Konstrukce na základě výpočtu II

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "3.4.12 Konstrukce na základě výpočtu II"

Transkript

1 3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou npřipomínjí rovnost vou poměrů. Řšní: O výrzy připomínjí Pythgoru větu při rýsování využijm vzthy mzi strnmi prvoúhlého trojúhlník. Volím: = 4m, = 3m. ) úsčk o él = + Vzth uvný v zání uává élku přpony v prvoúhlém trojúhlníku úsčku o él sstrojím jko přponu v prvoúhlém trojúhlníku o strnáh,. Numriká kontrol: = + = + = ) úsčk o él = Vzth uvný v zání uává élku ověsny v prvoúhlém trojúhlníku s přponou ověsnou sstrojím tnto trojúhlník pomoí Thltovy kružni. Numriká kontrol: = = = 4 3 7, 65 Pgogiká poznámk: Většin žáků smosttně npřij n to, ž musí použít Pythgorovu větu, l t ystřjší mnšin y měl ostt šni. Př. : J án oélník o strnáh,. Sstroj čtvr o stjném oshu. Řšní přhozíh příklů vyházlo z vzorů popíšm si zání vzorm. Osh oélníku: S =, osh čtvr S = hlám élku úsčky, tk y pltilo =, k, jsou úsčky známýh élk.

2 Zkusím uprvit n rovnost poměrů: = nj řšit pomoí poonosti, protož v oou trojúhlnííh, ktré yhom rýsovli, y s vyskytovl úsčk o nznámé él musím njít jiný vzor. Vzor = připomíná: Eukliovu větu o ověsně: = ( = ), Eukliovu větu o výš: Volím: = 5m, = 3m. v =. Řšní pomoí Eukliovy věty o ověsně: = Rýsujm prvoúhlý trojúhlník, u ktrého znám, přponu = 5m (úsčk o él ) jn jjí úsk = 3m (úsčk o él ) zývjíí vrhol lží n Thltově kružnii kolmii n přponu vztyčné v ptě výšky (tm, k j přpon rozěln n úsky). Numriká kontrol: = = 5 3 = 5 3,87m Řšní pomoí Eukliovy věty o výš: v = Rýsujm prvoúhlý trojúhlník, u ktrého znám o úsky přpony, = 5m (úsčk o él ) = 3m (úsčk o él ) zývjíí vrhol lží n Thltově kružnii kolmii n přponu vztyčné v ptě výšky (tm, k j přpon rozěln n úsky). O orázky opět můžm položit n s přsvěčit s, ž výslky s rovnjí.

3 Úsčk o él = s nzývá gomtriký průměr úsčk o élkáh,. Pgogiká poznámk: Přhozí příkl y smozřjmě mohl ýt zán rovnou vzorm, l tím y žái přišli o si njužitčnější část řšní. Poku žái v tomto okmžiku konstrukím n záklě výpočtu rozumí, měli y poté, o s ujsní, ž j o Eukliovy věty, zvlánout rýsování smi. Př. 3: J án úsčk o jnotkové él. Nrýsuj o njjnoušším způsom úsčky o vlikosti: ), ) 5, ) 6, ) 8. Jko jnotkovou zvolím kvůli snzšímu rýsování vzálnost m. ) = + hlám přponu prvoúhlého trojúhlníku s ověsnmi. ) 5 = 9 4 = 3 hlám ověsnu prvoúhlého trojúhlníku s přponou 3 ověsnou. 5 3 ) 6 = 3 ( 6 ) = 3 hlám ověsnu v prvoúhlém trojúhlníku s přponou 3 jnou částí přpony (no výšku v prvoúhlém trojúhlníku, jhož přpon má části o élkáh 3 ). 6 3 ) 8 ví možností 8 = = + hlám přponu prvoúhlého trojúhlníku s ověsnmi ověsnou. = = hlám ověsnu prvoúhlého trojúhlníku s přponou 3 3

