Kvantitativní metody v rozhodování. Marta Doubková

Rozměr: px
Začít zobrazení ze stránky:

Download "Kvantitativní metody v rozhodování. Marta Doubková"

Transkript

1 Kvantitativní metody v rozhodování Marta Doubková Seminární práce 28

2 OBSAH 1 LINEÁRNÍ PROGRAMOVÁNÍ KAPACITNÍ ÚLOHA DISTRIBUČNÍ ÚLOHA ANALÝZA KRITICKÉ CESTY METODA CPM MODEL HROMADNÉ OBSLUHY... 16

3 1 LINEÁRNÍ PROGRAMOVÁNÍ KAPACITNÍ ÚLOHA Společnost Drevounia s. r. o. vyrábí 5 typů židlí, které se zhotovují ve 4 střediscích, jejichž měsíční kapacita je postupně 2 6 h, 3 3 h, 4 2 h a 3 9 h. Aby společnost mohla vyrábět jednotlivé typy židlí, musí počítat s hodinovou spotřebou času, jak je uvedeno v tabulce. Společnost Drevounia musí na základě smluv uzavřených s odběrateli měsíčně vyrábět minimálně 8 ks židlí typu 1, 5 ks židlí typu 3 a 6 ks židlí typu 4, maximálně však 3 6 ks každého typu židle. Hrubý zisk, který plyne z výroby těchto židlí je 13, 1 2, 1 4, 1 6 a 2 Kč/ks. Úkolem je sestavit takový výrobní program, který bude maximalizovat celkový zisk. Tabulka 1 Spotřeba času na výrobu 1. Rozbor činitelů Vstupní činitelé: Strojové hodiny Výstupní činitelé: Ž1, Ž2, Ž3, Ž4, Ž5 2. Definice proměnných x 1 počet vyrobených kusů židlí typu 1 x 2 počet vyrobených kusů židlí typu 2 x 3 počet vyrobených kusů židlí typu 3 x 4 počet vyrobených kusů židlí typu 4 x 5 počet vyrobených kusů židlí typu 5

4 3. Omezení na vstupu,3 x 1 +,2 x 2 +,4 x 3 +,4 x 4 +,5 x 5 2 6,3 x 1 +,5 x 2 +,5 x 3 +,4 x 4 +,6 x 5 3 3,7 x 1 +,9 x 2 +,8 x 3 +,8 x 4 +,5 x 5 4 2,4 x 1 +,4 x 2 +,5 x 3 +,4 x 4 +,8 x Omezení na výstupu x 1 x 2 x x x Účelová funkce z 13 x1 12x2 14x3 16x4 2x5 MAX 6. Řešení pomocí programu WinQSB

5 7. Interpretace výsledku: Z hlediska primárního modelu vstupních a výstupních omezení, která firma Drevounia musí při své výrobě zohlednit, bude optimální výroba činit 1 44 ks židlí 2. typu (tržby Kč), 873 ks židlí 4. typu (tržby Kč) a 3 24 ks židlí 5. typu (tržby 6 48 ). Dále musí zmíněná firma z důvodu smluvního omezení s odběrateli vyrábět 8 ks židle 1. typu (tržby 1 4 Kč) a 5 ks židlí 3. typu (tržby 1 6 Kč), i když je výroba ztrátová. Celkové měsíční tržby (tj. maximální hodnota účelové funkce) jsou ve výši Kč. Z pohledu řešení duálního modelu můžeme vidět, že kapacity střediska 1, střediska 3 a střediska 4 jsou plně využity. Pouze kapacita střediska 2 není plně využita. Z tohoto důvodu není nutné u tohoto střediska rozšiřovat kapacitu. Naopak tomu je u střediska 1, kde pokud bychom zvýšili kapacitu o 1 hodinu, zvýšila by se nám hodnota účelové funkce o 2 24 Kč. Pokud bychom zvýšili kapacitu 3. střediska o 1 h, účelová funkce by se nám zvýšila o 48 Kč a v případě 4. střediska by se zvýšila o 8 Kč. V tomto případě je důležitá úvaha nad tím, jaké náklady jsou spojeny s 1 h kapacity ve střediscích 1, 3 a 4 a zda se vzhledem k těmto skutečnostem vyplatí navýšit hodinovou kapacitu při výrobě. Skladba výroby se nebude měnit, jestliže se kapacita bude pohybovat v rozmezí 2 554, ,273 h v 1. středisku, dále alespoň 3 283,6 h v 2 středisku, v rozmezí ,571 h v 3. středisku a v rozmezí ,5 h v posledním, 4. středisku. Dále se kapacita nebude měnit, jestliže u ztrátového typu židle 1 dodržíme podmínku doporučené ceny Kč a více a u 2. typu židle minimálně 1 68 Kč a více. Ceny ostatních druhů židlí, tj. židle typu 2, 4 a 5 by se měly postupně pohybovat v intervalech 1112,5 1 79,1 Kč;1 536, ,6 Kč a 1 766,7 2 6 Kč.

