MATEMATIKA. Třída: Páťáci 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "MATEMATIKA. Třída: Páťáci 2013"

Transkript

1 Výsledky testování třídy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 MATEMATIKA Třída: Páťáci 2013 Termín zkoušky: Termín provedení testu(ů): Datum vyhodnocení:

2 Obsah 1. Celkové výsledky 2. Detailní výsledky 3. Výsledky žáků 4. Úspěšnost otázek 4.1. Obtížnost Obtížnost Přehled úloh Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Stránka 2

3 Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Úloha Stránka 3

4 1. Celkové výsledky SOUHRNNÝ VÝSLEDEK TŘÍDY Cílem testování v projektu NIQES rozhodně není srovnávat žáky, třídy nebo školy základním úkolem je poskytnout informaci o tom, nakolik každý jednotlivý žák plní požadavkyminimálního standardu osvojených znalostí a dovedností. Přesto může být užitečný a zajímavý i pohled na zprůměrované výsledky žáků třídy nebo školy. Nejprve ale krátká rekapitulace toho, jak byly testy sestaveny. Každý test začínal skupinou úloh základní úrovně (v testech různých předmětů byla tato úvodní skupina úloh různě velká; Obtížnost 1). Podle toho, jak v nich žák uspěl, se mu zbytek testu naplnil buď opět úlohami základní úrovně (pokud neměl alespoň 67 % úloh úvodní části správně), nebo úlohami vyšší úrovně (protože by nemělo smysl, aby ten, kdo má první část úloh bez chyby, celou dobu řešil pro něj nepřiměřeně lehké úlohy; Obtížnost 2). Za každou správně vyřešenou otázku žák body získal (informaci o bodové hodnotě jednotlivých otázek lze vyhledat v přehledu všech použitých úloh, který je součástí výsledků třídy), za chybně vyřešenou nebo vynechanou úlohu body nezískal ani neztratil. Podíl počtu bodů získaných v celém testu a počtu otázek v celém testu udává průměrnou úspěšnost v testu. Pokud žák řešil úlohy základní úrovně a poté úlohy vyšší úrovně, spočetly se úspěšnosti za každou úroveň zvlášť. Úlohy v testu byly rozděleny do několika tématických částí podle toho, čeho se týkaly to umožňuje zjednodušené a přibližné posouzení, co šlo žákům lépe a co hůře (obdobně jako u celého testu byla spočtena úspěšnost v jednotlivých částech). Úloh v jednotlivých částech bylo ale vždy jen pár proto jsou úspěšnosti za části zatíženy poměrně velkou nepřesností. První výsečový graf umožňuje porovnat průměrnou úspěšnost žáků třídy s výsledky všech testovaných žáků (zahrnuti jsou pouze žáci bez vyznačených speciálních vzdělávacích potřeb - dále "SVP"). Graf ukazuje, jak velké byly podíly žáků, kteří dosáhli v úvodní (společné) části testu (obsahovala úlohy základní úrovně) průměrné úspěšnosti v rozmezích 0 20 % (tj. jaká část žáků vyřešila jednu pětinu otázek nebo méně), %, %, % a %. Nad grafem je uvedena hodnota průměrné úspěšnosti žáků třídy, v legendě grafu jsou v závorkách počty žáků tvořících jednotlivé podíly. Nejedná se o porovnání třídy s ostatními třídami graf je konstruovaný z výsledků jednotlivých žáků, žádným způsobem nelze z grafu odvodit průměrné hodnoty úspěšností ostatních tříd, ani počty tříd v jednotlivých skupinách. Druhý graf ukazuje, jaká část ze všech testovaných žáků bez SVP řešila ve druhé části testu úlohy základní úrovně a jaká část žáků postoupila ve druhé části testu k úlohám vyšší úrovně. Nad grafem jsou údaje o týchž podílech platné pro žáky třídy. V legendě grafu jsou v závorkách opět počty všech zahrnutých žáků. Stránka 4

5 Je třeba zdůraznit, že všechna porovnání jsou jen orientační. V některých předmětech neobsahovala úvodní společná část úplný výběr úloh reprezentující minimální standard v jeho celé šíři, společné úvodní části testů byly poměrně krátké a statistická chyba výsledku (směrodatná odchylka) je nezanedbatelná. Testy kromě toho obsahovaly jen malou část toho, oč běžně výuka jednotlivých předmětů usiluje. Rozhodně tedy nelze na základě prezentovaného výsledku vyvozovat, že žáci jedné třídy jsou v celém předmětu lepší nebo horší než žáci jiné třídy, tím méně, že výuka v jedné třídě je lepší nebo horší než výuka ve druhé třídě. Zprůměrované výsledky, v nichž se ztrácí možnost zohlednění individuálních vlivů u jednotlivých žáků, mají především signální funkci významnější odchylky od očekávané hodnoty nebo od průměru za všechny testované žáky by měly být pro školu podnětem pro hledání možných příčin. Průměrná úspěšnost žáků třídy: 40,28% Podíly žáků třídy po rozvětvení: - Obtížnost 1: 94,44% (17) - Obtížnost 2: 5,56% (1) Stránka 5