4 8 = 4 ( 8) = 4 hlám ověsnu v prvoúhlém trojúhlníku s přponou 4 jnou částí přpony (no výšku v prvoúhlém trojúhlníku, jhož přpon má části o élkáh 4 - nrýsováno n orázku). 8 4 Př. 4: J án úsčk o él. Sstroj úsčku o él: ) 7, ) 5. Stjný postup jko v přhozím příklu, pouz nvyházím z úsčky o él, l z úsčky o él. ) ( 4) ( 3) = = = hlám ověsnu prvoúhlého trojúhlníku s přponou 4 ověsnou ) 5 = 5 3 = 5 3 hlám ověsnu v prvoúhlém trojúhlníku s přponou 5 jnou částí přpony Pgogiká poznámk: Smozřjmě istují i jiné možnosti, jk přhozí příkly řšit. 4

5 Př. 5: Jsou ány vě úsčky o élkáh,. Sstroj úsčku, jjíž vlikost j án vzthm + =. + Prolém: Výrz j posttně složitější nž vš, o jsm ztím řšili. Řšní: Něktré jho části jsou pověomé zkusím j nhrit élkmi novýh úsčk (ktré yhom okázli zkonstruovt) um ouft, ž s výrz postupně zjnouší. Umím: = + + = =, + = = =, + = = = +. = / : + = poonost trojúhlníků. + Zčnm konstruovt (z élky úsčk volím npříkl = 4m, = 3m ). = + hlám přponu v prvoúhlém trojúhlníku s ověsnmi,. = hlám ověsnu v prvoúhlém trojúhlníku s přponou jnou částí přpony. = hlám ověsnu v prvoúhlém trojúhlníku s přponou ověsnou. = v pooné trojúhlníky. + 5

6 = + úsčky o élkáh, + tvoří morý (n orázku šrfovný) trojúhlník, jmuž j pooný črvný trojúhlník s strnmi,. Jnu vojii strn tvoří strny o élkáh,, ruhou strny o élkáh, +. + Shrnutí: Při konstrukíh můžm využívt i jiné plnimtriké vzor. 6

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II 1.3.5 Řešení slovníh úloh pomoí Vennovýh igrmů II Přepokly: 1304 Pegogiká poznámk: Ieální je poku tto hoin vyje n vičení. Postup stuentů je totiž velmi iniviuální ěljí velké množství hy, oěht elou tříu

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

Durové stupnice s křížky

Durové stupnice s křížky Durové stupni s křížky poří + přznmnání: & # # # # # # # # # # # # # ## # # # ## # # # # ## # # G ur D ur A ur E ur H ur Fis ur Cis ur G ur & # ġ h is D ur & # # is h is A ur & # # # h is is is E ur &

Více

Durové stupnice s křížky

Durové stupnice s křížky Durové stupni s křížky poří + přznmnání: & # # # # # # # # # # # # # ## # # # ## # # # # ## # # G ur D ur A ur E ur H ur Fis ur Cis ur G ur & # ġ is D ur & # # is is A ur & # # # is is is E ur & # # #

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

Cvičení č. 9 Lineární zobrazení. Jádro a obor hodnot. Matice lineárního zobrazení.

Cvičení č. 9 Lineární zobrazení. Jádro a obor hodnot. Matice lineárního zobrazení. Ciční z linání lg 4 Ví Vonák Ciční č 9 Linání zozní Jáo oo hono Mi lináního zozní Linání zozní ini Zozní V U k U V jso kooé oso s nzýá linání jsliž U U Množin šh lináníh zozní U o V znčím V L U říkl ozhoně

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

ŘEŠENÍ OBVODŮ S TRANSIMPEDANČNÍMI OPERAČNÍMI ZESILOVAČI POMOCÍ GRAFŮ SIGNÁLOVÝCH TOKŮ

ŘEŠENÍ OBVODŮ S TRANSIMPEDANČNÍMI OPERAČNÍMI ZESILOVAČI POMOCÍ GRAFŮ SIGNÁLOVÝCH TOKŮ ŘEŠENÍ OBVODŮ S ANSMPEDANČNÍM OPEAČNÍM ESLOVAČ POMOÍ AFŮ SNÁLOVÝH OŮ ÚVOD Dlior Biolek, VA Brno rnsimpenční operční zesilovče (O) jsou perspektivní tegrovné ovoy, které jsou svými přenosovými vlstnostmi

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

Pokud se obrazovka instalace neobjeví, klepněte na Start Run (Spustit) a poté napište D:\setup.exe, kde písmeno D označuje vaši jednotku CD či DVD.