6

7 2 DISTRIBUČNÍ ÚLOHA Metoda VAM (Vogelova aproximační metoda) Společnost SIT s. r. o. se zabývá nákupem a prodejem židlí, který je spojen i s jejich montáží. V ČR má pronajaty celkem 4 sklady, které se nacházejí v Ústí nad Labem, Českých Budějovicích, Brně a Vsetíně. Kapacita těchto skladů je 15, 21, 25 a 19 ks židlí. Z těchto skladů se židle distribuují do pěti prodejen v Hradci Králové, Táboře, Jihlavě, Olomouci a Zlíně. Podle uzavřených smluv společnost SIT postupně svým odběratelům dodá 11, 14, 21, 17 a 12 ks židlí. Z důvodu výpovědi nájemní smlouvy ve skladu v Ústí nad Labem, bude společnost SIT nucena tento sklad zcela vyprázdnit. Úkolem je sestavit takový distribuční plán, aby celkové náklady na přepravu byly minimální. Tabulka 2 Distribuční náklady na 1 ks židle ve stovkách Kč Z důvodu nevyrovnanosti problému, kdy se požadavky prodejen nerovnají kapacitě skladů firmy SIT, jsme nuceni v řešení zavést fiktivní prodejnu. Při řešení musíme vzít rovněž v úvahu podmínku úplného vyprázdnění skladu v Ústí nad Labem. Z tohoto důvodu u fiktivní prodejny zvolíme vysokou sazbu tak, aby by se přeprava nemohla uskutečnit.

8 Z výše uvedené tabulky nám vyplývá výchozí základní řešení. Hodnota účelové funkce, znázorněné následujícím výpočtem, činí 49 Kč. z 11 *5 4 *13 14 *3 7 *5 14 * 4 11 *9 2 *5 12 *5 z 49Kč Matice přeprav je následující: Dalším bodem v řešení tohoto úkolu je provedení testu optimality, jehož úkolem je zjištění, jestli je výše uvedené řešení optimální popř. jestli existuje lepší řešení, s nižší hodnotou účelové funkce. Pro provedení testu je nutné nejdříve zjistit, zda-li je řešení nedegenerované, tzn. musí platit podmínka: (m + n - 1) počet obsazených polí. Příklad: m + n Z uvedeného výpočtu vyplývá, že podmínka je splněna, výchozí základní řešení je nedegenerované a lze tedy provést test optimality. Test optimality je založen na porovnání sazby c ij s tzv. nepřímou sazbou c ij v každém neobsazeném poli. Zavedou se pomocná řádková čísla u i a pomocná sloupcová čísla v j. Jestliže poté bude platit že c ij - c ij, bude řešení optimální. Jestliže c ij - c ij >, řešení optimální nebude.

9 Z výše uvedené tabulky vyplývá, že z důvodu platnosti podmínky, kdy c ij - c ij >, která platí pro 2 existující pole, řešení není optimální. V tomto případě budeme postupovat tak, že na neobsazené pole, kde je c ij - c ij > největší (tj. pole České Budějovice a P f ), přesuneme určitou přepravu t (tzv. nově obsazované pole). K tomuto nově obsazovanému poli vyhledáme ve výchozím řešení taková obsazená pole, aby spolu tvořila uzavřený okruh. t se přitom bude rovnat nejmenší přepravě z těch, které jsou umístěny na polích uzavřeného okruhu, kde se t odečítá (tj. pole Vsetín a P f ). V tomto případě t = 5. Výše uvedenou tabulku přepočítáme a provedeme u ní test optimality.

10 Z výše uvedené tabulky nám vyplývá nové základní řešení. Hodnota účelové funkce, znázorněné následujícím výpočtem, činí 384 Kč. z 11*5 4 *13 14*3 2 *5 5 * 19* 4 6 *9 7 *5 12*5 z 384Kč Matice přeprav je následující: Jelikož v tomto případě již splňujeme podmínku kdy c ij - c ij, můžeme prohlásit toto řešení za optimální. Skutečnost, že předchozí řešení nebylo optimální se potvrdilo i ve snížení účelové funkce (ze 49 Kč na 384 Kč, tj. snížení o 25 Kč). Alternativní řešení u tohoto příkladu neexistuje, protože zde neexistuje neobsazené pole, ve kterém by se rovnala sazba c ij s nepřímou sazbou c ij tj. c ij = c ij. Nové základní řešení je tedy jediné možné řešení, při kterém můžeme dosáhnout minimální hodnoty účelové funkce, tj. kdy náklady na přepravu jsou minimální.