6 2. Detailní výsledky VÝSLEDKY V TÉMATICKÝCH ČÁSTECH TESTU Grafy a tabulky prezentují průměrné úspěšnosti žáků třídy v celém testu a v jeho jednotlivých tématických částech. Pro možnost orientačního zasazení výsledku třídy do kontextu ostatních testovaných žáků jsou uvedeny i průměrné úspěšnosti za všechny žáky školy nebo za všechny testované žáky celkem (bez SVP). Je ale třeba mít na paměti, že jakákoli agregace dat, ať už na úrovni třídy, nebo (tím spíše) na úrovni školy, snižuje vypovídací hodnotu výsledku, protože neumožňuje adekvátně zohlednit vlivy promítající se individuálně do výsledků jednotlivých žáků. Pokud alespoň jeden žák třídy řešil ve druhé části testu úlohy vyšší obtížnosti, jsou všechna data prezentována zvlášť pro každou úroveň obtížnosti bylo by nesmyslné slučovat úspěšnosti v různě obtížných úlohách. Některé tématické části byly zastoupeny jen v úlohách jedné z obtížností v takovém případě sloupce v grafu chybějí (byť je v grafu jejich popis) a v tabulce jsou v příslušných polích uvedeny pomlčky. Podobně jako u jiných forem zde prezentovaných výsledků platí, že údaje představují jen velmi hrubé porovnání. Vzhledem k rozsahu testů (nebo jejich částí) je přesnost uvedených údajů omezená (chyba vyjádřená směrodatnou odchylkou je poměrně velká) rozhodně nejde z rozdílu několika procentních bodů usuzovat na prokazatelné rozdíly v kvalitě výkonů tříd (nebo školy). Všechny výsledky tohoto celoplošného testování mají mít především signální funkci mají se pokoušet upozorňovat na možné odchylky reálného stavu dovedností žáků od očekávané úrovně. Potvrzení případných odchylek, jejich případné vysvětlení a eventuální náprava jsou vždy v rukou školy. Tabulka detailních výsledků Test Obtížnost Třída Škola Celkem Vyhodnocených testů Obtížnost Obtížnost Celý test Obtížnost 1 38% 38% 50% Obtížnost 2 78% 78% 65% Geometrie Obtížnost 1 38% 38% 46% Obtížnost 2 67% 67% 59% Počítání s čísly Obtížnost 1 43% 43% 51% Obtížnost 2 67% 67% 68% Slovní úlohy Obtížnost 1 24% 24% 53% Obtížnost 2 89% 89% 62% Stránka 6

7 Obtížnost 1 v porovnání s celkem Obtížnost 1 v porovnání se školou Stránka 7

8 Obtížnost 2 v porovnání s celkem Obtížnost 2 v porovnání se školou Stránka 8

9 3. Výsledky žáků Následující tabulka souhrnně prezentuje průměrnou úspěšnost jednotlivých žáků třídy v testu a v jeho tématických částech. Pokud žák řešil úlohy obou úrovní obtížností, jsou průměrné úspěšnosti uvedeny pro každou obtížnost zvlášť. Je třeba mít na paměti, že jednotlivé tématické části obsahovaly rozdílné, zpravidla nepříliš velké počty úloh statistická chyba průměrných výsledků je proto poměrně velká a rozdíl v řádu jednotek procentních bodů nelze rozhodně považovat za průkaz rozdílné kvality dvou výsledků. Stejně tak není možné srovnávat průměrné úspěšnosti v úlohách různé obtížnosti. Primárním úkolem testování bylo porovnat výsledek žáka s požadavky minimálního standardu a pro posouzení jeho úspěšnosti je tedy relevantní výsledek v úlohách základní úrovně (Obtížnost 1). Výsledek v úlohách vyšší obtížnosti slouží již jen k individuálnímu hodnocení žáka bez vazby na externě definovaný standard. Celý test Geometrie Počítání s čísly Slovní úlohy Žák Obtížnost 1 Obtížnost 2 Obtížnost 1 Obtížnost 2 Obtížnost 1 Obtížnost 2 Obtížnost 1 Obtížnost 2 Kateřina Borovičková 16% -- 17% -- 23% -- 0% -- Šárka Dudová 32% -- 33% -- 38% -- 17% -- Petr Fiala 44% -- 50% -- 46% -- 33% -- Filip Herc 92% 78% 100% 67% 86% 67% 100% 89% Michal Jíra 76% -- 67% -- 85% -- 67% -- Vlastimil Kokrda 40% -- 33% -- 38% -- 50% -- Jan Kováč 24% -- 17% -- 38% -- 0% -- Tomáš Kulhavý 28% -- 17% -- 38% -- 17% -- Barbora Kůželová 20% -- 17% -- 15% -- 33% -- Samuel Perec 16% -- 33% -- 15% -- 0% -- Petr Počepický 48% -- 50% -- 46% -- 50% -- Jan Rieger 36% -- 67% -- 31% -- 17% -- Marian Rusnák 44% -- 50% -- 54% -- 17% -- Patrik Severa 24% -- 17% -- 38% -- 0% -- Michaela Tomečková 40% -- 33% -- 54% -- 17% -- Aneta Vitková 40% -- 33% -- 54% -- 17% -- Sebastian Jan Vlk 52% -- 50% -- 62% -- 33% -- Barbora Vojtíšková 32% -- 33% -- 38% -- 17% -- Stránka 9