Pokud se obrazovka instalace neobjeví, klepněte na Start Run (Spustit) a poté napište D:\setup.exe, kde písmeno D označuje vaši jednotku CD či DVD. Stránka 1 z 6 Průvo připojním Pokyny pro místě připojné tiskárny v systému Winows Poznámka: Instalujt-li místně připojnou tiskárnu na systém, ktrý j l isku CD s softwarm a okumntaí npoporován, musít pak

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

Demonstrace skládání barev

Demonstrace skládání barev Vltrh nápadů učitlů fyziky I Dmonstrac skládání barv DENĚK NAVRÁTIL Přírodovědcká fakulta MU Brno Úvod Studnti střdních škol si často stěžují na nzáživnost nzajímavost a matmatickou obtížnost výuky fyziky.

Více

Maturitní příklady 2011/2012

Maturitní příklady 2011/2012 Mturitní příkldy 0/0 Výroková logik, množiny, důkzy Ve třídě je 0 dívek 5 hohů Jedn čtvrtin dívek nosí rýle elkem 0% žáků ve třídě má rýle Kolik hohů nenosí rýle? Ze 00 studentů se 0 učí němeky, 8 špnělsky

Více

e Stavby pro reklamu podle 3 odst. 2. f

e Stavby pro reklamu podle 3 odst. 2. f Jenouhé stvy, terénní úprvy uržoví práe vyžujíí ohlášení 104 ost. 1 stveního zákon Stvení záměr Formulář Umístění Stvy pro ylení pro roinnou rekrei o 150 m 2 elkové zstvěné plohy, s jením pozemním polžím

Více

Zhoubný novotvar ledviny mimo pánvičku v ČR

Zhoubný novotvar ledviny mimo pánvičku v ČR Aktuální informce Ústvu zdrvotnických informcí sttistiky České repuliky Prh 8.1.2004 1 Zhouný novotvr ledviny mimo pánvičku v ČR Počet hlášených onemocnění zhouným novotvrem ledviny mimo pánvičku (dg.

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Zjednodušený výpočet tranzistorového zesilovače

Zjednodušený výpočet tranzistorového zesilovače Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ

Více

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný,

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný, VLASTNOSTI GRAFENU TLOUŠŤKA: Při tloušťc 0,34 nanomtru j grafn milionkrát tnčí nž list papíru. HMOTNOST: Grafn j xtrémně lhký. Kilomtr čtvrčný tohoto matriálu váží jn 757 gramů. PEVNOST: V směru vrstvy

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta Chromatografie Zroj: http://www.scifun.org/homeexpts/homeexpts.html [34] Diaktický záměr: Vysvětlení pojmu chromatografie. Popis: Žáci si vyzkouší velmi jenouché ělení látek pomocí papírové chromatografie.

Více

1. ROZSÁHLÁ REKONSTRUKCE VÁŽKY II JE U KONCE

1. ROZSÁHLÁ REKONSTRUKCE VÁŽKY II JE U KONCE Srpn 2015 Prázniny pomlu končí, ěti brzy zsnou o školních lvic i v nšm střisku končí čs ovolných pro většinu změstnnců. Brigáníky, ktří nám běhm uplynulých vou měsíců pomáhli, vystříjí opočtí změstnnci

Více

VŠE O EKOLOGICKÝCH ŠTÍTCÍCH

VŠE O EKOLOGICKÝCH ŠTÍTCÍCH VŠ O KOLOIKÝH ŠTÍTÍH V září 2014 budou v vropě uvedeny nové energetické štítky na vysavače. o se s příchodem štítků změní? V této příručce značky Rowenta se dozvíte více o těchto nových štítcích a způsobu,

Více

Instalační a uživatelská příručka

Instalační a uživatelská příručka Instlční uživtlská příručk Klimtizční systém VRV IV REYQ8T7Y1B REYQ10T7Y1B REYQ12T7Y1B REYQ14T7Y1B REYQ16T7Y1B REYQ18T7Y1B REYQ20T7Y1B REMQ5T7Y1B Instlční uživtlská příručk Klimtizční systém VRV IV čštin

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 12

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 12 Fkult strojního inženýrství VUT v Brně Ústv konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přenášk Spojky brzy Tim ws so lerne tht he coul nme horse in nine lnguges; so ignornt tht he bought cow to

Více

Hygiena dutiny ústní u dospělých. aneb Čistěte si pouze ty zuby, které si chcete zachovat!!

