výška (cm) počet žáků

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "výška (cm) počet žáků"

Transkript

1 Statistika 1) Ve školním roce 1997/119 bylo v Brně 3 základních škol, ve kterých bylo celkem 1 tříd. Tyto školy navštěvovalo 11 5 žáků. Určete a) kolik tříd průměrně měla jedna ZŠ, b) kolik žáků průměrně navštěvovalo jednu ZŠ, c) kolik žáků průměrně bylo v jedné třídě. a) 19, tříd; b) 55 žáků; c) 3 žáků ) Rozložení prospěchu žáků jedné třídy v matematice je dáno v tabulce. Určete a) průměrný prospěch žáků třídy v matematice, b) procento žáků, kteří mají dvojku, c) četnost žáků, kteří mají čtyřku, d) relativní četnost žáků, kteří mají známku horší než trojku. stupeň počet žáků a),; b) 36%; c) 3; d) 16% 3) Divadlo nabízí pro každé představení celkem vstupenek po 3 korunách a vstupenek po 5 korunách. Během deseti představení bylo šestkrát zcela vyprodáno a čtyřikrát se neprodala polovina dražších lístků. Jaká je průměrná tržba na jedno z deseti představení? 9 Kč ) Součet všech dvaceti položek je 6 Kč. Po odebrání dvou položek v celkové hodnotě 96 Kč se změní průměrná hodnota jedné položky. O kolik korun se změní průměrná hodnota? sníží se o Kč 5) Z jedné třídy chodilo do kroužku anglického jazyka 1 žáků, německého 7 a francouzského 3 žáci. Osm žáků nenavštěvovalo žádný kroužek cizího jazyka. Žádný z žáků nenavštěvoval více než jeden kroužek cizího jazyka. Určete a) kolik procent žáků třídy navštěvovalo některý z kroužků cizího jazyka, b) kolik procent žáků třídy navštěvovalo kroužek německého jazyka, c) kolik procent z žáků, kteří navštěvovali některý jazykový kroužek, navštěvovalo kroužek německého jazyka. a) 71%; b) 5%; c) 35%) 6) Ze žáků je ve věku 17 let, 3 ve věku 1 let a ve věku 19 let. Jaký je průměrný věk žáků? 17,77 7) Při měření délky válečku byly získány hodnoty v milimetrech: 6,; 6,; 6,7; 6,; 6,6; 6,7; 6,; 6,9; 6,; 6,7; 6,. Určete a) aritmetický průměr délky válečku, b) modus, c) medián. a) 6,76; b) 6,; c) 6,) ) Daný vzorek chemické sloučeniny byl vážen různými žáky s těmito výsledky: 3,g; 3,g; 3,3g; 3,g; 3,3g; 3,1g a třikrát 3,5g. Určete a) průměrnou hmotnost vzorku, b) modus, c) medián. a) 3,g; b) 3,5g; c) 3,g 9) Průměrný prospěch žáků ročníků je uveden v tabulce. Vypočítejte průměrný prospěch žáků školy.,65 1) V rámci Majáles byla pořádána soutěž ve skoku do výšky. Výsledky soutěže zaznamenal učitel tělesné výchovy do tabulky. Určete a) jakou výšku průměrně skočil v této soutěži jeden žák, b) modus, c) medián. třída 6.A 6.B 7.A 7.B.A.B. počet žáků průměrný prospěch,1, 1,95,1,1,5 1,9 výška (cm) počet žáků a) 115cm; b) 15cm; c) 115cm 11) Na 5 pokusných polích byl zkoušen výnos nové odrůdy pšenice. Průměrný výnos z 1 ha pole byl na prvním pozemku 5,3 q, na druhém 55,1 q, na třetím 9, q na čtvrtém 51, q a na pátém pozemku 5,5 q. Určete průměrný výnos ze všech polí, víte-li, že 1. pozemek měl rozlohu ha,. pozemek 5 ha, 3. pozemek 1 ha,. pozemek 15 ha, 5. pozemek 3 ha. Výsledek zaokrouhlete na q. 53q ) Určete průměrnou známku z MAT pro celý ročník, údaje jsou v tabulce třída A B C D průměrná známka z MAT,1 1,,33,11 počet žáků 3 3,135 13) Na druhý stupeň základní školy v Postrkově chodí místní pěšky, ale všech 56 žáků z okolních obcí dojíždí. V diagramu je uvedeno rozložení počtu žáků podle místa bydliště.