10 4. Úspěšnost otázek Údaj o průměrné úspěšnosti žáků v celém testu nebo v části testu nedokáže poskytnout informaci o tom, co konkrétně šlo žákům lépe a co hůře. Takovou informaci poskytuje vyhodnocení průměrné úspěšnosti jednotlivých otázek. V grafu jsou pod sebou seřazeny otázky podle svého ID (interní označení otázky, nesouvisí s pořadím otázky v testu to mohlo být u různých žáků různé). Pro každou otázku graf uvádí průměrnou úspěšnost žáků zvolené třídy nebo celé školy a pro porovnání je uvedena i průměrná úspěšnost za žáky celé školy nebo za všechny testované žáky (bez SVP). Tytéž informace jsou v pravé části prezentovány jako tabulka v ní je oproti grafu navíc informace o tom, do které tématické části otázka patřila a jakého byla typu. Pokud žáci třídy řešili v daném testu úlohy obou obtížností, jsou zde údaje pro každou obtížnost zvlášť. Pro smysluplnou práci s uvedenými údaji je třeba mít k ruce zadání testů s ID otázek. O údajích v grafu i tabulce platí vše již dříve zmíněné o statistické nepřesnosti dat rozdíly v řádu jednotek procentních bodů rozhodně nejsou dokladem rozdílé úrovně žáků nebo tříd. Stránka 10

11 4.1. Obtížnost 1 ID otázky Část Typ otázky Třída Škola Celkem 902 Počítání s čísly Částečně otevřená odpověď 94% 94% 93% 945 Slovní úlohy Částečně otevřená odpověď 18% 18% 34% 950 Geometrie Jedna správná uzavřená odpověď 72% 72% 83% 1697 Počítání s čísly Jedna správná uzavřená odpověď 76% 76% 75% 1704 Geometrie Částečně otevřená odpověď 53% 53% 49% 1750 Počítání s čísly Částečně otevřená odpověď 17% 17% 36% 1771 Geometrie Jedna správná uzavřená odpověď 17% 17% 38% 1801 Geometrie Jedna správná uzavřená odpověď 53% 53% 59% 1812 Geometrie Jedna správná uzavřená odpověď 28% 28% 24% 1819 Geometrie Více správných uzavřených odpovědí 6% 6% 16% 1861 Počítání s čísly Jedna správná uzavřená odpověď 56% 56% 54% 1881 Slovní úlohy Částečně otevřená odpověď 47% 47% 48% 1888 Slovní úlohy Jedna správná uzavřená odpověď 28% 28% 47% 1899 Počítání s čísly Jedna správná uzavřená odpověď 67% 67% 72% 2205 Slovní úlohy Částečně otevřená odpověď 0% 0% 4% 2210 Slovní úlohy Částečně otevřená odpověď 11% 11% 18% 2219 Počítání s čísly Částečně otevřená odpověď 67% 67% 61% 2222 Počítání s čísly Částečně otevřená odpověď 72% 72% 62% 2241 Počítání s čísly Jedna správná uzavřená odpověď 18% 18% 26% 2257 Počítání s čísly Částečně otevřená odpověď 6% 6% 35% 2263 Počítání s čísly Částečně otevřená odpověď 29% 29% 33% 2265 Počítání s čísly Částečně otevřená odpověď 41% 41% 66% 2266 Počítání s čísly Částečně otevřená odpověď 6% 6% 8% 2277 Počítání s čísly Částečně otevřená odpověď 11% 11% 21% 3041 Slovní úlohy Částečně otevřená odpověď 41% 41% 35% Stránka 11

12 Obtížnost 1 v porovnání s celkem a se školou Stránka 12

13 4.2. Obtížnost 2 ID otázky Část Typ otázky Třída Škola Celkem 967 Slovní úlohy Částečně otevřená odpověď 0% 0% 87% 1696 Počítání s čísly Částečně otevřená odpověď 0% 0% 78% 1729 Počítání s čísly Částečně otevřená odpověď 100% 100% 46% 1736 Slovní úlohy Částečně otevřená odpověď 100% 100% 88% 1749 Počítání s čísly Částečně otevřená odpověď 100% 100% 82% 1751 Geometrie Částečně otevřená odpověď 100% 100% 52% 1765 Počítání s čísly Jedna správná uzavřená odpověď 100% 100% 81% 1783 Slovní úlohy Jedna správná uzavřená odpověď 100% 100% 87% 1786 Slovní úlohy Částečně otevřená odpověď 100% 100% 86% 1805 Geometrie Jedna správná uzavřená odpověď 100% 100% 81% 1827 Slovní úlohy Jedna správná uzavřená odpověď 100% 100% 94% 1854 Slovní úlohy Jedna správná uzavřená odpověď 100% 100% 31% 1858 Počítání s čísly Částečně otevřená odpověď 100% 100% 63% 1874 Počítání s čísly Částečně otevřená odpověď 0% 0% 61% 1885 Slovní úlohy Částečně otevřená odpověď 100% 100% 94% 2183 Slovní úlohy Částečně otevřená odpověď 100% 100% 63% 2246 Slovní úlohy Částečně otevřená odpověď 100% 100% 68% 2249 Geometrie Částečně otevřená odpověď 0% 0% 23% Stránka 13

