Návody na výpočty směrových a sklonových poměrů dle zadání do cvičení

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Návody na výpočty směrových a sklonových poměrů dle zadání do cvičení"

Transkript

1 Návody na výpočty měrových a klonových poměrů dle zadání do cvičení Kombinované tudium BO01, čát Dopravní tavby Ad 1) Návrh obou měrových oblouků bez přechodnic a) Změřte tředové úhly pomocí tangenty úhlu Středový úhel změříte nejnáze pomocí tangenty úhlu. K měření zvolíte vhodnou délku základny x na prodloužení jedné z tečen, vyneete kolmici a změříte délku mezi patou kolmice a průečíkem kolmice druhou tečnou y, viz Obr. 1. y x Obr. 1 Měření tředového úhlu pomocí tangenty Středový úhle oblouku e vypočte y = arctan. x Uvádí e v gradech přenotí na čtyři deetinná míta b) Zvolte vhodné poloměry oblouků Ve vyhledávací tudii e pracuje protými kružnicovými oblouky, tj. oblouky bez přechodnic, a to přeto, že ve kutečnoti by tyto oblouky byly přechodnicemi opatřeny.

2 Poloměr oblouku volte co největší ohledem na to, aby mezi oběma protiměrnými oblouky zbyla mezipřímá délky alepoň. V n (návrhová rychlot). Vodítkem pro volbu poloměru oblouku Vám může být tabulka nejmenších dovolených poloměrů oblouku ve vztahu k návrhové rychloti: Tab. 1 Nejmenší dovolené poloměry měrových kružnicových oblouků k návrhové rychloti a dotřednému klonu c) Vypočtěte vytyčovací parametry oblouků, zkontrolujte délku mezipřímé mezi oblouky Tečna oblouku: T = R tan Délka oblouku: π O = R arc = R 00 Vzepětí oblouku: 1 Z = R 1 co Délkové míry udávejte v metrech přenotí na dvě deetinná míta. Délku přímých zjitíte tak, že změříte délku zadaných tečen v polygonu a od nich odečtete délku vypočtených tečen oblouků.

3 Ad ) Návrh nivelety tray a) Vykrelete rovnávací rovinu vhodnou výškou, do ní průběh terénu tak, že tanovíte taničení průečíků oy vrtevnicemi a odhadnete výšku počátečního a koncového bodu oy (pokud neleží přímo na vrtevnici). Vrtevnicový interval je m. Dále navrhnete niveletu etávající z nejméně dvou klonů tak, aby co nejlépe kopírovala terén. Dbejte přitom na to, aby niveleta v mítech, kde je terén nejníže a je nutné předpokládat tahování rážkové vody, byla nad úrovní terénu. b) Podélný klon určíte z výškového rozdílu mezi lomy klonu H a z jejich vzdálenoti D: H Podélný klon: = 100 [%] D Sklon udejte v procentech přenotí na dvě deetinná míta. Pro lom nebo lomy klonu vypočtěte zaoblení. c) Poloměr výškového zakružovacího oblouku volte pokud možno tak, aby vyhověl pro předjíždění. Vodítkem pro volbu Vám budou tabulky: Tab. Nejmenší poloměry vypuklých výškových oblouků Tab. Nejmenších poloměry vydutých výškových oblouků Parametry zakružovacích oblouků vypočtete: R [ ± 1 ( ± )] v Tečna výškového oblouku: Tv = 100 Vzepětí v lomu klonu: y T v v = Rv Ve vzorci pro výpočet délky tečny e klony doazují e znaménkem ve mylu rotoucího taničení kladný klon znamená toupání, záporný klon kleání.

4 Obr. Mezipřímá ve výškových obloucích Náledují-li po obě dva výškové oblouky opačného mylu podle Obr., doporučuje e mezi ně přímkový klon délky: C p 100 Vn = R V

5 Ad 4) Pro jeden zvolený oblouk tray vypočtěte parametry při použití přechodnic a) Navrhněte délku přechodnice Vodítkem pro návrh délky přechodnice je náledující tabulka: Tab. 4 Doporučené délky přechodnic Nelze-li ve tíněných poměrech (není Váš případ) těchto hodnot doáhnout, navrhne e přechodnice podle délky vzetupnice, nejméně však 1,5. V n pro klopení kolem vnější hrany vnitřního vodícího proužku a 1. V n pro klopení kolem oy. b) Vypočtěte vytyčovací prvky přechodnice ve tvaru klotoidy Výpočetní vztahy jou uvedeny v náledující tabulce: Tab. 5 Výpočet vytyčovacích parametrů krajní přechodnice ve tvaru klotoidy délka přechodnice poloměr kružnicového oblouku R parametr klotoidy A úhel tečny v koncovém bodě přechodnice τ k [grad] ouřadnice koncového bodu přechodnice Y k ouřadnice koncového bodu přechodnice X k τ k R A = R. 00 =. R π 4 Y K = + k 6 6. R 6. R R 5 X = R 456. R odazení kružnicového oblouku m R = Y k R. (1 co τ k ) = 4 = 4. R 688. R ouřadnice X tředu kružnicového oblouku X = X k R. in τ = = 40. R