Hygiena dutiny ústní u dospělých. aneb Čistěte si pouze ty zuby, které si chcete zachovat!! Hygien utiny ústní u ospělýh ne Čistěte si pouze ty zuy, které si hete zhovt!! Prevene ve stomtologii znmená přeevším přeházení vzniku lšímu rozvoji zuního kzu, hronikého zánětu ásní, tím tké vzniku proontitiy,

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

dvojice těchto prvků. Takto si můžeme například i znázorňovat možnosti jak cestovat z

dvojice těchto prvků. Takto si můžeme například i znázorňovat možnosti jak cestovat z Grfy V této kpitole e enámíme e ákldními pojmy teorie grfů, ukážeme i možnoti jejih použití tké e enámíme některými lgoritmy, které řeší úlohy teorie grfů. Grfy louží čto jko protředek k lepšímu poroumění

Více

Vedení vvn a vyšší parametry vedení

Vedení vvn a vyšší parametry vedení Veení vvn a vyšší parametry veení Při řešení těchto veení je třeba vzhleem k jejich élce uvažovat nejenom opor veení R a inukčnost veení L, ale také kapacitu veení C. Svo veení G se obvykle zanebává. Tyto

Více

7 Součinitele tlaků a sil

7 Součinitele tlaků a sil 7 Součinitele tlaků a sil 7.1 Oecná ustanovení 7.1.1 Druy součinitelů Eurokó uváí součinitele tlaků, sil a tření pro ěžné typy konstrukcí. Jejic onoty yly o Eurokóu převzaty z různýc zrojů, zejména z norem

Více

ZPRAVODAJSTVÍ. Newsletter ISSUE N 04 ÚNOR 2009 STRANA 2 & 4 NOVINKY Z BRUSELU STRANA 3 & 5 ČESKÉ PŘEDSEDNICTVÍ A ZLÍNSKÝ KRAJ

ZPRAVODAJSTVÍ. Newsletter ISSUE N 04 ÚNOR 2009 STRANA 2 & 4 NOVINKY Z BRUSELU STRANA 3 & 5 ČESKÉ PŘEDSEDNICTVÍ A ZLÍNSKÝ KRAJ SPECIÁLNĚ ZAMĚŘENO NA PŮLROK ČESKÉHO PŘEDSEDNICTVÍ ZPRAVODAJSTVÍ STRANA 2 & 4 NOVINKY Z BRUSELU Několik akcí dostalo Zlínský kraj v Bruslu na scénu! Na jdn týdn si události připravné zastoupním monopolizovali

Více

ž ú Ď ň ň ú Á É ž Ý Ě É ň Ě É É ž Ť Ť Ť ú Ň ŤŤ Ť ó Á ú ú Ť ň ú ň ž É Š Š ž ó ó Ť É Ť Ě Ť ň Ťň Ť ž ňž Ť Ó Ť ú ž Ť ú ž Ť ó ž ž Ť Ť ž Ě Š ú ž ž ň Č ž ž ž ž Ť Ť Ť Č Ň Á Ť Ý ú Ť ž ň ž Ť Ý Ť Ť ž ň Ťň Š ž ú ž

Více

š ó ó Š š ú ž Ó ž ů ď ů ó ů ú ť ť Ú ú ňó ž Ě ň ů ú Š ó ú ó š Ů ď ó ň Ň Ú ú ú ž ó ň ž ú Ú ú Ú ú š ň Ú Ú Ú Ú Ú ú Ú Ú Ó Ú Ú Š Š ú Ú Š Š š ú Ý ď É Š Š ň ň Ú Š É š Ů ň Ú Ď ž ú ž ň ň É É ď Ú Ů Ú Ú Éň ú ú É ň

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Národní centrum výzkumu polárních oblastí

Národní centrum výzkumu polárních oblastí Národní centrum výzkumu polárních oblstí Dohod o spolupráci při výzkumu polárních oblstí Země Msrykov univerzit Žerotínovo nám. 9, 601 77 Brno, IČ 00216224, zstoupená rektorem Prof. PhDr. Petrem Filou,

Více

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu - 1 - Tato Příloha 307 j součástí článku: ŠKORPÍK, Jří. Enrgtcké blanc lopatkových strojů, Transformační tchnolog, 2009-10. Brno: Jří Škorpík, [onln] pokračující zdroj, ISSN 1804-8293. Dostupné z http://www.transformacn-tchnolog.cz/nrgtckblanc-lopatkovych-stroju.html.