2 Chvalduby 1% Vestec 15% Postrkov 3% Kdoule % Nemanín 5% Kolik žáků dojíždí z Nemanína? 1) Každý z hráčů prováděl tři trestné hody na koš a třikrát střílel po otočce. V tabulce jsou hráči rozděleni podle úspěšnosti v obou střeleckých disciplínách. (Například čtyřem hráčům se podařilo proměnit jeden trestný hod a dva hody po otočce.) Počet účastníků Hody po otočce Trestné hody a) Kolik hráčů dalo stejný počet košů v obou disciplínách? b) Kolik hráčů dalo celkem koše? c) Kolik hráčů udělalo alespoň chyby? d) Kolik hráčů bylo lepších při trestných hodech než ve střelbě po otočce? a) ; b) 6; c) 7; d) 15) Ve fitcentru si vedou měsíční statistiky. Dvě pětiny návštěvníků chodí do fitcentra alespoň dvakrát týdně, osmina z nich dokonce denně. Čtvrtina návštěvníků chodí jedenkrát týdně. Každá dvacátá osoba se po první návštěvě fitcentra víckrát nevrátí. Zbytek návštěvníků chodí několikrát do měsíce, ale nepravidelně. Přiřaďte ke každé otázce (a. c.) odpovídající výsledek (A F): a. Kolik procent návštěvníků chodí do fitcentra alespoň dvakrát týdně? b. Kolik procent návštěvníků chodí do fitcentra denně? c. Kolik procent návštěvníků chodí do fitcentra pravidelně? d. Kolik procent návštěvníků chodí několikrát do měsíce, ale nepravidelně? A) 5%; B) 5%; C) 3%; D) %; E) 65%; F) jiná hodnota D; A; E; C 16) Celkem 96 obyvatel města odpovědělo v referendu na otázku, má-li radnice i nadále podporovat provoz kina a divadla. Jejich odpovědi jsou zaznamenány v následující tabulce. podporovat divadlo nepodporovat divadlo podporovat kino 5 nepodporovat kino 17 5 Rozhodněte o každém z následujících tvrzení zda je pravdivé (ANO), či nikoli (NE): a) Celkem 5 účastníků referenda odmítá jak podporu kina, tak i divadla. b) Podpora provozu kina má dvakrát více příznivců než podpora provozu divadla. c) Necelých 1 % účastníků referenda nechce podporovat provoz kina. d) Asi 7 % účastníků referenda by rádo podpořilo pouze jeden z obou provozů. ANO, ANO, NE, ANO