6 c) Výpočet vytyčovacích prvků ymetrického motivu Kružnicový oblouk = τ o [ grad] 0 To = R tan [ m] 1 Z o = R 1 [ m] 0 co Oo = R arc 0 [ m] Náleduje výpočet parametrů celého oblouku Pomocná tečna t = ( R + R) tan Tečna oblouku T = X + t Celková délka O = + O0 Nejčatější chyby: - výledek výpočtu úhlu τ k pro výpočet přechodnice je bez převodní kontanty v radiánech, převodní kontanta pro grady byla doplněna do vzorce v tabulce 5; - šikmá délka podélného klonu e nepočítá, vždy e uvádí vodorovná délka klonu; - chybí kontrola délky přímkového podélného klonu mezi výškovými oblouky. Doporučená literatura: KRAJČOVIČ, M., JŮZA, P.: Dopravní tavby. Pozemní komunikace. Návody na cvičení. VUTIUM, Brno ISBN

ZÁKLADNÍ POJMY Z TRASOVÁNÍ

ZÁKLADNÍ POJMY Z TRASOVÁNÍ ZÁKLADNÍ POJMY Z TRASOVÁNÍ Vrstevnice = čára spojující body terénu se nadmořskou výškou stejnou Interval vrstevnic (ekvidistance) = výškový rozdíl mezi vrstevnicemi Spádnice = čára udávající průběh spádu

Více

NÁVRH TRASY POZEMNÍ KOMUNIKACE. Michal RADIMSKÝ

NÁVRH TRASY POZEMNÍ KOMUNIKACE. Michal RADIMSKÝ NÁVRH TRASY POZEMNÍ KOMUNIKACE Michal RADIMSKÝ TRASA PK trasou pozemní komunikace (PK) rozumíme prostorovou čáru, určující směrový i výškový průběh dané komunikace trasa PK je spojnicí středů povrchu silniční

Více

ZADÁNÍ ročníkového projektu pro III.a IV.ročník studijního oboru: Konstrukce a dopravní stavby

ZADÁNÍ ročníkového projektu pro III.a IV.ročník studijního oboru: Konstrukce a dopravní stavby ZADÁNÍ ročníkového projektu pro III.a IV.ročník studijního oboru: Konstrukce a dopravní stavby I. V daném mapovém podkladu v měřítku 1:10 000 vypracujte návrh spojení mezi body A a B na úrovni vyhledávací

Více

L J Kompendium informací o LCS Úvod Součásti LCS Lesní cesty Dělení lesních cest... 13

L J Kompendium informací o LCS Úvod Součásti LCS Lesní cesty Dělení lesních cest... 13 OBSAH L J Kompendium informací o LCS...12 1.1 Úvod... 1.2 Součásti LCS... 12 1.3 Lesní cesty... 1.4 Dělení lesních cest... 13 1.4.1 Dělení podle probíhající části dopravního procesu...13 1.4.2 Dělení dle

Více

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ / /0292

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ / /0292 Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název kurzu: Městské komunikace PŘEDNÁŠKA ČÍSLO 4 Návrhové prvky místních

Více

VÝŠKOVÉ NÁVRHOVÉ PRVKY

VÝŠKOVÉ NÁVRHOVÉ PRVKY VÝŠKOVÉ NÁVRHOVÉ PRVKY 1 VÝŠKOVÉ NÁVRHOVÉ PRVKY Výškový průběh trasy silniční komunikace, který se znázorňuje v podélném profilu, je určen niveletou. Niveleta se skládá z přímých částí, které mají různý

Více

VÝŠKOVÉ ŘEŠENÍ. kategorie S 9,5 a S 11,5... m m max. dovolená minimální hodnota... m m min doporučená minimální hodnota...

VÝŠKOVÉ ŘEŠENÍ. kategorie S 9,5 a S 11,5... m m max. dovolená minimální hodnota... m m min doporučená minimální hodnota... podélný sklon s : s max VÝŠKOVÉ ŘEŠENÍ s s 0,5% (smax viz zadání) značení podélného sklonu ve směru staničení: + s [%]... stoupání ve směru staničení s [%]... klesání ve směru staničení výsledný sklon

Více

PROJEKTOVÁNÍ KOLEJOVÉ DOPRAVY

PROJEKTOVÁNÍ KOLEJOVÉ DOPRAVY ČVUT v Praze Fakulta dopravní Ústav dopravních systému (K612) PROJEKTOVÁNÍ KOLEJOVÉ DOPRAVY cvičení z předmětu 12PKD úvodní informace Projektování kolejové dopravy (12PKD) cvičení Ing. Vojtěch Novotný

Více

SYLABUS 10. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 10. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 10 PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Přechodnice, přechodnicové a výškové oblouky) 3 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka, CSc prosinec 2015 1