11 Řešení pomocí programu WinQSB

12 Interpretace dosaženého výsledku: Jak lze vidět z výsledku řešení programu WinQSB, výpočet, který byl proveden pomocí samostatné úvahy, byl potvrzen. Řešení nám ukazuje pouze jednu vhodnou variantu distribuce, která při podmínce minimalizace nákladů činí 384 Kč. Společnost SIT s. r. o. bude židle distribuovat pomocí následujícího schématu: Sklad v Ústí nad Labem bude dodávat 11 ks židlí do prodejny v Hradci Králové a 4 ks židlí do Olomouce. Sklad v Českých Budějovicích bude dodávat 14 ks židlí do Tábora, 2 ks židlí do Jihlavy, přičemž 5 ks židlí zůstane na skladě. Sklad v Brně bude dodávat 19 ks židlí do Jihlavy a 6 ks židlí do Olomouce. Sklad ve Vsetíně bude dodávat 7 ks židlí do Olomouce a 12 ks židlí do Zlína.

13 3 ANALÝZA KRITICKÉ CESTY METODA CPM Příprava valašského frgálu V rámci plánované oslavy je třeba napéct cukroví a několik koláčů. Z množství různých receptů byl zvolen recept na valašský frgál, jehož příprava je relativně snadná a výsledek se vždy setká s velkým ohlasem stolujících. V rámci upečení tohoto frgálu bylo stanoveno několik následujících činností a rovněž byla odhadem stanovena doba trvání v minutách. Všechny potřebné informace jsou uvedeny v tabulce. Úkolem je sestrojit síťový graf a vypočítat nejkratší dobu pro přípravu a upečení valašského frgálu.. Výsledek síťového grafu: Kritická cesta: A B D E F G H I K L M O Doba trvání: 175 min = tj. 2 h 55 min

14

15 Řešení pomocí programu WinQSB Interpretace výsledku: Ruční výpočet i softwarové řešení nám poskytlo řešení v podobě nalezení kritické cesty: A B D E F G H I K L M O. V návaznosti na tyto údaje jsme schopni zjistit nejkratší možnou dobu pro přípravu a následné zhotovení valašského frgálu. Tato doba stanovena na 175 min, tj. 2 h a 55 min. Celkovou časovou rezervu nacházíme v činnostech C vymazání plechů (65 min), J příprava posýpky (15 min) a N příprava na polití (45 min).

16 4 MODEL HROMADNÉ OBSLUHY Pobočka České pošty v Bystřici pod Hostýnem má v provozu celkem 4 přepážky pro peněžní služby. Dostavující se klienti se řadí do jedné fronty, přičemž přicházejí průměrně každé 1,5 minuty a tyto intervaly mají exponenciální rozdělení. Potřebná doba pro vyřízení požadavku klienta je náhodnou veličinou s exponenciálním rozdělením, se střední hodnotou cca 5 minut. Náklady na provoz jedné přepážky jsou 4 Kč/hod a náklady na pobyt jedné jednotky v systému je 16 Kč/hod. Úkolem je zvážit, zda bude za stávajících podmínek výhodné provozovat 5 přepážek nebo zda bude lepší i nadále zůstat u stávající situace. Kendellova notace: M / M / 4/ / / FIFO M / M / 5/ / / FIFO Řešení: Nejprve určíme hodnoty λ, µ a ρ. c c , c * c * *12 4 5*12,833,666 c * 1 λ průměrný počet klientů, kteří přijdou na pobočku České pojišťovny za 1 hodinu µ - průměrný počet vyřízených klientů za 1 hodinu ρ podmínka stabilizace je v obou situacích splněna, protože platí 1

17 Řešení pomocí programu WinQSB Queuing analysis V případě 4 přepážek v provozu:

18 Celková využitelnost systému při provozu 4 přepážek je 83, 33 %. Průměrný počet klientů na přepážce za 1 hodinu je 6,62, průměrný počet klientů ve frontě je 3,29 a průměrný počet klientů ve frontě a v zaplněném systému je roven 5-ti. Klient stráví v systému průměrně,1655 hodiny (tj. cca 9,93 min), ve frontě stráví průměrně,822 hodiny (tj. cca 4,9 min) a ve frontě a zaplněném systému stráví,125 h (tj. cca 7,5 minuty). Pravděpodobnost, že přepážka nebude v provozu je 2,131 %. Pravděpodobnost, že příchozí klient bude čekat z důvodu zaplněnosti systému je 65,77 %. Celkové náklady na provoz jedné přepážky v provozu dosahují 1 333,33 Kč/hod, celkové náklady na čekajícího klienta dosahují 526,18 Kč/hod a celkové náklady na provoz celé pobočky za 1 hodinu činí 2 659,51 Kč.