3 17) Graf A ukazuje, kolik žáků tří základních typů středních škol řešilo v roce 3 úlohy z matematiky. Graf B poskytuje informaci o průměrném počtu bodů (ze možných), které se jim podařilo získat. Průměrný počet bodů všech řešitelů byl 17,. Jaký průměrný počet bodů získali v tomto roce studenti SOŠ? Výsledek zaokrouhlete na desetiny. Graf A Graf B Rozdělení řešitelů podle typu školy Průměrný počet bodů podle typu školy SOU; 133 3,5? 15,3 SOŠ; 663 gymnázia; gymnázia SOŠ SOU 17, 1) V grafu je statistika dopravních přestupků ve sledovaném období. (Například deseti řidičům bylo v tomto období odebráno po 5 bodech za jeden přestupek). Určete a) kolik bodů bylo za přestupky odebráno nejčastěji, b) průměrný počet bodů odebraných za jeden přestupek, c) kolikrát počet odebraných bodů překročil průměrnou hodnotu, d) medián. 19) V grafu jsou uvedeny počty filmových diváků v kinech (sledujte hodnoty v milionech vpravo) a průměrné ceny vstupného do kina (sledujte hodnoty vlevo) v době od r. 19 do r.. Návštěvnost klesala, ale vstupné se průběžně zvyšovalo. Z uvedených dat je možné vypočítat celkovou tržbu kin ze vstupného v libovolném roce a) body; b),5 bodu; c) ve případech; d) body Kč počet přestupků Dopravní přestupky počet odebraných bodů za jeden přestupek vstupné 7 5 počet diváků (v mil.) mil. diváků Celková roční tržba kin ze vstupného se od roku 199 do roku : A) v podstatě nezměnila, B) zvýšila jen velmi mírně, nejvýše o %, C) zhruba zdvojnásobila, D) zvýšila téměř pětkrát, E) zvedla více než o 5 %. C

4 ) Knihovna zveřejnila diagram znázorňující složení čtenářské obce a tabulku ročních poplatků za užívání služeb knihovny. Určete: a) průměrnou výši ročního poplatku, který knihovna vybrala od svých čtenářů b) kdo zaplatil dohromady víc muži nebo ženy a o kolik. počet čtenářů věk čtenáře roční poplatek do 15 let Kč 15 6 let Kč nad 6 let Kč do 15 let 15-6 let nad 6 let věk čtenářů a) 5 Kč, b) ženy zaplatili o 13 6 Kč víc 1) Na diagramech je znázorněn přibližný počet dopravních nehod na území ČR v letech 1997 a přibližný počet zraněných při těchto nehodách Počet nehod (v tisících) Počet zraněných (v tisících) muži ženy a) kolik dopravních nehod se na území ČR v letech 1997 stalo průměrně za jeden kalendářní rok? b) o kolik procent byl počet zraněných osob v roce 1997 větší než v roce? c) jaký byl v roce průměrný počet zraněných při jedné dopravní nehodě? a) 11 5, b) přibližně o %, c),16 ) Sloupcový diagram zachycuje výsledky průzkumu mezi studenty. Studenti v průzkumu uvedli svoji nejoblíbenější barvu. a) jaký celkový počet studentů se zúčastnil tohoto průzkumu? b) kolik procent studentů má nejraději bílou barvu? c) kolikrát více studentů uvedlo, že má raději červenou barvu než bílou? počet studentů červená modrá žlutá bílá jiná barva

5 a) 6, b) přibližně 13%, c) dvakrát 3) Všech žáků psalo oba dva závěrečné testy A i B. V tabulce jsou uvedeny výsledky testů, chybí pouze počet jedniček a dvojek u testu B. známky 1 3 počet žáků průměr modus medián četnost známek Test A 3 9 Test B 9 a) Určete medián a modus známek z testu A b) V obou testech bylo dosaženo stejné průměrné známky. Vypočtěte průměrnou známku z testu A a počet jedniček v testu B. a) medián, modus 3; b),3; 7 jedniček ) Osm šéfů gangu představuje pouhá,5 procenta počtu všech členů gangu, ale připadá na ně celá polovina zisku. Kolikrát větší je průměrný zisk šéfa gangu oproti průměrnému zisku řadového člena gangu? A) 19krát B) krát C) 5krát D) 39krát E) krát Správná odpověď je D. 5) Průměrný plat ve skupině deseti pracovníků byl 6 Kč. Čtyřem pracovníkům zvýšili plat o stejnou částku, proto se průměrný plat desetičlenné skupiny zvedl o Kč. O kolik korun si polepšil každý z platově zvýhodněných pracovníků? A) o Kč B) o Kč C) o Kč D) o 96 Kč E) o jinou částku Správná odpověď je E (zvedl se o 6 Kč). 6) V obchodním centru zákaznice testovaly tři druhy parfémů A, B, C. Pouze jednomu z parfémů mohly dát svůj hlas. Preference zákaznic jsou zaznamenány v tabulce. A B C nerozhodnuté celkem Četnost Relativní četnost % Vypočtěte, kolik zákaznic preferovalo vítězný parfém. 1 7) Graf znázorňuje četnost známek z matematiky. Zjistěte z grafu aritmetický průměr, medián a modus. počty žáků 1 1 6,5; medián = 3; modus = ) Ve škole byl zkoumány dva statistické soubory žaků. Statistickým znakem byla hmotnost. Hodnoty statistického znaku byly rozděleny do intervalů, u každého je dána četnost hodnoty znaku. Vypočítejte průměrnou hmotnost chlapců i dívek.