Více

VYTYČENÍ OSY KOMUNIKACE. PRAXE 4. ročník Ing. D. Mlčková

VYTYČENÍ OSY KOMUNIKACE. PRAXE 4. ročník Ing. D. Mlčková VYTYČENÍ OSY KOMUNIKACE PRAXE 4. ročník Ing. D. Mlčková Zadání: Vypracujte projekt pro výstavbu komunikace S 9,5/60 v prostoru Louky v katastrálním území Nové Městečko Přílohy: 1) Technická zpráva 2)

Více

kv,o... koeficient růstu osobní dopravy kv,n... koeficient růstu nákladní dopravy IV, kv,o, kv,n... uvažovat pro rok ukončení provozu (2045)

kv,o... koeficient růstu osobní dopravy kv,n... koeficient růstu nákladní dopravy IV, kv,o, kv,n... uvažovat pro rok ukončení provozu (2045) STANOVENÍ KATEGORIE SILNICE kv,o... koeficient růstu osobní dopravy kv,n... koeficient růstu nákladní dopravy IV, kv,o, kv,n... uvažovat pro rok ukončení provozu (2045) I 50 V X Y Y X X Y Y X I O IO k

Více

NÁVRH VÝŠKOVÉHO ŘEŠENÍ 2 VARIANTY:

NÁVRH VÝŠKOVÉHO ŘEŠENÍ 2 VARIANTY: NÁVRH VÝŠKOVÉHO ŘEŠENÍ 2 VARIANTY: 1. velkorysá (červená barva) - co nejnižší provozní náklady není nutné respektovat terén, možno použít větších zemních prací - málo (cca do 4) výškových oblouků - velké

Více

MĚSTSKÁ KOLEJOVÁ DOPRAVA

MĚSTSKÁ KOLEJOVÁ DOPRAVA MĚSTSKÁ KOLEJOVÁ DOPRAVA cvičení z předmětu 12MKDP ZS 2015/2016 ČVUT v Praze Fakulta dopravní Ústav dopravních systému (K612) Ing. Vojtěch Novotný budova Horská, kancelář A433 VojtechNovotny@gmail.com

Více

ŽELEZNIČNÍ TRATĚ A STANICE

ŽELEZNIČNÍ TRATĚ A STANICE ČVUT v Praze Fakulta dopravní Ústav dopravních systému (K612) ŽELEZNIČNÍ TRATĚ A STANICE cvičení z předmětu 12ZTS letní semestr 2015/2016 úvodní informace Železniční tratě a stanice (12ZTS) cvičení Ing.

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0230 šablona III / 2 č. materiálu VY_32_INOVACE_399 Jméno autora : Ing. Stanislav Skalický Třída

Více

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

PROGRAM RP31. Niveleta zadaná tečnami. Příručka uživatele. Revize 05. 05. 2014. Pragoprojekt a.s. 1986-2014

PROGRAM RP31. Niveleta zadaná tečnami. Příručka uživatele. Revize 05. 05. 2014. Pragoprojekt a.s. 1986-2014 ROADPAC 14 PROGRAM Příručka uživatele Revize 05. 05. 2014 Pragoprojekt a.s. 1986-2014 PRAGOPROJEKT a.s., 147 54 Praha 4, K Ryšánce 16 1. Úvod Program NIVELETA ZADANÁ TEČNAMI je součástí programového systému

Více

12/11/2011. Návrhová rychlost V n má být pokud možno jednotná pro co nejdelší úsek komunikace.

12/11/2011. Návrhová rychlost V n má být pokud možno jednotná pro co nejdelší úsek komunikace. 1/11/011 NÁVRHOVÉ PRVKY SILNIČNÍCH KOMUNIKACÍ ÚVOD Návrhové prvky mají zajišťovat adekvátní provozní podmínky, zejména však: -bezpečnost, - plynulost a - kapacitu trasa komunikace musí být dále: pohodlná

Více

PŘECHODNICE. Matematicky lze klotoidu odvodit z hlediska bezpečnosti jízdy vozidla pro křivku, které vozidlo vytváří po přechodnici a její tvar je:

PŘECHODNICE. Matematicky lze klotoidu odvodit z hlediska bezpečnosti jízdy vozidla pro křivku, které vozidlo vytváří po přechodnici a její tvar je: PŘECHODNICE V silničním stavitelství používáme jako přechodnicové křivky klotoidu. Klotoida (radioida) tvarově představuje spirálu o nekonečné délce, blížící se k ohnisku, kde poloměr oblouku je nulový

Více

LINEÁRNÍ PERSPEKTIVA. Přednáška DG2*A 6. týden

LINEÁRNÍ PERSPEKTIVA. Přednáška DG2*A 6. týden LINEÁRNÍ PERSPEKTIVA Přednáška DG*A 6. týden DRY VOLNÉ PERSPEKTIVY Muíme vždy volit ouřadnicový ytém. Souřadné oy pravidla umíťujeme tak, aby byly rovnoběžné ranami obraovanéo objektu. JEDNOÚBĚŽNÍKOVÁ