19 V případě provozu 5-ti přepážek:

20 Celková využitelnost systému při chodu 5-ti přepážek je 66,67 %. Průměrný počet klientů na pobočce za 1 hodinu je 3,99, průměrný počet klientů ve frontě je,6533 a průměrný počet klientů ve frontě a v zaplněném systému je roven 2. Klient stráví v systému průměrně,997 hodiny (tj. cca 5,982 min), ve frontě stráví průměrně,163 hodiny (tj. cca,978 min) a ve frontě a zaplněném systému stráví průměrně,5 h (tj. 3min). Pravděpodobnost, že přepážka nebude v provozu je 3,1752 %. Pravděpodobnost, že příchozí klient bude čekat z důvodu zaplněnosti systému je 32,67 %. Celkové náklady na provoz jedné přepážky v provozu dosahují 1 333,33 Kč/hod, celkové náklady na čekajícího klienta dosahují 14,53 Kč/hod a celkové náklady na provoz celé pobočky za 1 hodinu činí 2 637,87 Kč.

21 Interpretace výsledku: Zavedením 5-té přepážky dojde ke snížení celkové využitelnosti systému na 66,67 %. Z pohledu pobočky České pošty dojde k výraznému snížení čekajících klientů u jednotlivých přepážek i v zaplněném systému. Z pohledu klienta dojde k výraznému zlepšení poskytovaných služeb. Ve frontě a zaplněném systému stráví v konečném důsledku o 4,5 minuty méně času. I přes vyšší pravděpodobnost, že přepážky nebudou v provozu, celková pravděpodobnost, že klient bude čekat v důsledku zaplněnosti systému je o ½ nižší. Z pohledu celkových nákladů, zavedením 5-té přepážky nedojde k jejich výraznějšímu snížení, přesto bych však především z důvodu většího pohodlí pro klienty zavedla do provozu zmiňovanou 5-tou přepážku s celkovými hodinovými náklady na provoz 2 637,87 Kč.

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

Matematické modelování 4EK201

Matematické modelování 4EK201 Matematické modelování 4EK0 Ukázkový test Maimum 00 bodů. Pokud má úloha lineárního programování více optimálních řešení, pak (a) jich může být nekonečně mnoho, (b) jich musí být nekonečně mnoho.. Doplňte

Více

Obr. P1.1 Zadání úlohy v MS Excel

Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel. Výpočet budeme demonstrovat

Více

Matematický ústav v Opavě. Studijní text k předmětu. Softwarová podpora matematických metod v ekonomice

Matematický ústav v Opavě. Studijní text k předmětu. Softwarová podpora matematických metod v ekonomice Matematický ústav v Opavě Studijní text k předmětu Softwarová podpora matematických metod v ekonomice Zpracoval: Ing. Josef Vícha Opava 2008 Úvod: V rámci realizace projektu FRVŠ 2008 byl zaveden do výuky

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010 SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda

Více

FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ MOV 1 SEMESTRÁLNÍ PRÁCE

FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ MOV 1 SEMESTRÁLNÍ PRÁCE FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ MOV 1 SEMESTRÁLNÍ PRÁCE Vypracoval: Lenka Novotná Studijní obor: K-Informační management Emailová adresa: lenka.novotna.1@uhk.cz Datum vypracování:

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

intenzitu příchodů zákazníků za čas t intenzitu obsluhy (průměrný počet obsloužených) za čas t

intenzitu příchodů zákazníků za čas t intenzitu obsluhy (průměrný počet obsloužených) za čas t Ukázka - Systémy hromadné obsluhy Příklad: Pan Pumpička se rozhodl postavit samoobslužnou čerpací stanici u obce Česká Bříza. Na základě průzkumu ví, že by čerpací stanici mohlo průměrně navštívit 32,

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd. Ivana Kozlová. Modely analýzy obalu dat

Západočeská univerzita v Plzni. Fakulta aplikovaných věd. Ivana Kozlová. Modely analýzy obalu dat Západočeská univerzita v Plzni Fakulta aplikovaných věd SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU MATEMATICKÉ MODELOVÁNÍ Ivana Kozlová Modely analýzy obalu dat Plzeň 2010 Obsah 1 Efektivnost a její hodnocení 2 2 Základní

Více

1.1 Typy úloh LP. Klíčová slova: úlohy LP, formulace modelu. 1. Formulace ekonomického modelu.

1.1 Typy úloh LP. Klíčová slova: úlohy LP, formulace modelu. 1. Formulace ekonomického modelu. Klíčová slova: úlohy LP, formulace modelu. 1 Úlohy Lineárního programování Lineární programování je jednou z částí operačního výzkumu a zpravidla se používá pro řešení optimalizačních úloh ekonomických

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Seminární práce Modely produkčních systémů