14 Obtížnost 2 v porovnání s celkem a se školou Stránka 14

15 4.3. Přehled úloh PŘEHLED POUŽITÝCH ÚLOH Pro možnost podrobnějšího rozboru výsledků žáků jsou v tomto dokumentu zařazeny všechny úlohy, které se v testech žáků dané třídy vyskytly. Úlohy jsou označeny jejich interním ID podle něj lze jejich výsledky nalézt například v grafu průměrných úspěšností žáků třídy v jednotlivých úlohách. Úloha 1 [ID1001] Doplň takové celé číslo, aby rovnost platila. 5. (1) - 8 = 12 (1) 4 (a jiné přípustné varianty) [ID902] Úloha 2 [ID1022] David s Lenkou češou na brigádě rybíz. Lenka očeše za hodinu dva keře rybízu, Davidovi trvá očesání jednoho keře dvakrát delší dobu než Lence. Oba dohromady tedy za osm hodin očešou celkem (1) keřů. (1) 24 (a jiné přípustné varianty) [ID945] Stránka 15

16 Úloha 3 [ID1024] Prohlédni si obrázek a vyber správnou odpověď. Na obrázku jsou čtyři červeně vyznačené útvary. Označ útvar, který má největší obsah. [ID950] Úloha 4 [ID1038] Jana zaplatila dohromady za tři stejné sešity celkem 27 Kč. Pavel koupil dva takové sešity a ještě čtyři stejné tužky a zaplatil dohromady 38 Kč. Cena jedné tužky je (1) Kč. (1) 5 (a jiné přípustné varianty) [ID967] Úloha 5 [ID1583] Výsledek zaokrouhlení čísla na tisíce je o (1) větší než původní číslo (1) 445 (a jiné přípustné varianty) [ID1696] Stránka 16

17 Úloha 6 [ID1584] Vyber správnou odpověď. Když každé z čísel 69 a 3826 zaokrouhlíš na stovky a výsledky sečteš, jaký součet dostaneš? [ID1697] Úloha 7 [ID1591] Sečti: 2 m 15 cm mm = (1) cm (1) 280 (a jiné přípustné varianty) [ID1704] Úloha 8 [ID1615] Podíl součtu čísel 9 a 3 a rozdílu čísel 9 a 3 je číslo (1). (1) 2 (a jiné přípustné varianty) [ID1729] Úloha 9 [ID1622] Erika jezdí na prázdniny k babičce nebo k tetě. K babičce je to 135 km, k tetě 9 km. K babičce to tedy Erika má (1) krát dál než k tetě. (1) 15 (a jiné přípustné varianty) [ID1736] Stránka 17

18 Úloha 10 [ID1635] Když sečteš číslo, které je o 1 menší než největší trojciferné číslo, s číslem, které je o 1 větší než největší trojciferné číslo, dostaneš číslo (1). (1) 1998 (a jiné přípustné varianty) [ID1749] Úloha 11 [ID1636] Číslo, které na číselné ose leží přesně v polovině mezi čísly 68 a 96, je číslo (1). (1) 82 (a jiné přípustné varianty) [ID1750] Úloha 12 [ID1637] Na obrázku je ve čtvercové síti vyznačen čtverec, jehož část je vybarvena. Je-li délka strany čtverce 6 cm, pak obsah nevybarvené části čtverce je (1) cm 2. (1) 23 (a jiné přípustné varianty) [ID1751] Stránka 18

19 Úloha 13 [ID1651] Vyber správnou odpověď. Která z následujících rovností platí? [ID1765] (50 2) = (2. 6) + 4 = (6 + 4) = ( ) = 30 Úloha 14 [ID1657] Vyber správnou odpověď. Aneta má papír o obsahu 200 cm 2. Z papíru odstřihne dva čtverce o straně dlouhé 5 cm. Jak velký je obsah papíru, který Anetě zůstane? [ID1771] 195 cm cm cm cm 2 Úloha 15 [ID1668] Vyber správnou odpověď. Eva má ušetřeno 80 Kč, od babičky dostala přidáno ještě 200 Kč. Chce si koupit tričko za 155 Kč, časopis za 45 Kč a dva fixy po 16 Kč. Budou jí peníze stačit? [ID1783] nebudou budou, ale nic jí nezbyde budou, zbyde jí 48 Kč budou, zbyde jí 60 Kč Stránka 19

20 Úloha 16 [ID1671] Ve školní jídelně se stravuje 100 žáků, z toho je 55 chlapců. Dnes mají být k obědu tvarohové knedlíky každý chlapec sní 4 knedlíky a každá dívka sní 2 knedlíky. Aby se na všechny dostalo a žádné knedlíky nezbyly, musí kuchyně uvařit (1) knedlíků. (1) 310 (a jiné přípustné varianty) [ID1786] Úloha 17 [ID1686] Vyber správnou odpověď. Které z útvarů zakreslených na obrázku mají stejný obvod? [ID1801] žádné čtverec a obdélník obdélník a trojúhelník trojúhelník, čtverec i obdélník Stránka 20

21 Úloha 18 [ID1691] Vyber správnou odpověď. Na obrázku jsou zakresleny čtyři rovinné útvary. Který z nich má nejmenší obsah? [ID1805] A B C D Úloha 19 [ID1698] Vyber správnou odpověď. Andrej našel tři provázky o délkách 2 dm, 650 mm a 35 cm. Všechny tři provázky svázal dohromady na jeden dlouhý provázek. Na každý uzlík spotřeboval 5 cm provázku. Jak dlouhý byl svázaný provázek? [ID1812] 120 cm 115 cm 110 cm 105 cm Stránka 21