Více

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm

Více

noviny Zákaznické dny a Konference Precheza 2014 Monosal v novém skladu Výrobní úsek Výstava historických dokumentů Prechezy

noviny Zákaznické dny a Konference Precheza 2014 Monosal v novém skladu Výrobní úsek Výstava historických dokumentů Prechezy Noviny změstnnů spolčnosti PRECHEZA.s., ČLEN KONCERNU AGROFERT prhz noviny črvn 2014 číslo 6 www.prhz.z Zákzniké ny Konrn Prhz 2014 V řě již osmnáté stkání nših istriutorů ohoníh prtnrů proěhlo 11. 13.

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo

Více

Í ě ň ó Ř Š ě ě ě ě ě ě ě ě ě ě ó Ř ě ě ě ě ě ě ť ě ť Š ě ě ť ě ť ě ě Š ó Ř ó Ř Ý Ž É Č ň ň ě ě ť Ž ě ě ť ě ě ě ě ě ě ě ě ě ě ě ě ě Š ň ě ó Ř ó Ř ó ť ť ě ť ť ě ě ě ě ě ě ě Š ů ě ó ó Ř ó Ř ě ě ť ě ě ó Ř

Více

Postup tvorby studijní opory

Postup tvorby studijní opory Postup tvorby studijní opory RNDr. Jindřich Vaněk, Ph.D. Klíčová slova: Studijní opora, distanční studium, kurz, modl řízní vztahů dat, fáz tvorby kurzu, modl modulu Anotac: Při přípravě a vlastní tvorbě

Více

Radek Petříček PLASTICKÁ ANATOMIE TEORETICKÁ ČÁST RADEK PETŘÍČEK PLASTICKÁ ANATOMIE TEORETICKÁ ČÁST

Radek Petříček PLASTICKÁ ANATOMIE TEORETICKÁ ČÁST RADEK PETŘÍČEK PLASTICKÁ ANATOMIE TEORETICKÁ ČÁST RADEK PETŘÍČEK PLASTICKÁ ANATOMIE TEORETICKÁ ČÁST Rk Ptříčk PLASTICKÁ ANATOMIE TEORETICKÁ ČÁST Akm výtvrný umění v Prz PLASTICKÁ ANATOMIE TEORETICKÁ ČÁST DIZERTAČNÍ PRÁCE utor/ Rk Ptříčk školtl/ pro.

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Začínáme. Stručný návod k obsluze HL-4570CDW HL-4570CDWT VAROVÁNÍ UPOZORNĚNÍ VAROVÁNÍ. Poznámka. Poznámka

Začínáme. Stručný návod k obsluze HL-4570CDW HL-4570CDWT VAROVÁNÍ UPOZORNĚNÍ VAROVÁNÍ. Poznámka. Poznámka Stručný návo k osluze Zčínáme (pouze EU) HL-4570CDW HL-4570CDWT Pře prvním použitím tohoto zřízení si přečtěte tento Stručný návo k osluze poté můžete zčít s nstvením instlí zřízení. V jinýh jzyíh si můžete

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Fotografujeme módu. Móda. Móda v exteriéru v interiéru. černobíle. Jak na to

Fotografujeme módu. Móda. Móda v exteriéru v interiéru. černobíle. Jak na to Fotografujm módu Módní fotografi j všud kolm nás. Nalznm ji v katalozích, spolčnských magazínch i billboardch. Má mnohé skvělé autory, i když fotografování módy nní jdnoduché. Jd o jdno z njnáročnějších

Více

ROZVAHA (BILANCE) sestavená k 31.12.2006. Základní škola Přemyslovo nám. 1 627 00 Brno A K T I V A. Název, sídlo a právní forma jednotky