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu VÝUKA V TERÉNU Z GEODÉZIE 1, 2 - VY1 kód úlohy název úlohy K PŘÍMÉ

Více

BM03 MĚSTSKÉ KOMUNIKACE

BM03 MĚSTSKÉ KOMUNIKACE BM03 MĚSTSKÉ KOMUNIKACE 2. týden Návrh směrového řešení, parkoviště Miroslav Patočka kancelář C330 email: patocka.m@fce.vutbr.cz Martin Novák kancelář C331 email: novak.m@fce.vutbr.cz NÁPLŇ CVIČENÍ Odevzdání

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice POZEMNÍ STAVITELSTVÍ II Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

TECHNICKÁ ZPRÁVA C.1.1

TECHNICKÁ ZPRÁVA C.1.1 Generální projektant TOP CON SERVIS s.r.o. Ke Stírce 1824/56 182 00 Praha 8 VYPRACOVAL: ZODP. PROJEKTANT: KONTROLOVAL: Ing. Martin Dlabáč Ing. Michal Hornýš Ing. Michal Hornýš KRAJ: 0BEC: Pardubický Pardubice

Více

SYLABUS 8. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE

SYLABUS 8. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE SYLABUS 8 PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE (Vytyčování kružnicových oblouků) 3 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc listopad 2015 1 11 VYTYČOVÁNÍ OBLOUKŮ

Více

PODÉLNÝ PROFIL KOMPLETACE

PODÉLNÝ PROFIL KOMPLETACE PODÉLNÝ PROFIL KOMPLETACE Průběh dna příkopů zjistit pomocí nakreslených příčných řezů zakreslování (viz obr. 0630) podle směru staničení: pravostranný... tečkovaná čára levostranný... čárkovaná čára oboustranný...

Více

NÁVRH ODVODNĚNÍ KŘIŽOVATKY POMOCÍ PROJEKTOVÝCH VRSTEVNIC

NÁVRH ODVODNĚNÍ KŘIŽOVATKY POMOCÍ PROJEKTOVÝCH VRSTEVNIC NÁVRH ODVODNĚNÍ KŘIŽOVATKY POMOCÍ PROJEKTOVÝCH VRSTEVNIC 1. Odvodnění křižovatky U místních komunikací lemovaných zvýšenými obrubníky se k odvedení srážkových vod používají obvykle typové uliční vpusti

Více

FAST VŠB - TECHNICKÁ UNIVERZITA OSTRAVA. Fakulta stavební. Pozemní komunikace návody do cvičení. Tomáš Seidler

FAST VŠB - TECHNICKÁ UNIVERZITA OSTRAVA. Fakulta stavební. Pozemní komunikace návody do cvičení. Tomáš Seidler FAST VŠB - TECHNICKÁ UNIVERZITA OSTRAVA Fakulta stavební Pozemní komunikace návody do cvičení Tomáš Seidler 2013 OBSAH 1 ÚVOD...3 2 Vyhledání trasy v mapovém podkladu...4 2.1 Zhodnocení terénu...4 2.1.1

Více

ÚROVŇOVÁ KŘIŽOVATKA (POKRAČOVÁNÍ)

ÚROVŇOVÁ KŘIŽOVATKA (POKRAČOVÁNÍ) ÚROVŇOVÁ KŘIŽOVATKA (POKRAČOVÁNÍ) KONSTRUKCE STYKOVÉ KŘIŽOVATKY (POKRAČOVÁNÍ) krok V. konstrukce nároží použití kroku V. v závislosti na typu křižovatky (postup uveden pro směr CB neplatí pouze pro SÚK

Více

Mezipřímé (nejen) v kolejových spojeních a rozvětveních

Mezipřímé (nejen) v kolejových spojeních a rozvětveních Mezipřímé (nejen) v kolejových spojeních a rozvětveních 1. Přechodová kolejnice Délka: - v hlavní koleji dl. 12,5 m - v ostatních kolejích 10,0 m - ve staničním zhlaví nejméně 4,0 m Vzdálenost přechodového

Více

APLIKACE ČSN PROJEKTOVÁNÍ SILNIC A DÁLNIC PŘI NAVRHOVÁNÍ POZEMNÍCH KOMUNIKACÍ

APLIKACE ČSN PROJEKTOVÁNÍ SILNIC A DÁLNIC PŘI NAVRHOVÁNÍ POZEMNÍCH KOMUNIKACÍ APLIKACE ČSN 73 6101 PROJEKTOVÁNÍ SILNIC A DÁLNIC PŘI NAVRHOVÁNÍ POZEMNÍCH KOMUNIKACÍ NÁVRH TRASY SILNIČNÍ KOMUNIKACE Silniční komunikace je v terénu určena tzv. trasou, což je prostorová křivka určená

Více

Infrastruktura kolejové dopravy

Infrastruktura kolejové dopravy 07 Infrastruktura kolejové dopravy u k á š T ý f a ČUT v Praze Fakulta dopravní Anotace: Téma č. Geometrické parametry železniční koleje geometrické a konstrukční uspořádání železniční koleje převýšení