Seminární práce Modely produkčních systémů Seminární práce Modely produkčních systémů Předmět: 4EK425 Název projektu: Výroba hokejových dresů Jméno: Období: ZS 2007/2008 Číslo cvičení (kurzu): 001 (ST 12.45) OBSAH 1. ZADÁNÍ ÚLOHY... 3 2. URČENÍ

Více

Teorie front. Systém hromadné obsluhy

Teorie front. Systém hromadné obsluhy Teorie front Pokouší se analyzovat a řešit procesy, ve kterých se vyskytují proudy objektů procházejících určitými zařízeními, od nichž vyžadují obsluhu. Vlivem omezené kapacity obsluhy může docházet k

Více

Podklady pro hodnocení projektů KLIMATOLOGICKÉ ÚDAJE. Vydala: Česká energetická agentura Vinohradská 8, Praha 2. Vypracoval: STÚ-E a.s.

Podklady pro hodnocení projektů KLIMATOLOGICKÉ ÚDAJE. Vydala: Česká energetická agentura Vinohradská 8, Praha 2. Vypracoval: STÚ-E a.s. Podklady pro hodnocení projektů KLIMATOLOGICKÉ ÚDAJE Vydala: Česká energetická agentura Vinohradská 8, 12 Praha 2 Vypracoval: STÚ-E a.s. Tato publikace je určena pro poradenskou činnost a byla zpracována

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

PLC 4. cvičení KRÁTKODOBÉ PLÁNOVÁNÍ (1)

PLC 4. cvičení KRÁTKODOBÉ PLÁNOVÁNÍ (1) PLC 4. cvičení KRÁTKODOBÉ PLÁNOVÁNÍ (1) 1) Sestavení podkladů pro operativní plán Podnik vyrábí brzdové destičky. V budoucnu mohou nastat různé změny, na které je nutné reagovat. Prodej brzdových destiček

Více

UKÁZKA VYUŽITÍ PROGRAMU WINQSB PŘI VÝUCE KVANTITATIVNÍCH METOD V ROZHODOVÁNÍ V DISTANČNÍ FORMĚ STUDIA

UKÁZKA VYUŽITÍ PROGRAMU WINQSB PŘI VÝUCE KVANTITATIVNÍCH METOD V ROZHODOVÁNÍ V DISTANČNÍ FORMĚ STUDIA UKÁZKA VYUŽITÍ PROGRAMU WINQSB PŘI VÝUCE KVANTITATIVNÍCH METOD V ROZHODOVÁNÍ V DISTANČNÍ FORMĚ STUDIA ALENA KOLČAVOVÁ, LENKA DRÁBKOVÁ Abstrakt: V úvodu příspěvku je nastíněna současná situace stavu připravenosti

Více

Časové rezervy. Celková rezerva činnosti

Časové rezervy. Celková rezerva činnosti Časové rezervy Celková rezerva činnosti CR Volná rezerva činnosti VR Nezávislá rezerva činnosti - NR Celková rezerva činnosti Maximální počet časových jednotek, které jsou k dispozici pro provedení činnosti,

Více

Lineární programování

Lineární programování 24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.

Více

Vybrané statistické metody. Simulace pokladen supermarketu Albert na Spojovací

Vybrané statistické metody. Simulace pokladen supermarketu Albert na Spojovací ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, Fakulta dopravní Ústav aplikované matematiky K611 Vybrané statistické metody Simulace pokladen supermarketu Albert na Spojovací 1 85 Jakub Ondřich 2010/2011 85101910/0040

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Investiční rozhodování statická metoda část 1

Investiční rozhodování statická metoda část 1 Investiční rozhodování statická metoda část 1 Investiční rozhodování je dlouhodobé a kapitálově náročné a proto každý podnik musí investice pečlivě plánovat a zvažovat, jakou cestou dospěje k nejlepšímu

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Makroekonomie I. Dvousektorová ekonomika. Téma. Opakování. Praktický příklad. Řešení. Řešení Dvousektorová ekonomika opakování Inflace

Makroekonomie I. Dvousektorová ekonomika. Téma. Opakování. Praktický příklad. Řešení. Řešení Dvousektorová ekonomika opakování Inflace Téma Makroekonomie I Dvousektorová ekonomika opakování Inflace Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Opakování Dvousektorová ekonomika Praktický příklad Dvousektorová ekonomika je charakterizována

Více

Semestrální projekt z předmětu Podnikový management

Semestrální projekt z předmětu Podnikový management Semestrální projekt z předmětu Podnikový management Filip Šimek, 2005 simekf1@fel.cvut.cz Strana 1 / 7 1. Podnikatelský plán, zakladatelský rozpočet Podnikatelský plán je dokument, který vystihuje oblast