22 Úloha 20 [ID1706] Vyber správnou odpověď. Označ všechna tvrzení, která platí. (Může, ale nemusí jich být více než jedno.) [ID1819] Čtverec má všech 5 stran stejně dlouhých a navzájem kolmých. Trojúhelník má všechny tři strany na sebe kolmé. Obdélník má protější strany stejně dlouhé a vedlejší strany různě dlouhé. Kružnice tvoří obvod kruhu. Úloha 21 [ID1713] Vyber správnou odpověď. Alena měla 80 korálků. Má v plánu udělat Janě, Radce a Pavlíně náramky, na které použije pro každou 25 korálků. Bude jí původní počet korálků stačit? [ID1827] Ano, ještě jí korálky zbydou. Ano, ale žádné korálky jí nezbydou. Ne, bude jí chybět 5 korálků. Ne, bude jí chybět víc než 5 korálků. Úloha 22 [ID1730] Jirka přišel na hřiště v 9.00 a zůstal na něm jednu a půl hodiny. Pavel přišel na hřiště 25 minut po Jirkovi a zůstal na hřišti jen třičtvrtě hodiny. Jirka tedy z hřiště odešel (1) minut poté, co odešel Pavel. (1) 20 (a jiné přípustné varianty) [ID3041] Stránka 22

23 Úloha 23 [ID1741] Vyber správnou odpověď. Jedno rozříznutí tyče stojí 2 Kč. Kolik Kč zaplatí pan Kolář, pokud si nechá rozříznout 8 tyčí a každou z nich na 5 částí? [ID1854] 32 Kč 40 Kč 64 Kč 80 Kč Úloha 24 [ID1745] Doplň výsledek následujícího výpočtu. 17. [ ( : 10)] = (1) (1) 0 (a jiné přípustné varianty) [ID1858] Úloha 25 [ID1748] Vyber správnou odpověď. Jaké číslo leží na číselné ose hned před největším trojciferným číslem? [ID1861] Stránka 23

24 Úloha 26 [ID1761] Nejmenší číslo, které po zaokrouhlení na stovky dá číslo 1 500, je číslo (1). (1) 1450 (a jiné přípustné varianty) [ID1874] Úloha 27 [ID1769] Do jednoho vagonu se vejde 70 cestujících. Aby vlak rozvezl 740 cestujících, musí mít nejméně (1) vagónů. (1) 11 (a jiné přípustné varianty) [ID1881] Úloha 28 [ID1773] Vojta má jednoho bratra a dvě sestry. Dětí, které žijí ve Vojtově rodině, je tedy celkem (1). (1) 4 (a jiné přípustné varianty) [ID1885] Úloha 29 [ID1776] Vyber správnou odpověď. Pro kterou z nabídnutých úloh použiješ následující výpočet? = [ID1888] V cukrárně stojí lízátko s bonbonem 10 Kč. Koupil jsem 5 bonbonů a tři lízátka. Kolik Kč jsem zaplatil? Kolik mám celkem kuliček, jestliže jsem hru začal s 5 kuličkami a potom jsem desetkrát za sebou vyhrál 3 kuličky? Maminka koupila dětem 10 druhů cukrovinek. Kolik mají děti cukrovinek, jestliže koupila 5 balíčků lízátek a v každém balíčku byla 3 lízátka? V aleji je vysázeno 5 řad jabloní a v každé řadě je 10 jabloní. Na konci každé řady jsou 3 hrušně. Kolik je v aleji celkem stromů? Stránka 24

25 Úloha 30 [ID1787] Vyber správnou odpověď. Kterému z následujících čísel odpovídá rozvinutý zápis čísla v desítkové soustavě? = [ID1899] Úloha 31 [ID2024] Školního výletu se zúčastnilo 25 žáků. Paní učitelka od každého žáka vybrala 150 Kč. Za celý výlet zaplatila paní učitelka Kč, zbytek vybraných peněz rovným dílem rozdělila žákům. Každému žákovi tedy vrátila (1) Kč. (1) 16 (a jiné přípustné varianty) [ID2183] Úloha 32 [ID2055] Sešit a pravítko stojí dohromady 56 Kč. Sešit je o 44 Kč levnější než pravítko. Jeden sešit tedy stojí (1) Kč. (1) 6 (a jiné přípustné varianty) [ID2205] Úloha 33 [ID2060] V bazénu je litrů vody. Za každou minutu z něj vyteče 50 litrů vody. Stejnou rychlostí tedy všechna voda z bazénu vyteče za celkem (1) hodin. (1) 200 (a jiné přípustné varianty) [ID2210] Stránka 25