Více

11.12.2011. Pravý odbočovací pruh PŘÍKLAD. Místní sběrná komunikace dvoupruhová s oboustranným chodníkem. L d s 10

11.12.2011. Pravý odbočovací pruh PŘÍKLAD. Místní sběrná komunikace dvoupruhová s oboustranným chodníkem. L d s 10 11.1.011 SMK Příklad PravýOdbočovací.ppt SILNIČNÍ A MĚSTSKÉ KOMUNIKACE programu č.3 B Návrhstykovékřižovatky s pravým odbočovacím pruhem Návrh křižovatky: Nakreslete ve vhodném měřítku situační výkres

Více

Přednáška č. 2 NÁVRHOVÉ KATEGORIE POZEMNÍCH KOMUNIKACÍ. 1. Návrhová rychlost. 2. Směrodatná rychlost. K = γ [grad/km] l

Přednáška č. 2 NÁVRHOVÉ KATEGORIE POZEMNÍCH KOMUNIKACÍ. 1. Návrhová rychlost. 2. Směrodatná rychlost. K = γ [grad/km] l Přednáška č. NÁVRHOVÉ KATEGORIE POZEMNÍCH KOMUNIKACÍ 1. Návrhová rychlost Návrhová rychlost v n slouží k odvození návrhových prvků pro projektování pozemní komunikace, určuje se podle - hospodářského a

Více

5. cvičení z Matematické analýzy 2

5. cvičení z Matematické analýzy 2 5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v

Více

Prvky betonových konstrukcí BL01 9 přednáška

Prvky betonových konstrukcí BL01 9 přednáška Prvky betonových kontrukcí BL01 9 přednáška Prvky namáhané momentem a normálovou ilou základní předpoklady interakční diagram poouzení, návrh namáhání mimo oy ouměrnoti kontrukční záady Způoby porušení

Více

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů.

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů. Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl loužit jako vzor pro tvorbu vašich vlatních protokolů. Na příkladech je zde ukázán právný zápi výledků i formát tabulek a grafů.

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. ÚHLOVÉ JEDNOTKY PŘEVODY MEZI ÚHLOVÝMI MÍRAMI OBLOUKOVÁ MÍRA MÍRA ŠEDESÁTINNÁ úhlové jednotky ÚHLOVÉ MÍRY - STUPNĚ stupeň

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 10: Interference a ohyb větla Datum měření: 6. 5. 2016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klaifikace: 1 Zadání 1. Bonu:

Více

Kinematika rektifikace oblouku (Sobotkova a Kochaňského), prostá cykloida, prostá epicykloida, úpatnice paraboly.

Kinematika rektifikace oblouku (Sobotkova a Kochaňského), prostá cykloida, prostá epicykloida, úpatnice paraboly. Kinematika rektifikace oblouku (Sobotkova a Kochaňského), prostá cykloida, prostá epicykloida, úpatnice paraboly. Výpočty trajektorií bodů při složených pohybech. Příklad 1: Je dána kružnice k s poloměrem

Více

PROGRAM RP15. Křížení dvou tras, jednoduché spojovací oblouky. Příručka uživatele. Revize Pragoprojekt a.s

PROGRAM RP15. Křížení dvou tras, jednoduché spojovací oblouky. Příručka uživatele. Revize Pragoprojekt a.s ROADPAC 14 PROGRAM Příručka uživatele Revize 05.05.2014 Pragoprojekt a.s. 1986-2014 PRAGOPROJEKT a.s., 147 54 Praha 4, K Ryšánce 16 1. Úvod Program KŘÍŽENÍ DVOU TRAS, JEDNODUCHÉ SPOJOVACÍ OBLOUKY je součásti

Více

1... Předmět normy Citované dokumenty Termíny a značky Termíny Značky... 10

1... Předmět normy Citované dokumenty Termíny a značky Termíny Značky... 10 ČESKÁ TECHNICKÁ NORMA ICS 93.080.10 2018 Projektování silnic a dálnic Září ČSN 73 6101 Design of highways and motorways Nahrazení předchozích norem Touto normou se nahrazuje ČSN 73 6101 z října 2004. Obsah

Více

1.1.14 Rovnice rovnoměrně zrychleného pohybu

1.1.14 Rovnice rovnoměrně zrychleného pohybu ..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů

Více

Propočty přechodu Venuše 8. června 2004

Propočty přechodu Venuše 8. června 2004 Propočty přechodu Venuše 8. června 2004 V tomto dokumentu předkládáme podmínky přechodu Venuše pře luneční kotouč 8. června roku 2004. Naše výpočty jme založili na planetárních teoriích VSOP87 vytvořených

Více

Kružnice, úhly příslušné k oblouku kružnice

Kružnice, úhly příslušné k oblouku kružnice KRUŽNICE, KRUH Kružnice, úhly příslušné k oblouku kružnice Je dán bod S a kladné číslo r. Kružnice k(s;r) je množina všech bodů (roviny), které mají od bodu S vzdálenost r. Můžeme také říci. Kružnicí k