Více

MANAŽERSKÉ ÚČETNICTVÍ

MANAŽERSKÉ ÚČETNICTVÍ zahrnuje: 1. rozpočetnictví 2. kalkulace 3. vnitropodnikové účetnictví 4. podnikovou statistiku 5. operativní evidenci MANAŽERSKÉ ÚČETNICTVÍ Finanční účetnictví Manažerské účetnictví Eviduje účetní případy

Více

FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC

FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC PROJEKTOVÉ ŘÍZENÍ STAVEB FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál)

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál) Skupinová práce. Zadání skupinové práce Síťová analýza metoda CPM Dáno: Výstavba skladu zásob obilí představuje následující činnosti: Tabulka Název činnosti Délka (dny) Optimální projekt. Optimální dělníků

Více

Lineární programování

Lineární programování Lineární programování Úlohy LP patří mezi takové úlohy matematického programování, ve kterých jsou jak kriteriální funkce, tak i všechny rovnice a nerovnice podmínek výhradně tvořeny lineárními výrazy.

Více

KAPITOLA 5. ROZHODOVÁNÍ NA EXISTUJÍCÍ KAPACITĚ Případová studie EXIMET

KAPITOLA 5. ROZHODOVÁNÍ NA EXISTUJÍCÍ KAPACITĚ Případová studie EXIMET KAPITOLA 5 ROZHODOVÁNÍ NA EXISTUJÍCÍ KAPACITĚ Případová studie EXIMET Společnost EXIMET a. s. vyrábí skleněné lahve. Výrobní program společnosti zahrnuje v současnosti tři druhy lahví lahve na minerální

Více

SDĚLENÍ Ministerstva pro místní rozvoj ze dne 12. června 2009

SDĚLENÍ Ministerstva pro místní rozvoj ze dne 12. června 2009 SDĚLENÍ Ministerstva pro místní rozvoj ze dne 12. června 2009 o roztřídění obcí do velikostních kategorií podle počtu obyvatel, o územním rozčlenění obcí seskupením katastrálních území, o výši základních

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

4 Kriteriální matice a hodnocení variant

4 Kriteriální matice a hodnocení variant 4 Kriteriální matice a hodnocení variant V teorii vícekriteriálního rozhodování pracujeme s kritérii, kterých je obecně k, a s variantami, kterých je obecně p. Hodnotu, které dosahuje varianta i pro j-té

Více

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY Michal Dorda VŠB - TU Ostrava Fakulta strojní Institut dopravy 1 Úvod V běžné technické praxi se velice často setkáváme s tzv. systémy hromadné obsluhy aniž

Více

5 NÁKLADY PODNIKU A JEJICH KALKULACE

5 NÁKLADY PODNIKU A JEJICH KALKULACE 5 NÁKLADY PODNIKU A JEJICH KALKULACE Náklady podniku můžeme charakterizovat jako peněžně vyjádřenou spotřebu výrobních faktorů účelně vynaložených na tvorbu podnikových výnosů včetně dalších nutných nákladů

Více

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi):

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi): Klíčová slova: simplexová metoda 1 Simplexová metoda Postup výpočtu: 1. Nalezení výchozího řešení. 2. Test optima: pokud je řešení optimální výpočet končí, jinak krok 3. 3. Iterační krok, poté opět test

Více

Vícekanálové čekací systémy

Vícekanálové čekací systémy Vícekanálové čekací systémy Stanice obsluhy sestává z několika kanálů obsluhy, pracujících paralelně a navzájem nezávisle. Vstupy i výstupy systému mají poissonovský charakter. Jednotky vstupující do systému

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

1 kvě. 2 kvě. 3 kvě. 4 kvě. 5 kvě. 6 kvě. 7 kvě. 8 kvě. Knihovna města Hradce Králové - program na květen 2015

1 kvě. 2 kvě. 3 kvě. 4 kvě. 5 kvě. 6 kvě. 7 kvě. 8 kvě. Knihovna města Hradce Králové - program na květen 2015 Knihovna města Hradce Králové - program na ten 2015 1 2 3 4 5 6 7 8 Knihovna města Hradce Králové - program na ten 2015 9 10 11 12 13 14 Knihovna města Hradce Králové - program na ten 2015 15 16 17 18

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

Stochastické procesy - pokračování

Stochastické procesy - pokračování Stochastické procesy - pokračování Úvodní pojmy: Stochastické procesy jsou to procesy (funkce) jejichž hodnoty jsou náhodné veličiny závislé na parametru t stav systému souhrn vlastností a charakteristik,

Více

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl Optimalizace úvěrových nabídek EmbedIT 7.11.2013 Tomáš Hanžl Obsah Spotřebitelský úvěr Popis produktu Produktová definice v HC Kalkulace úvěru Úloha nalezení optimálního produktu Shrnutí Spotřebitelský

Více

CENOVÉ MAPY ČESKÉ REPUBLIKY

CENOVÉ MAPY ČESKÉ REPUBLIKY str. 60 CENOVÉ MAPY ČESKÉ REPUBLIKY Ústecký Liberecký Královéhradecký Karlovarský Praha Plzeňský Středočeský Jihočeský Pardubický Jihomoravský Zlínský BYTOVÉ PROSTORY Praha 1 Praha 2 PRODEJ PRONÁJEM PRODEJ

Více

Kalkulační třídění nákladů.