26 Úloha 34 [ID2069] Abys dostal výsledek 3 458, musíš číslo (1) zmenšit o (1) (a jiné přípustné varianty) [ID2219] Úloha 35 [ID2073] Pět a půl minuty je totéž jako (1) sekund. (1) 330 (a jiné přípustné varianty) [ID2222] Úloha 36 [ID2090] Vyber správnou odpověď. Alena otevřela knížku a všimla si, že součet čísel označujících levou a pravou stránku knížky je 61. Jaký je součin těchto dvou čísel? [ID2241] Úloha 37 [ID2095] Doplň do odpovědi správný číselný výsledek. Jana dojíždí do školy autobusem. Na zastávku to má 8 minut, jízda trvá 37 minut a od autobusu do školy ještě 5 minut. Aby ve škole byla nejpozději v 7 h 45 minut, musí z domu vyjít (1) minut po půl sedmé. (1) 25 (a jiné přípustné varianty) [ID2246] Stránka 26

27 Úloha 38 [ID2098] Doplň do odpovědi správný číselný výsledek. Stěna pokoje má délku 440 cm a výšku 250 cm. Jedna role tapety o šířce 55 cm je 12 m dlouhá. Aby mohl Pavel vytapetovat celou stěnu, musí koupit (1) role tapety. (1) 2 (a jiné přípustné varianty) [ID2249] Úloha 39 [ID2107] Auto spotřebuje na ujetí každých 85 kilometrů 5 litrů benzínu. Pokud bude mít v nádrži 40 litrů benzínu, ujede nejvíce (1) kilometrů. (1) 680 (a jiné přípustné varianty) [ID2257] Úloha 40 [ID2112] Honza přečte 5 stránek knihy za 10 minut. Knížku četl celkem 10 hodin. Kniha tedy měla celkem (1) stránek. (1) 300 (a jiné přípustné varianty) [ID2263] Úloha 41 [ID2114] Doplň takové číslo, aby rovnost platila. 200 : (4. (1) ) = 10 (1) 5 (a jiné přípustné varianty) [ID2265] Stránka 27

28 Úloha 42 [ID2115] Dřevěná tyč má délku 180 centimetrů. Devíti řezy ji rozdělíme na stejné díly. Jeden díl bude tedy měřit (1) cm. (1) 18 (a jiné přípustné varianty) [ID2266] Úloha 43 [ID2125] V plátěném pytlíku je 5 černých a 5 bílých kuliček. Abychom měli jistotu, že budeme mít dvě černé kuličky, musíme z pytlíku vytáhnout alespoň (1) kuliček. (1) 7 (a jiné přípustné varianty) [ID2277] Stránka 28

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola Jindřicha Matiegky Mělník, Pražská Termín

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Fakultní základní škola při Pedagogické fakultě UK, Praha

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola Bedřicha Hrozného Lysá nad Labem, nám. B.

Více

MATEMATIKA. Třída: IX.

MATEMATIKA. Třída: IX. Výsledky testování třídy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 MATEMATIKA Základní škola, Mateřská škola, Školní jídelna

Více

Výsledky testování školy. Výběrové zjišťování výsledků žáků 2014/2015 9. ročník ZŠ. Školní rok 2014/2015

Výsledky testování školy. Výběrové zjišťování výsledků žáků 2014/2015 9. ročník ZŠ. Školní rok 2014/2015 Výsledky testování školy Výběrové zjišťování výsledků žáků 2014/2015 9. ročník ZŠ Školní rok 2014/2015 Gymnázium, Teplice, Čs. dobrovolců 11, příspěvková organizace Termín akce: 11.05.2015 22.05.2015 Termín

Více

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6) Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015

Více

Matematika 5. ročník

Matematika 5. ročník Matematika 5. ročník Pátá třída (Testovací klíč: EFPNGSXL) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Slovní úlohy / Geometrie / Počítání s čísly / 0/10 0/7 0/9 Obecná

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

MATEMATIKA. Doc. RNDr. Eduard Fuchs, CSc., Přírodovědecká fakulta MU Brno. Ing. Milan Hausner, ZŠ Lupáčova, Praha 3

MATEMATIKA. Doc. RNDr. Eduard Fuchs, CSc., Přírodovědecká fakulta MU Brno. Ing. Milan Hausner, ZŠ Lupáčova, Praha 3 MATEMATIKA Vypracovala skupina pro přípravu standardů z matematiky ve složení: Vedoucí: Koordinátor za VÚP: Členové: Doc. RNDr. Eduard Fuchs, CSc., Přírodovědecká fakulta MU Brno RNDr. Eva Zelendová, VÚP

Více

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6.

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. ROČNÍK Zadání úloh Autorka úloh: Mgr. Lucie Filipenská Katedra didaktiky

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 3. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace čte, zapisuje a porovnává přirozená čísla do 1000, užívá a zapisuje vztah rovnosti a

Více

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení MTEMTIK 5 M5PZD15C0T01 DIDKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60 minut.