ROZVAHA (BILANCE) sestavená k 31.12.2006. Základní škola Přemyslovo nám. 1 627 00 Brno A K T I V A. Název, sídlo a právní forma jednotky Příloh účetní závěrky dle přílohy č.1 k vyhlášce č. 505/2002 S. ROZVAHA (BILANCE) (v tisících Kč n 2 des. míst) sestvená k Název, sídlo právní form jednotky Zákldní škol Přemyslovo nám. 1 627 00 Brno příspěvková

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup)

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup) Praha 15. srpna 2013 Postup při měření rchlosti přenosu at v mobilních sítích le stanaru LTE (Metoický postup Zveřejněno v souvislosti s vhlášením výběrového řízení za účelem uělení práv k vužívání ráiových

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

Začínáme. Stručný návod k obsluze MFC-J5910DW VAROVÁNÍ UPOZORNĚNÍ VAROVÁNÍ

Začínáme. Stručný návod k obsluze MFC-J5910DW VAROVÁNÍ UPOZORNĚNÍ VAROVÁNÍ Stručný návo k osluz Zčínám MFC-J5910DW Př nstvním zřízní si přčtt Příručku zpčnosti výroku. Potom si přčtět pokyny k správné koniguri instli uvné v tomto Stručném návou k osluz. VAROVÁNÍ UPOZORNĚNÍ VAROVÁNÍ

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

home studi CENíK t konta Blog Název zařezení rok Název zařezení rok Název zařezení rok Název zařezení rok Název zařezení rok Název zařezení rok

home studi CENíK t konta Blog Název zařezení rok Název zařezení rok Název zařezení rok Název zařezení rok Název zařezení rok Název zařezení rok OP MT zí T áí z Zě j š í zá f / / é f Ř PTN É LŽBY CK GF CNíK B x f. L ' x w, w f 15.,. f Náz zřzí Náz zřzí Náz zřzí Náz zřzí Náz zřzí Náz zřzí Náz zřzí Náz zřzí Náz zřzí OP MT zí T áí z Zě j š í zá f

Více

ÚČETNÍ ZÁVĚRKA V ZJEDNODUŠENÉM ROZSAHU

ÚČETNÍ ZÁVĚRKA V ZJEDNODUŠENÉM ROZSAHU ÚČETNÍ ZÁVĚRKA V ZJEDNODUŠENÉM ROZSAHU ke dni 31. prosine 2013 ( údje jsou vyčísleny v elýh tisííh Kč ) sestvená v souldu se zákonem č. 563/1991 S. o účetnitví, ve znění pozdějšíh předpisů, s vyhláškou

Více

Metody zlepšení PI regulace

Metody zlepšení PI regulace Mto zlšní rglac Ptr lán V èlánk jso osán njùlžitìjší zùsob, jak zlšit kvalit rglac, ožívané ro jnorozmìrno rglaci linárních nbo linarizovatlných sstémù Jnoché mto, snano alikovatlné v raxi, èasto øinášjí

Více

ŠÍ Ů ČÍ č Ť č č č ň Í Í č č ň ň č Ť ň ť č Í č Ť č č Ť Í Í č ť Ť č č Ťč č Ě Ťč Ť ň č Ť ť Ť Ť Ť č Ť Ť č Ť Ť Ť č č Ť č č Ú č Ť Ď Ť ť č ň Ť Ť Í č č Ť Ď č č č č č ň Ť ň č Ť č Ť č Ý Ť ť ň č č č č č č ť Ť Ý č

Více

Kuželová kola se šikmými a zakřivenými zuby

Kuželová kola se šikmými a zakřivenými zuby Tchnická univrit v ibrci Fkult strojní Ktdr částí chnisů strojů Kužlová kol s šikýi křivnýi uby Zprcovl: doc Ing udvík Prášil, CSc ibrc 00 Úvod do gotri bočních ploch Kužlových kol s šikýi křivnýi uby

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Řešení Navierových-Stokesových rovnic metodou

Řešení Navierových-Stokesových rovnic metodou Řšní Navrovýc-Stoksovýc rovnc mtodou končnýc prvků Lbor Črmák prosnc 2009 Označní: Abstrakt Txt obsauj klasckou a varační formulac 2D-úloy nstlačtlnéo nstaconárnío proudění, pops prostorové dskrtzac mtodou