Kalkulační třídění nákladů. Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Kalkulační třídění nákladů. Eva Štichhauerová Technická univerzita v Liberci Nauka

Více

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE 1 Úvod Michal Dorda, Dušan Teichmann VŠB - TU Ostrava, Fakulta strojní, Institut dopravy Seřaďovací stanice jsou železniční

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

Přednáška č.7 Ing. Sylvie Riederová

Přednáška č.7 Ing. Sylvie Riederová Přednáška č.7 Ing. Sylvie Riederová 1. Aplikace klasifikace nákladů na změnu objemu výroby 2. Modelování nákladů Podstata modelování nákladů Nákladové funkce Stanovení parametrů nákladových funkcí Klasifikační

Více

LOKET 3 3 5 ÚSTÍ NAD LABEM ČESKÉ BUDĚJOVICE PRAHA MĚLNÍK 4 5 TELČ 8 PARDUBICE HRADEC KRÁLOVÉ 6 BRNO SVITAVY 6 7 8 OLOMOUC 9 9 10 OSTRAVA LOKET 3 3 5 ÚSTÍ NAD LABEM ČESKÉ BUDĚJOVICE PRAHA MĚLNÍK 4 5 TELČ

Více

STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů

STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

EKONOMIKA PODNIKU PŘEDNÁŠKA č.2

EKONOMIKA PODNIKU PŘEDNÁŠKA č.2 MATERIÁL 5.1. CHARAKTERISTIKA EKONOMIKA PODNIKU PŘEDNÁŠKA č.2 Ing. Jan TICHÝ, Ph.D. jan.tich@seznam.cz Materiál: a) základní materiál b) pomocný materiál c) provozní hmoty d) obaly ad a) zpracovává se

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

3. Úloha o společném rozhraní

3. Úloha o společném rozhraní 34 3. Úloha o společném rozhraní Cíle Po prostudování této kapitoly budete schopni: Zjistit neregularity v systému Navrhnout řešení pro odstranění neregulárních vazeb Doba potřebná ke studiukapitoly:60minut

Více

FINANCOVÁNÍ PODNIKU. Mgr. Ing. Šárka Dytková

FINANCOVÁNÍ PODNIKU. Mgr. Ing. Šárka Dytková FINANCOVÁNÍ PODNIKU Mgr. Ing. Šárka Dytková Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5.

Více

Využití simulace při řešení výrobně-distribučního optimalizačního problému. Libor Inovecký

Využití simulace při řešení výrobně-distribučního optimalizačního problému. Libor Inovecký Využití simulace při řešení výrobně-distribučního optimalizačního problému Libor Inovecký Klient - Plzeňský Prazdroj, a.s. Velké množství různých výrobků (~100) Decentralizovaná výroba - 3 pivovary Rozsáhlá

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

Tab. č. 1 Druhy investic

Tab. č. 1 Druhy investic Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.

Více

Výpočet pojistného v životním pojištění. Adam Krajíček

Výpočet pojistného v životním pojištění. Adam Krajíček Výpočet pojistného v životním pojištění Adam Krajíček Dělení životního pojištění pojištění riziková - jedná se o pojištění, u kterých se předem neví, zda dojde k pojistné události a následně výplatě pojistného

Více

Naše služby, které Vám rádi zajistíme a přizpůsobíme dle vašich požadavků: Zajištění financování projektů zefektivnění Vaší energetiky.

Naše služby, které Vám rádi zajistíme a přizpůsobíme dle vašich požadavků: Zajištění financování projektů zefektivnění Vaší energetiky. ... Karla Energize to jsou flexibilní řešení projekcí, dodávek, provozu a údržby kogeneračních jednotek a trigeneračních jednotek ve výkonovém rozsahu od 40 kwe do 4300 kwe. Díky spolupráci se světovými

Více

Layout pracoviště a řízení Rozvrhování pracovníků

Layout pracoviště a řízení Rozvrhování pracovníků Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Layout pracoviště a řízení Rozvrhování pracovníků Jan Vavruška Technická univerzita

Více

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné

Více

PROTOKOL O PROVEDENÉM MĚŘENÍ

PROTOKOL O PROVEDENÉM MĚŘENÍ Vysoké učení technické v Brně Ústav procesního a ekologického inženýrství Procter & Gamble Professional Určení efektivity žehlení PROTOKOL O PROVEDENÉM MĚŘENÍ Vypracovali: Ing. Martin Pavlas, ÚPEI FSI