Více

SOUŘADNICOVÉ ŘEŠENÍ OBLOUKŮ

SOUŘADNICOVÉ ŘEŠENÍ OBLOUKŮ SOUŘADNICOVÉ ŘEŠENÍ OBLOUKŮ POMOCNÝ TEXT PRO VÝUKU PŘEDMĚTU 154YIGD Doc. Ing. Pavel Hánek, CSc. ČVUT v Praze FSv, K154 Tento text je převzat ze skript HÁNEK, P. - HÁNEK, P. (jr.) - MARŠÍKOVÁ, M.: Geodézie

Více

KLÍČOVÁ SLOVA Komunikace,směrové řešení,výškové řešení,výkop,násyp,příkop,propustek

KLÍČOVÁ SLOVA Komunikace,směrové řešení,výškové řešení,výkop,násyp,příkop,propustek SOUHRN Předmětem řešení této práce je novostavba silniční komunikace třetí třídy mezi obcemi Džbánov a Bučina u Vysokého Mýta v Pardubickém kraji. Novostavba bude realizována z důvodu lepšího spojení mezi

Více

Prostorová poloha koleje

Prostorová poloha koleje Prostorová poloha koleje Zajištění. Otto Plášek, doc. Ing. Ph.D. Ústav železničních konstrukcí a staveb Tato prezentace byla vytvořen pro studijní účely studentů 3. ročníku bakalářského studia oboru Konstrukce

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 93.080.10 2004 Projektování silnic a dálnic ČSN 73 6101 Říjen Design of highways and motorways Projektion des routes et des chosses Projektirung von strassen und autobahnen Nahrazení

Více

Průmyslová střední škola Letohrad Komenského 472, Letohrad

Průmyslová střední škola Letohrad Komenského 472, Letohrad Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)

Více

přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu

přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu 7..0 přednáška TLAK - TAH Prvky namáhané kombinací normálové íly a ohybového momentu Namáhání kombinací tlakové (tahové) íly a momentu tlak Namáhání kombinací tlakové (tahové) íly a momentu Namáhání kombinací

Více

Konstrukční uspořádání koleje

Konstrukční uspořádání koleje Kontrukční upořádání koleje Otto Plášek, doc. Ing. Ph.. Útv železničních kontrukcí tveb Tto prezentce byl vytvořen pro tudijní účely tudentů 3. ročníku bklářkého tudi oboru Kontrukce doprvní tvby n Fkultě

Více

Revitalizace vodního toku

Revitalizace vodního toku Revitalizace vodního toku ČSN 01 3105 společně pro výkresy, velikosti, popisování, materiály, formáty a skládání výkresů, měřítka, čáry, kótování, ČSN 01 3402 popisové pole ČSN 01 3160 zásady oprav a změn

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV ŽELEZNIČNÍCH KONSTRUKCÍ A STAVEB FACULTY OF CIVIL ENGINEERING INSTITUTE OF RAILWAY STRUCTURES AND CONSTRUCTIONS NÁVRH

Více

Střední škola stavebních řemesel Brno Bosonohy Pražská 38b, 642 00 Brno Bosonohy

Střední škola stavebních řemesel Brno Bosonohy Pražská 38b, 642 00 Brno Bosonohy Střední škola stavebních řemesel Brno Bosonohy Pražská 38b, 642 00 Brno Bosonohy Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: 39_základní zásady kótování Téma: Základy normalizace v

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta životního prostředí Katedra biotechnických úprav krajiny

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta životního prostředí Katedra biotechnických úprav krajiny Vypracoval: Pavel Šefl ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta životního prostředí Katedra biotechnických úprav krajiny Předmět: Ročník / obor Příloha č. Malé vodní toky 3. ročník BEKOL Název přílohy:

Více

* * Městský úřad Týn nad Vltavou Odbor regionálního rozvoje náměstí Míru 2, Týn nad Vltavou

* * Městský úřad Týn nad Vltavou Odbor regionálního rozvoje náměstí Míru 2, Týn nad Vltavou 00507345 *00507345* Městský úřad Týn nad Vltavou Odbor regionálního rozvoje náměstí Míru 2, 375 01 Týn nad Vltavou IČ 245585, DIČ CZ-00245585 Číslo jednací: MÚT/02721/2014 Spisová značka: MÚT/14316/2013/ORR/Tr.

Více

Průmyslová střední škola Letohrad Komenského 472, Letohrad

Průmyslová střední škola Letohrad Komenského 472, Letohrad Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)

Více

Rovnice rovnoměrně zrychleného pohybu

Rovnice rovnoměrně zrychleného pohybu ..8 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 7 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně píše minut na řešení příkladů

Více

Technologie výroby ozubení I.