Více

součet druhé mocniny čísla zvětšeného o jedna a odmocniny z jeho trojnásobku

součet druhé mocniny čísla zvětšeného o jedna a odmocniny z jeho trojnásobku .7. Zápisy pomocí výrazů I Předpoklady: 70 Pedagogická poznámka: Hodina obsahuje poměrně málo příkladů, protože se snažím, aby z ní všichni spočítali opravdové maximum. Postupujeme tedy pomalu a kontrolujeme

Více

Rady mě sta Frýdku- Místku

Rady mě sta Frýdku- Místku ZPRAVODAJ Rady mě sta Frýdku- Místku Břzn 2008 č. 6 Ročník XVIII. Náklad 25 000 Zdarma do všch schránk Téma zpravodaj otvřné dopisy Odpověď na otvřný dopis opozic Vážná kolgyně, vážní kolgové, vlmi nás

Více

S M L O U V A O S M L O U VĚ BUDOUCÍ. Níže uvedeného dne, měsíce a roku byla uzavřena mezi těmito smluvními stranami: obchodní společnost se sídlem:

S M L O U V A O S M L O U VĚ BUDOUCÍ. Níže uvedeného dne, měsíce a roku byla uzavřena mezi těmito smluvními stranami: obchodní společnost se sídlem: Níže uvedeného dne, měsíce roku byl uzvřen mezi těmito smluvními strnmi: obchodní společnost se sídlem: IČ: DIČ: zpsná zstoupen (dále jen jko budoucí strn prodávjící ) v obchodním rejstříku vedeném, oddíl,

Více

červen 2012 Májová Setkání uživatelů Rozhovor: Radíme si navzájem Vema Mistrovství ČR v biketrialu 2012 Newsle er

červen 2012 Májová Setkání uživatelů Rozhovor: Radíme si navzájem Vema Mistrovství ČR v biketrialu 2012 Newsle er Softwr pro váš úspěch črvn 2012 Májová Stkání uživtlů Rozhovor: Rdí si nvzáj V Mistrovství ČR v biktrilu 2012 Nwsl r Májová Stkání uživtlů Již počtrnácté js pro nš zákzníky připrvili sérii Stkání uživtlů.

Více

Hanáci z blízkého i vzdáleného okolí míří do Prostějova!

Hanáci z blízkého i vzdáleného okolí míří do Prostějova! Ročník 14 Číslo 8 ZDARMA 28. srpna 2013 Hanáci z blízkého i vzdálného okolí míří do Prostějova! Foto: Archiv MMPv Proč do Lázní Slatinic? Za zdravou kůží do Slatinic Sirné minrální vody mají obcně dzinfkční,

Více

NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 1223/2009 ze dne 30. listopadu 2009 o kosmetických přípravcích

NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 1223/2009 ze dne 30. listopadu 2009 o kosmetických přípravcích 22.12.2009 Úření věstník Evropské unie L 342/59 NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 1223/2009 ze ne 30. listopu 2009 o kosmetikýh příprvíh (přeprovné znění) (Text s význmem pro EHP) EVROPSKÝ

Více

O jednom mučedníkovi nebo mučednici

O jednom mučedníkovi nebo mučednici 1. nešpory spočné texty O dnom mučedníkov nebo mučednc Jkub Pvlík 1. nt. - VI.F (Žlm 118-I.II) já Ke kž dé mu, př znám před svým kdo cem v neb. ke mně j. př zná před ld m, 2. nt. - VI.F (Žlm 118-III) ž

Více

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE Rd měst Kopřivnice PŘÍLOHA č. 1 k č. j.: 57545/2012/KnD ČÍSLA USNESENÍ: 1883-1895 ZPRACOVATEL: Dniel Knpková Usnesení z 63. schůze Rdy měst Kopřivnice ze dne 27.11.2012

Více

Vyvážené nastavení PI regulátorù

Vyvážené nastavení PI regulátorù Vyvážné nastavní PI rgulátorù doc. Ptr Klán, Ústav informatiky AV ÈR Praha a Univrzita Pardubic, Prof. Raymond Gorz, Cntr for Systms Enginring and Applid Mchanics, Univrsity d Louvain PI nbo PID rgulátory