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Neotvírej, dokud nedostaneš pokyn od zadávajícího! 6. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní 4, 186 Praha 8 tel.: 24 75 555 fax: 24 75 55 e-mail: scio@scio.cz

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída MATEMATIKA 5. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE + MP vazby 1. Obor přirozených čísel - používá čísla v oboru 0-20 k modelování reálných situací.- práce s manipulativy - počítá předměty v oboru 0-20, vytváří soubory

Více

1BMATEMATIKA. 0B5. třída

1BMATEMATIKA. 0B5. třída 1BMATEMATIKA 0B5. třída 1. Kdybych dostal 5 Kč od své sestry, která má 10 Kč, měli bychom oba stejně. Kolik korun mám? (A) žádné (B) 5 Kč (C) 10 Kč (D) 15 Kč 2. Otci je 40 let. Věk Adélky je roven čtvrtině

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 5. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace Využívá při pamětném i písemném počítání komutativnost a asociativnost sčítání a násobení

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo:

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: 1. Toník se dopravuje ze školy domů autobusem číslo 176, který jezdí vždy v celou hodinu a pak dále po každých 15 minutách. Dnes dorazil Toník

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky

Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky Září Obor přirozených čísel Počítá předměty v daném souboru do 5 Vytváří soubory s daným počtem

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY

SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY V široce otevřených úlohách 2 7 zapisujte celý postup řešení. 1 Vypočtěte, kolikrát kratší je časový interval sekund oproti časovému intervalu minuty. úzce otevřená 6krát

Více

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3 y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou

Více

Předběžná zpráva o průběhu druhé celoplošné generální zkoušky ověřování výsledků žáků na úrovni 5. a 9. ročníků základních škol

Předběžná zpráva o průběhu druhé celoplošné generální zkoušky ověřování výsledků žáků na úrovni 5. a 9. ročníků základních škol Předběžná zpráva o průběhu druhé celoplošné generální zkoušky ověřování výsledků žáků na úrovni 5. a 9. ročníků základních škol ZÁKLADNÍ OBECNÉ INFORMACE v rámci 4. klíčové aktivity projektu Národní systém

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0 Seznámení se zlomky Pro lidi s krví Rh je riskantní cestovat do jiných částí světa, kde jsou zásoby krve Rh jen malé. Vybarvi podle hodnot uvedených v tabulce dané části. Ve kterých oblastech mají málo

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Očekávaný výstup Zvládnutí slovních úloh využívajících poměr Speciální vzdělávací žádné

Očekávaný výstup Zvládnutí slovních úloh využívajících poměr Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

Školní vzdělávací program - Základní škola, Nový Hrádek, okres Náchod. Část V. Osnovy

Školní vzdělávací program - Základní škola, Nový Hrádek, okres Náchod. Část V. Osnovy Část V. Osnovy I. stupeň KAPITOLA 5. - MATEMATIKA Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor - vyučovací předmět: Matematika a její aplikace Matematika 1. CHARAKTERISTIKA VYUČOVACÍHO

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Numerace v oboru 0 6 Manipulace s předměty, třídění předmětů do skupin. Počítání

Více

Učební osnovy pracovní

Učební osnovy pracovní ZV Základní vzdělávání 5 týdně, povinný ČaPO: Sčítání a odčítání s přechodem přes desítku Žák: ČaPO: sčítá a odčítá v oboru do 20-ti s přechodem přes desítku - sčítání a odčítání v oboru přirozených čísel

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata,

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, 5.1.2.2 Vzdělávací obsah vyučovacího předmětu Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, Zná číslice 1 až 20, umí je napsat a

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: Vzdělávací oblast: Vzdělávací obor: Tématický okruh: Téma: Ročník: Očekávaný

Více

1. Vypočítejte: 775522 : 11. 2. Základní čtvercová síť má délky strany čtverců 1 cm. Určete obsah vyznačeného obrazce, odpověď zdůvodněte.

1. Vypočítejte: 775522 : 11. 2. Základní čtvercová síť má délky strany čtverců 1 cm. Určete obsah vyznačeného obrazce, odpověď zdůvodněte. Z A D Á N Í Gymnázium Ohradní Praha 4 / 5. třída / 03-04 / 1. kolo 1. Vypočítejte: 775522 : 11 2. Základní čtvercová síť má délky strany čtverců 1 cm. Určete obsah vyznačeného obrazce, odpověď zdůvodněte.

Více

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika její aplikace Vzdělávací obor Matematika

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Základní škola a Mateřská škola Bohuňovice

Základní škola a Mateřská škola Bohuňovice Základní škola a Mateřská škola Bohuňovice 4. třída leden 2014 Zábavné procvičování matematiky Příklady od Viktorky Horákové: 1. Porovnej čísla 8x80 6x90 24:2 24:4 60x2 50x30 35:5 32:4 2x90 60x3 81:9 64:8

Více

Souhrnné výsledky za školu

Souhrnné výsledky za školu XYZ třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre směrodatná odchylka skóre x geometrie funkce algebra třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre

Více

průměrný percentil za části testu odchylka skóre analytická verbální směrodatná

průměrný percentil za části testu odchylka skóre analytická verbální směrodatná ZŠ Souhrnné výsledky za školu OSP celkový průměrný výsledek za části testu za dovednosti v testu třída počet žáků skupinový čistá úspěšnost průměrné skóre směrodatná odchylka skóre verbální analytická

Více

Matematika DÍL I. Charakteristika předmětu. Obsahové, časové a organizační vymezení předmětu

Matematika DÍL I. Charakteristika předmětu. Obsahové, časové a organizační vymezení předmětu Matematika DÍL I. Charakteristika předmětu Obsahové, časové a organizační vymezení předmětu Vyučovací předmět Matematika je zařazen v 1. - 10. ročníku v hodinové dotaci 2 (na I. stupni ) a 3 (na II. stupni)

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

Vyučovací předmět probíhá ve všech ročnících. V 1. ročníku se vyučují 4 hodiny matematiky týdně, v 2. 5. ročníku po 5 hodinách.