Technologie výroby ozubení I. Ústav Strojírenské technologie Speciální technologie Cvičení Technologie výroby ozubení I. č. zadání: Příklad č. 1 (parametry čelního ozubení) Pro zadané čelní ozubené kolo se šikmými zuby vypočtěte základní

Více

středové (perspektivní) promítání vytváří obrazy podobné těm, které vidí lidské oko

středové (perspektivní) promítání vytváří obrazy podobné těm, které vidí lidské oko tředové promítaní všechn promítací paprk procháejí jedním bodem (vlatní) třed promítání neachovává e rovnoběžnot vdálenot objektů od tředu promítání ovlivňuje velikot jejich průmětů vdálenější objekt mají

Více

LABORATORNÍ CVIČENÍ Z FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY méno Stanilav Matoušek Datum měření 16. 5. 5 Stud. rok 4/5 Ročník 1. Datum odevzdání 3. 5. 5 Stud. kupina 158/45 Lab. kupina

Více

Sada 2 Geodezie II. 13. Základní vytyčovací prvky

Sada 2 Geodezie II. 13. Základní vytyčovací prvky S třední škola stavební Jihlava Sada 2 Geodezie II 13. Základní vytyčovací prvky Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady MOHROVA KRUŽNICE PRO ROVINNOU NAPJATOST Rovinná, neboli dvojosá

Více

Desáté cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady

Desáté cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady Desáté cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady MOHROVA KRUŽNICE PRO ROVINNOU NAPJATOST Rovinná, neboli dvojosá

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

Úhly a jejich vlastnosti

Úhly a jejich vlastnosti Úhly a jejich vlastnosti Pojem úhlu patří k nejzákladnějším pojmům geometrie. Zajímavé je, že úhel můžeme definovat několika různými způsoby, z nichž má každý své opodstatnění. Definice: Úhel je část roviny

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

- úprava nastavení zvýraznění odchylek v tabulce odchylek bodů od osy při dávkovém zpracování - nastavení se ukládá do INI souboru

- úprava nastavení zvýraznění odchylek v tabulce odchylek bodů od osy při dávkovém zpracování - nastavení se ukládá do INI souboru RAIL 4.77.150911 - při exportu polohové a výškové trasy do CSV se exportují ve výškovém řešení lomy sklonu podle nastavení zobrazení lomu sklonu při výběru hlavních bodů trasy - pokud je volba nastavení

Více

Geodézie Přednáška. Geodetické polohové a výškové vytyčovací práce

Geodézie Přednáška. Geodetické polohové a výškové vytyčovací práce Geodézie Přednáška Geodetické polohové a výškové vytyčovací práce strana 2 Geodetické vytyčovací práce řeší úlohu přenosu geometricky daných prvků nebo útvarů z plánu, mapy nebo náčrtu do terénu a tam

Více

Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost

Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost Kuželosečky Kružnice Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost (poloměr r).?! Co získáme, když v definici výraz stejnou nahradíme stejnou nebo

Více

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní

Více

Vytyčení polohy bodu polární metodou

Vytyčení polohy bodu polární metodou Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5

Více

Kótované promítání. Úvod. Zobrazení bodu

Kótované promítání. Úvod. Zobrazení bodu Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,

Více

Elementární plochy-základní pojmy

Elementární plochy-základní pojmy -základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),

Více

PROGRAM RP12. Směrový výpočet do kružnic. Příručka uživatele. Revize 05.05.2014. Pragoprojekt a.s. 1986-2014

PROGRAM RP12. Směrový výpočet do kružnic. Příručka uživatele. Revize 05.05.2014. Pragoprojekt a.s. 1986-2014 ROADPAC 14 PROGRAM Příručka uživatele Revize 05.05.2014 Pragoprojekt a.s. 1986-2014 PRAGOPROJEKT a.s., 147 54 Praha 4, K Ryšánce 16 1. Úvod Program SMĚROVÝ VÝPOČET DO KRUŽNIC je součástí programového systému

Více

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;

Více

č.. 8 Dokumenty o GPK na VRT

č.. 8 Dokumenty o GPK na VRT Vysokorychlostní železniční tratě L u k á š Přednáška č.. 8 T ý f a Ústav dopravních systémů (K612) Geometrické a další parametry koleje na vysokorychlostních tratích Anotace: Dokumenty určující parametry

Více

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY ÚSTŘEDNÍ KOMISE YZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY E-mail: ivo.volf@uhk.cz, tel.: 493 331 19, 493 331 189 Řešení úloh krajkého kola 55. ročníku yzikální olympiády Kategorie E Předložená řešení by neměla

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

Cvičení 4 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ ODLITKU

Cvičení 4 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ ODLITKU Cvičení 4 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ ODLITKU Cílem čtvrtého cvičení je osvojit si na jednoduchém modelu odlitku základní postupy při tvorbě úkosů, přídavků na obrábění a skořepin na 3D

Více

VÝHYBKY A ZHLAVÍ ŽELEZNIČNÍ STANICE

VÝHYBKY A ZHLAVÍ ŽELEZNIČNÍ STANICE VÝHYBKY A ZHLAVÍ ŽELEZNIČNÍ STANICE POMŮCKA PRO CVIČENÍ Z PŘEDMĚTU ŽELEZNIČNÍ STAVBY 2 (ZST2) Kolejiště železniční stanice sestává ze staničních kolejí a ze zhlaví, kde se jednotlivé koleje propojují.