6 kg chlapci dívky ,1 kg, 61,51 kg 9) Pro deset naměřených hodnot: 5,6; 5,31;,9; 5,5;,16;,96; 5,11; 5,3;,97; 5,3 určete aritmetický průměr a směrodatnou odchylku. 5,6;,37 3) Pro dané hodnoty určete aritmetický průměr, směrodatnou odchylku, variační koeficient, modus a medián: x i n i ,; 1,3;,5; 3; 3 31) Podle údajů v tabulce vypočítejte směrodatnou odchylku. hodnota znaku četnost 1 6,9 3) V následující tabulce jsou údaje o trvanlivosti pneumatik. Určete aritmetický průměr a směrodatnou odchylku. počet km počet pneumatik ; ) Měření výšek 3 osob, data v tabulce. Vypočtěte aritmetický průměr a směrodatnou odchylku. intervaly výšky v cm četnosti n j ,;,3

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Základy statistiky pro obor Kadeřník

Základy statistiky pro obor Kadeřník Variace 1 Základy statistiky pro obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Aritmetický průměr

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK 1. Na základě údajů uvedených v tabulce rozhodněte, zda existuje závislost mezi roky a počtem firem ve Šluknovském výběžku, které zaměstnávaly osoby zdravotně

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

zcela převažující druh průměru, který má uplatnění při řešení téměř všech úloh statistiky široké využití: v ekonomických

zcela převažující druh průměru, který má uplatnění při řešení téměř všech úloh statistiky široké využití: v ekonomických STŘEDNÍ HODNOTY VÝZNAM Rozdělení četností poskytuje užitečnou informaci a přehled o zkoumaném statistickém souboru. Porovnávat několik souborů pomocí tabulek rozděleni četností by však bylo.a. Proto se

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Statistika pro gymnázia

Statistika pro gymnázia Statistika pro gymnázia Pracovní verze učebního textu ZÁKLADNÍ POJMY Statistika zkoumá jevy (společenské, přírodní, technické) ve velkých statistických souborech. Prvky statistických souborů se nazývají

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

EXPLORATORNÍ ANALÝZA DAT. 7. cvičení

EXPLORATORNÍ ANALÝZA DAT. 7. cvičení EXPLORATORNÍ ANALÝZA DAT 7. cvičení Teorie pravděpodobnosti x Statistika Teorie pravděpodobnosti popisuje zákonitosti týkající se náhodných jevů, používá se k modelování náhodností a neurčitostí, které

Více

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M. Přípravný kurz - Matematika Téma: Slovní úlohy Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.Hetmerová 12 19 9:02 Jak pracovat

Více

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída MATEMATIKA 5. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705

Více

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Neotvírej, dokud nedostaneš pokyn od zadávajícího! 6. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní 4, 186 Praha 8 tel.: 24 75 555 fax: 24 75 55 e-mail: scio@scio.cz

Více

MATEMATIKA. Doc. RNDr. Eduard Fuchs, CSc., Přírodovědecká fakulta MU Brno. Ing. Milan Hausner, ZŠ Lupáčova, Praha 3