Více

SPS SPRÁVA NEMOVITOSTÍ

SPS SPRÁVA NEMOVITOSTÍ SMLOUVA O REZERVACI POZEMKU A SMLOUVA O BUDOUCÍ SMLOUVĚ O DÍLO Níže uvedeného dne, měsíce roku uzvřeli: 1. EURO DEVELOPMENT JESENICE, s.r.o., IČ 282 44 451, se sídlem Ječná 550/1, Prh 2, PSČ 120 00, zpsná

Více

Rozvaha v plném rozsahu k 31.12.2012 ( v celých tisících Kč ) Název, sídlo a právní forma

Rozvaha v plném rozsahu k 31.12.2012 ( v celých tisících Kč ) Název, sídlo a právní forma Rozvh podle Přílohy č. vyhlášky č. 504/00 S. Účetní jednotk doručí: x příslušnému fin. orgánu Rozvh v plném rozshu k 3..0 ( v celých tisících Kč ) Název, sídlo právní form účetní jednotky IČO 643695 Ndce

Více

Vývoj energetického hospodářství města Plzně

Vývoj energetického hospodářství města Plzně Magistrát města Plzně Odbor správy infrastruktury Vývoj hospodářství města Plzně Črvn 211 Vývoj nrgtické Vývojj nrgttiické hospodářsttvíí městta Pllzně Obsah 1. Úvod... 2 2. Enrgtika v ČR... 2 3. Enrgtické...

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: KOPPA, v.o.s., se sídlem Mozrtov 679/21, 460 01 Liberec, ustnovená prvomocným Usnesením č.j. KSUL 44 INS 5060/2014-A-13, ze dne 04. dubn 2014, insolvenčním správcem

Více

Usnesení. konaného dne 18. 11. 2008

Usnesení. konaného dne 18. 11. 2008 z 15. zsedání Zstupitelstv měst Usnesení z 15. zsedání Zstupitelstv měst, 319 - Zstupitelstvo měst po projednání 1. b ere n věd o mí zprávu ověřovtelů zápisu pn MUDr. Rudolf Bbince pn RSDr. Krl Kuboše

Více

ů ů ř É ř řřň ů ů ř ř Ú ó ó ó ť ň ó ó ř ř ř š ř ů ů ů ů š ů ů ř ů ů ř ř ř ř ř ů ř ř ó ň ó š ř É ó š řó š ó řó óž ř ř ž ř ž ř ř ř ř Í ř š ů Š ů ř š Š ř ň Š š Š Š ř ž ť ň ň Š š š ň ř Š ň ň ř š Š Š š Í š

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

Ročník 14 Číslo 3 ZDARMA 27. března 2013. Den Země. Foto: Archiv Magistrátu města Prostějova

Ročník 14 Číslo 3 ZDARMA 27. března 2013. Den Země. Foto: Archiv Magistrátu města Prostějova Ročník 14 Číslo 3 ZDARMA 27. břzna 2013 Dn Změ Foto: Archiv Magistrátu města Prostějova PŘIJMEME KADEŘNICI JARNÍ NABÍDKA SALONU NAISY NAISY KOSMETICKÉ A KADEŘNICKÉ STUDIO KOSMETIKA kromě naší stálé nabídky

Více

V. Stacionární proudové pole... 2 V.1. Elektrický proud... 2 V.2. Proudová hustota... 2 V.3. Rovnice kontinuity proudu... 3 V.4.

V. Stacionární proudové pole... 2 V.1. Elektrický proud... 2 V.2. Proudová hustota... 2 V.3. Rovnice kontinuity proudu... 3 V.4. tconární rouové oe ektrcký rou Prouová hustot ovnce kontnuty rouu 4 Ohmův zákon v ferencáním tvru 5 oueův zákon 5 6 Anoge eektrosttckého stconárního rouového oe 6 7 Pomínky n rozhrní 7 8 Oor rezstorů řzených

Více

Ř š ý Ť Ť Ť ř š ř š ů ž ó ů ó ó óř ý ý Š Š ř Ú ř ó ů ž ář Ú ů ž ú ý ý ž ů š ó ý ó á Ž ó š ú ý ž ó ú š ó š ú ý ř ú ň ó ú ý ů ú ů ý Ý š úř ř ó ý ř ó ř á š á Žá ř ř řá á ý Žá ž á ř ř š ž ň á ý á ý ž ž ř á

Více