Více

Délka oblouku křivky

Délka oblouku křivky Přechodnice podle Blosse Vypočtěte délku oblouku Blossovy přechodnice na intervalu 0, L Např pro vysokorychlostní tratě mezi ČR a Německem je R 6500m, L 198m 4 1 y ) ( R 4L 5 10L ( 2 3 - vzdálenost bodu

Více

Křivky kolem nás. Webinář. 20. dubna 2016

Křivky kolem nás. Webinář. 20. dubna 2016 Křivky kolem nás Webinář 20. dubna 2016 Přístup k funkcím Funkce (zobrazení) Předpis, který přiřazuje jedné hodnotě x hodnotu y = f (x). Je to množina F uspořádaných dvojic (x, y) takových, že pokud (x,

Více

REKONSTRUKCE ŽELEZNIČNÍ STANICE STUDENEC TECHNICKÁ ZPRÁVA. BRNO, listopad 2005 upravil Richard Svoboda

REKONSTRUKCE ŽELEZNIČNÍ STANICE STUDENEC TECHNICKÁ ZPRÁVA. BRNO, listopad 2005 upravil Richard Svoboda REKONSTRUKCE ŽELEZNIČNÍ STANICE STUDENEC TECHNICKÁ ZPRÁVA BRNO, listopad 2005 upravil Richard Svoboda 1 Obsah Tady bude obsah 2 1. Úvod 1.1 Zásady pro vypracování Železniční stanice Studenec leží na trati

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ107/1500/340527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371

Více

7. cvičení návrh a posouzení smykové výztuže trámu

7. cvičení návrh a posouzení smykové výztuže trámu 7. cvičení návrh a poouzení mykové výztuže trámu Výtupem domácího cvičení bude návrh proilů a roztečí třmínků na trámech T1 a T2. Pro návrh budeme jako výchozí hodnotu V Ed uvažovat největší hodnotu mykové

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

ÚS TŘI KŘÍŽE DOPRAVNÍ ŘEŠENÍ

ÚS TŘI KŘÍŽE DOPRAVNÍ ŘEŠENÍ ÚS Tři Kříže, Dopravní řešení - 1 - ÚS TŘI KŘÍŽE DOPRAVNÍ ŘEŠENÍ ÚS Tři Kříže, Dopravní řešení - 2 - IDENTIFIKAČNÍ ÚDAJE NÁZEV: ÚS Tři Kříže, DOPRAVNÍ ŘEŠENÍ STUPEŇ: Studie MÍSTO: Neštěmice OBJEDNATEL:

Více

Analytická geometrie ( lekce)

Analytická geometrie ( lekce) Analytická geometrie (5. - 6. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 20. června 2011 Vektory Vektorový součin Vektorový

Více

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří

Více

10. Vytyčování staveb a geodetické práce ve výstavbě.

10. Vytyčování staveb a geodetické práce ve výstavbě. 10. Vytyčování staveb a geodetické práce ve výstavbě. 10.1 Vytyčování, vytyčovací systémy. 10.1.1 Závazné technické normy. 10.1.2 Fáze vytyčování. 10.2 Metody polohového vytyčení bodů. 10.2.1 Vytyčení

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

středové (perspektivní) promítání vytváří obrazy podobné těm, které vidí lidské oko

středové (perspektivní) promítání vytváří obrazy podobné těm, které vidí lidské oko tředové promítaní všechn promítací paprk procháejí jedním bodem (vlatní) třed promítání neachovává e rovnoběžnot vdálenot objektů od tředu promítání ovlivňuje velikot jejich průmětů vdálenější objekt mají

Více

Společná zařízení. Petr Kavka, Kateřina Jusková

Společná zařízení. Petr Kavka, Kateřina Jusková Společná zařízení Petr Kavka, Kateřina Jusková Co to jsou společná zařízení Opatření sloužící ke zpřístupnění pozemků. Protierozní opatření na ochranu zemědělského půdního fondu. Opatření vodohospodářská.

Více

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA TŘEDNÍ ŠKOLA TAVEBNÍ JIHLAVA ADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 05. VYZTUŽOVÁNÍ - LOUPY DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: Š JIHLAVA ŠABLONY REGITRAČNÍ ČÍLO PROJEKTU:CZ.1.09/1.5.00/34.0284 ŠABLONA:

Více

UNIVERZITA PARDUBICE BAKALÁŘSKÁ PRÁCE

UNIVERZITA PARDUBICE BAKALÁŘSKÁ PRÁCE UNIVERZITA PARDUBICE DOPRAVNÍ FAKULTA JANA PERNERA BAKALÁŘSKÁ PRÁCE 2008 Jan Tichý UNIVERZITA PARDUBICE DOPRAVNÍ FAKULTA JANA PERNERA Silnice II/356 - obchvat obce Luže Jan Tichý Bakalářská práce 2008

Více

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927) Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách

Více