MATEMATIKA. Doc. RNDr. Eduard Fuchs, CSc., Přírodovědecká fakulta MU Brno. Ing. Milan Hausner, ZŠ Lupáčova, Praha 3 MATEMATIKA Vypracovala skupina pro přípravu standardů z matematiky ve složení: Vedoucí: Koordinátor za VÚP: Členové: Doc. RNDr. Eduard Fuchs, CSc., Přírodovědecká fakulta MU Brno RNDr. Eva Zelendová, VÚP

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

STUDIJNÍ DOVEDNOSTI DIDAKTICKÝ TEST. Zadání neotvírejte, počkejte na pokyn! SD1ACZZ506DT. Hodnocení výsledků vzdělávání žáků 5.

STUDIJNÍ DOVEDNOSTI DIDAKTICKÝ TEST. Zadání neotvírejte, počkejte na pokyn! SD1ACZZ506DT. Hodnocení výsledků vzdělávání žáků 5. SD1ACZZ506DT Hodnocení výsledků vzdělávání žáků 5. ročníků ZŠ 2006 STUDIJNÍ DOVEDNOSTI DIDAKTICKÝ TEST A Testový sešit obsahuje 18 úloh. Na řešení úloh máte 40 minut. Odpovědi pište do záznamového archu.

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1

Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1 Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1 Příklad 1. Z uvedených možností vyerte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Jestliže v sootu neude pěkně, koncert se

Více

Přijímací řízení pro studium od školního roku 2014-2015

Přijímací řízení pro studium od školního roku 2014-2015 Přijímací řízení pro studium od školního roku 2014-2015 1 Základní informace Ke studiu v prvním ročníku osmiletého studia (obor 79-41-K/81) od školního roku 2014 2015 bude přijato nejvýše 56 žáků pátých

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST MAIZD15C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Souhrnné výsledky za školu

Souhrnné výsledky za školu XYZ třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre směrodatná odchylka skóre x geometrie funkce algebra třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre

Více

NETMONITOR CONSUMER 8. VLNA

NETMONITOR CONSUMER 8. VLNA NETMONITOR CONSUMER 8. VLNA Internetoví uživatelé v ČR a jejich zvyky Doplňkový marketingový výzkum k projektu NetMonitor Témata výzkumu: využívání jednotlivých druhů pojištění způsob platby při online

Více

Míra přerozdělování příjmů v ČR

Míra přerozdělování příjmů v ČR Míra přerozdělování příjmů v ČR Luboš Marek, Michal Vrabec Anotace V tomto článku počítají autoři hodnoty Giniho indexu v České republice. Tento index je spočítán nejprve za celou ČR, poté pro skupinu

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na

Více

Přijímací řízení pro studium od školního roku 2015-2016

Přijímací řízení pro studium od školního roku 2015-2016 Přijímací řízení pro studium od školního roku 2015-2016 1 Základní informace Ke studiu v prvním ročníku osmiletého studia (obor 79-41-K/81) od školního roku 2015 2016 bude přijato nejvýše 60 žáků pátých

Více

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení MTEMTIK 5 M5PZD15C0T01 DIDKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60 minut.

Více

Občané o americké radarové základně v ČR

Občané o americké radarové základně v ČR TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: 2 0 129 E-mail: jan.cervenka@soc.cas.cz Občané o americké radarové základně v ČR Technické

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Zhodnocení dopadů inovace na studijní výsledky

Zhodnocení dopadů inovace na studijní výsledky Zhodnocení dopadů inovace na studijní výsledky Zpracoval: doc. Ing. Josef Weigel, CSc. hlavní řešitel projektu Hodnocené studijní programy: - Bakalářský studijní program Geodézie a kartografie v prezenční

Více

Statistika Mládež a drogy 2012

Statistika Mládež a drogy 2012 Statistika Mládež a drogy 2012 Jihomoravský kraj Vypracovaly A Kluby ČR o.p.s. JMK 2012 dotazníkový průzkum mezi žáky a studenty jihomoravských škol Cílem průzkumu bylo zjistit stav zneužívání návykových

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/ Matematická vsuvka I. trojčlenka http://www.matematika.cz/ Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle

Více

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne.

