martin Tůma Cvičení 113, Út 18:00 22. května 2004 Specifikace problému Často potřebujeme přístup k informacím, tak aby tyto byly seřazeny podle

Více

Radek Mařík

Radek Mařík 2012-03-20 Radek Mařík 1. Pravá rotace v uzlu U a) v podstromu s kořenem U přemístí pravého syna U.R uzlu U do kořene. Přitom se uzel U stane levým synem uzlu U.R a levý podstrom uzlu U.R se stane pravým

Více

Základy algoritmizace. Pattern matching

Základy algoritmizace. Pattern matching Základy algoritmizace Pattern matching 1 Pattern matching Úloha nalézt v nějakém textu výskyty zadaných textových vzorků patří v počítačové praxi k nejfrekventovanějším. Algoritmy, které ji řeší se používají

Více

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2. 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste

Více

TGH07 - Chytré stromové datové struktury

TGH07 - Chytré stromové datové struktury TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 5. dubna 2017 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním

Více

Dynamické datové typy a struktury

Dynamické datové typy a struktury .. a Programovací techniky doc. Ing. Jiří Rybička Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Programovací techniky a 2 / 18 Uchovávají adresu v paměti Programovací techniky a 2 / 18 Uchovávají

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

Složitost Filip Hlásek

Složitost Filip Hlásek Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,

Více

4EK311 Operační výzkum. 5. Teorie grafů

4EK311 Operační výzkum. 5. Teorie grafů 4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,

Více