Vyučovací předmět probíhá ve všech ročnících. V 1. ročníku se vyučují 4 hodiny matematiky týdně, v 2. 5. ročníku po 5 hodinách. 5.2 Oblast: Předmět: Matematika 5.2.1 Obor: Charakteristika předmětu matematika 1. stupeň Matematika tvoří základ vzdělávacího působení v základní škole. Vede žáky k získávání matematických pojmů, algoritmů,

Více

Finále SOUBOR OTÁZEK. ročník

Finále SOUBOR OTÁZEK. ročník Finále SOUBOR OTÁZEK 6. ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotllivé kontinenty na naší planetě ještě rozdělené,

Více

OBECNÉ STUDIJNÍ PŘEDPOKLADY. pro žáky 5. tříd základní školy. Třída: Jméno a příjmení žáka: Při řešení úloh v testu se řiď těmito pokyny:

OBECNÉ STUDIJNÍ PŘEDPOKLADY. pro žáky 5. tříd základní školy. Třída: Jméno a příjmení žáka: Při řešení úloh v testu se řiď těmito pokyny: OBECNÉ STUDIJNÍ PŘEDPOKLADY pro žáky 5. tříd základní školy Jméno a příjmení žáka: Třída: Při řešení úloh v testu se řiď těmito pokyny: pro vyznačování vybraných odpovědí používej měkkou tužku vygumováním

Více

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka 4. Desetinná čísla 4.1. Řád desetinného čísla V praktickém životě nehovoříme jen o 5 kg jablek, 8 metrů, 7 0 C, ale můžeme se setkat s údaji 5,2 kg, 8,5 metru, 7,3 0 C. Vidíme, že vedle celých čísel existují

Více

V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace.

V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace. MATEMATIKA Charakteristika vyučovacího předmětu V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace. Žáci v ní mají získat početní

Více

časová dotace: 1. až 3. třída - 4 hodiny týdně, 4. a 5. třída 5 hodin týdně

časová dotace: 1. až 3. třída - 4 hodiny týdně, 4. a 5. třída 5 hodin týdně Výuka Matematiky je postavena na rozvíjení vlastních zkušeností žáků a na jejich přirozeném zájmu, přirozené schopnosti vnímat, pozorovat a experimentovat. Žáci se matematiku učí řešením úloh a činnostmi,

Více

SOUBOR OTÁZEK. 6.ročník

SOUBOR OTÁZEK. 6.ročník 2015 SOUBOR OTÁZEK 6.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,

Více

Očekávaný výstup Zvládnutí řešení slovních úloh s celými čísly Speciální vzdělávací žádné

Očekávaný výstup Zvládnutí řešení slovních úloh s celými čísly Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3 Záznamový arch Název školy: Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.2499 Číslo a název šablony klíčové aktivity: III/2 Inovace

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro

Více

Slovní úlohy na lineární rovnici

Slovní úlohy na lineární rovnici Slovní úlohy na lineární rovnici Slovní úlohy je výhodné rozdělit na několik typů a určit nejsnadnější postup jejich řešení. Je vhodné označit v dané úloze jednu veličinu jako neznámou ( většinou tu, na

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

MIŠ MAŠ. 17 OBVODY, obsahy 7.4.2014.notebook. May 18, 2015. Základní škola Nýrsko, Školní ulice, příspěvková organizace.

MIŠ MAŠ. 17 OBVODY, obsahy 7.4.2014.notebook. May 18, 2015. Základní škola Nýrsko, Školní ulice, příspěvková organizace. Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

Matematika úprava platná od 1. 9. 2009

Matematika úprava platná od 1. 9. 2009 Matematika úprava platná od 1. 9. 2009 Charakteristika vyučovacího předmětu Obsah vzdělávací oblasti Matematika a její aplikace se realizuje v předmětu Matematika po celou dobu školní docházky. Na 1. stupni

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl

Více

2.5.12 Přímá úměrnost III

2.5.12 Přímá úměrnost III .5.1 Přímá úměrnost III Předpoklady: 00511 Př. 1: Narýsuj milimetrový papír grafy přímých úměrností. a) y = x b) y = x. U každé přímé úměrnosti si můžeme spočítat několik bodů (ve skutečnosti stačí jeden

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST MAIZD15C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

Zveřejnění výsledků výběrové zjišťování výsledků žáků 2015

Zveřejnění výsledků výběrové zjišťování výsledků žáků 2015 Zveřejnění výsledků výběrové zjišťování výsledků žáků 2015 V souladu s Plánem hlavních úkolů České školní inspekce na školní rok 2014/2015 a v rámci zákonem definovaných úkolů získávat a analyzovat informace

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 0 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014 Elementární matematika - výběr a vypracování úloh ze sbírky OČEKÁVANÉ VÝSTUPY V RVP ZV Z MATEMATIKY VE SVĚTLE TESTOVÝCH ÚLOH Martin Beránek 21. dubna 2014 1 Obsah 1 Předmluva 4 2 Žák zdůvodňuje a využívá

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová Tematický plán učiva Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová 1. Používá čtení a psaní v číselném oboru 0 1 000 000. 2. Rozumí lineárnímu uspořádání

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více