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne. ! Cílem vysílání v rámci projektu ŠIK je také předávání praktických informací z oblasti rizikového chování. Vycházíme z přesvědčení, že člověk, který má dostatek pravdivých informací, má také větší "#$%&&%

Více

MEZIROČNÍ POSUN VE ZNALOSTECH ŽÁKŮ 2005/06 2011/12

MEZIROČNÍ POSUN VE ZNALOSTECH ŽÁKŮ 2005/06 2011/12 MEZIROČNÍ POSUN VE ZNALOSTECH ŽÁKŮ /06 /12 Zhoršují se znalosti českých žáků? Testování Stonožka v 9. ročnících se v letošním roce neslo na vlně očekávání výsledků, které nám mají říct, jak si současní

Více

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách ROZKLAD ROZPTYLU ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže

Více

Pivo, víno a lihoviny v české společnosti v roce 2012

Pivo, víno a lihoviny v české společnosti v roce 2012 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel.: +420 210 310 584 E-mail: jiri.vinopal@soc.cas.cz Pivo, víno a lihoviny v české společnosti v

Více

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY platný od školního roku 2014/2015 MATEMATIKA Zpracoval: CENTRUM PRO ZJIŠŤOVÁNÍ VÝSLEDKŮ VZDĚLÁVÁNÍ Schválil: Ministerstvo školství, mládeže a

Více

KRITÉRIA PŘIJÍMACÍHO ŘÍZENÍ PRO ŠK. R. 2015/16

KRITÉRIA PŘIJÍMACÍHO ŘÍZENÍ PRO ŠK. R. 2015/16 KRITÉRIA PŘIJÍMACÍHO ŘÍZENÍ PRO ŠK. R. 2015/16 A. ČTYŘLETÉ STUDIUM obor 79-41-K/41 V přijímacím řízení bude možno získat nejvýše 150 bodů, z toho: a) za prospěch na základní škole max. 25 bodů b) za přijímací

Více

www.iqrs.cz I www.ethnic-friendly.eu I www.jaktovidimja.cz Statistické výsledky práce za rok 2010 Centrum pro rodiče s dětmi

www.iqrs.cz I www.ethnic-friendly.eu I www.jaktovidimja.cz Statistické výsledky práce za rok 2010 Centrum pro rodiče s dětmi Statistické výsledky práce za rok 2010 V roce 2010 bylo v rámci poskytovaných služeb s více než 1799 klienty a klientkamiuskutečněno 22 500 kontaktů (to představuje cca 140 kontaktů denně). Necelou čtvrtinu

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

MATEMATIKA. 1 Základní informace k zadání zkoušky. 2 Pravidla správného zápisu řešení. 3.2 Pokyny k uzavřeným úlohám 7-15 DIDAKTICKÝ TEST

MATEMATIKA. 1 Základní informace k zadání zkoušky. 2 Pravidla správného zápisu řešení. 3.2 Pokyny k uzavřeným úlohám 7-15 DIDAKTICKÝ TEST MTEMTIK PŘIJÍMCÍ ZKOUŠKY IKTICKÝ TEST TS-MMCINT Maximální bodové hodnocení: 0 bodů 1 Základní informace k zadání zkoušky idaktický test obsahuje 1 úloh. Časový limit pro řešení didaktického testu je 60

Více

Názor na devizové intervence České národní banky

Názor na devizové intervence České národní banky TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: 286 840 129 E-mail: martin.durdovic@soc.cas.cz Názor na devizové intervence České národní

Více

Statistika Mládež a drogy 2013

Statistika Mládež a drogy 2013 Statistika Mládež a drogy 2013 JMK 2013 Vypracovaly A Kluby ČR o.p.s. Statistika Mládež a drogy 2013 dotazníkový průzkum mezi žáky a studenty jihomoravských škol Cílem průzkumu bylo zjistit stav zneužívání

Více

Obecné studijní předpoklady TEST 1

Obecné studijní předpoklady TEST 1 Obecné studijní předpoklady TEST 1 A.) Text k první sérii otázek ( porozumění textu ) Před 2,5 až 2 miliardami let se začala tvářnost Země výrazně měnit. Mnoho radioaktivních prvků přítomných při vzniku

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Předběţné výsledky z výzkumu PISA 2009

Předběţné výsledky z výzkumu PISA 2009 Předběţné výsledky z výzkumu PISA 2009 Školní zpráva pro: Základní škola, Kuncova 1580, Praha 5 - Stodůlky Kód vaší školy: ZS 5 Praha prosinec 2009 Úvod Tato zpráva obsahuje předběţné výsledky vaší školy

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2 Statistika jako obor Statistika Statistika je vědní obor zabývající se zkoumáním jevů hromadného charakteru. Tím se myslí to, že zkoumaný jev musí příslušet určité části velkého množství objektů (lidí,

Více

STONOŽKA 2014/15 6. ROČNÍKY modul KEA

STONOŽKA 2014/15 6. ROČNÍKY modul KEA Škola: Název: Obec: ADHN ADHN Církevní základní škola, Česká Církevní 4787 základní škola, Česká 4787 Zlín Zlín STONOŽKA 14/15 6. ROČNÍKY modul KEA ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce jsou

Více

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Využití Oborové brány TECH

Využití Oborové brány TECH Využití Oborové brány TECH ve sledovaném období 1.9.2008 31.12.2008 Vypracováno v Oddělení speciálních služeb STK Průzkum vedla Andrea Kučerová Obsah Obsah... 2 Kvantitativní ukazatele návštěvnosti Oborové

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

OBČANÉ STÁLE VÍCE PREFERUJÍ SOCIÁLNÍ POLITIKU

OBČANÉ STÁLE VÍCE PREFERUJÍ SOCIÁLNÍ POLITIKU INFORMACE Z VÝZKUMU STEM TRENDY 11/214 vydáno dne. 11. 214 OBČANÉ STÁLE VÍCE PREFERUJÍ SOCIÁLNÍ POLITIKU ZAMĚŘENOU NA ROZŠIŘOVÁNÍ SOCIÁLNÍCH SLUŽEB, NIKOLI NA ZVYŠOVÁNÍ FINANČNÍCH DÁVEK Více než polovina

Více

Vzorové rešení. Statistika Mládež a drogy 2013. Brněnské školy. Vypracovaly A Kluby ČR o.p.s.

Vzorové rešení. Statistika Mládež a drogy 2013. Brněnské školy. Vypracovaly A Kluby ČR o.p.s. Statistika Mládež a drogy 2013 Brněnské školy Vypracovaly A Kluby ČR o.p.s. Statistika Mládež a drogy 2013 dotazníkový průzkum mezi žáky a studenty brněnských škol Cílem průzkumu bylo zjistit stav zneužívání

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Naučte se víc... Microsoft Office Excel 2007 PŘÍKLADY

Naučte se víc... Microsoft Office Excel 2007 PŘÍKLADY Naučte se víc... Microsoft Office Excel 2007 PŘÍKLADY Autor: Lukáš Polák Příklady MS Excel 2007 Tato publikace vznikla za přispění společnosti Microsoft ČR v rámci iniciativy Microsoft Partneři ve vzdělávání.

Více

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartogramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 17. 10. 2011 Definice Kartogram je

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

1BMATEMATIKA. 0B5. třída

1BMATEMATIKA. 0B5. třída 1BMATEMATIKA 0B5. třída 1. Kdybych dostal 5 Kč od své sestry, která má 10 Kč, měli bychom oba stejně. Kolik korun mám? (A) žádné (B) 5 Kč (C) 10 Kč (D) 15 Kč 2. Otci je 40 let. Věk Adélky je roven čtvrtině

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více