Více

Ukazatele transparentnosti trhu veřejných zakázek v České republice

Ukazatele transparentnosti trhu veřejných zakázek v České republice Ukazatele transparentnosti trhu veřejných zakázek v České republice Ing. Jan Pavel, Ph.D. Transparency International - Česká republika o.p.s Projekt: Transparentní veřejné zakázky Koordinátor projektu:

Více

Postup pro stanovení reálného návrhu MPSV 2014:

Postup pro stanovení reálného návrhu MPSV 2014: Postup pro stanovení reálného návrhu MPSV 2014: Jako základ byly výše dotace MPSV 2013 první kolo. Oproti roku 2013 ale přibyly některé služby (cca asi 10 mil Kč dotace navíc). Návrh reálné výše dotace

Více

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob.

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob. Součástí oběžného majetku jsou: zásoby oběžný finanční majetek pohledávky Oběžný majetek Charakteristickým rysem oběžného majetku je jednorázová spotřeba, v procesu výroby mění svoji formu. Tato změna

Více

Simulační modely. Kdy použít simulaci?

Simulační modely. Kdy použít simulaci? Simulační modely Simulace z lat. Simulare (napodobení). Princip simulace spočívá v sestavení modelu reálného systému a provádění opakovaných experimentů s tímto modelem. Simulaci je nutno považovat za

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

Cvičení z termomechaniky Cvičení 8.

Cvičení z termomechaniky Cvičení 8. Příklad Vzduch o tlaku,5 [MPa] a teplotě 27 [ C] vytéká Lavalovou dýzou do prostředí o tlaku 0,7 [MPa]. Nejužší průřez dýzy má průměr 0,04 [m]. Za jakou dobu vyteče 250 [kg] vzduchu a jaká bude výtoková

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

6.8 Základní účtování nákladů a výnosů

6.8 Základní účtování nákladů a výnosů .8 Základní účtování nákladů a výnosů.8.1 Vymezení pojmu náklady a výnosy Náklady Při zhotovování výrobků nebo provedení jiných výkonů dochází ke spotřebě výrobních činitelů (spotřeba materiálu, pracovní

Více

Vývoj obchodní letecké přepravy cestujících v ČR Časové řady Seminář výpočetní statistiky

Vývoj obchodní letecké přepravy cestujících v ČR Časové řady Seminář výpočetní statistiky Vývoj obchodní letecké přepravy cestujících v ČR Časové řady Seminář výpočetní statistiky Vypracoval: Zařazení: Cvičení: Zdeněk Styblík 1. ročník INFONK, PEF ČZU Praha kombinované Obsah Vývoj obchodní

Více

SYSTÉMY HROMADNÉ OBSLUHY. Teorie front

SYSTÉMY HROMADNÉ OBSLUHY. Teorie front SYSTÉMY HROMADNÉ OBSLUHY Teorie front Systémy hromadné obsluhy (SHO) Teorie hromadné obsluhy (THO) se zabývá kvantitativním hodnocením soustav schopných uspokojiť požadavky hromadného charakteru na nejakou

Více

º CO - znamená rozhodnout, jaké výrobky v jakém množství budeme vyrábět (výrobní program)

º CO - znamená rozhodnout, jaké výrobky v jakém množství budeme vyrábět (výrobní program) Výroba výroba je základní hodnotvorný proces, ovšem než začneme vyrábět, potřebujeme s pomocí marketingu dobře zvážit, jak výrobek řeší tři základní otázky º CO - znamená rozhodnout, jaké výrobky v jakém

Více

Provoz pobočky v době vánočních svátků

Provoz pobočky v době vánočních svátků pobočka Praha, Bělehradská 21.12.16 22.12.16 22.00 22.00 22.00 12.00 16.00 pobočka Praha, Chlumecká pobočka Praha, Dejvická 12.00 10.00 pobočka Praha, Českomoravská pobočka Praha, Lazarská 12.00 15.00

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

Korelace. Komentované řešení pomocí MS Excel

Korelace. Komentované řešení pomocí MS Excel Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne

Více

Popis obsahu a struktury programu

Popis obsahu a struktury programu Popis obsahu a struktury programu (Příloha k Žádosti o akreditaci vzdělávacího programu u Společnosti pro projektové řízení, o. s.) 1 Vzdělávací subjekt: HM PARTNERS s.r.o. Název programu: Projektové řízení

Více

KMA Písemná část přijímací zkoušky - MFS 2o16

KMA Písemná část přijímací zkoušky - MFS 2o16 JMÉNO a PŘÍJMENÍ KMA Písemná část přijímací zkoušky - MFS 2o16 verze 1 / 28. 6. 2016 Pokyny k vypracování: Za každý správně vyřešený příklad lze získat 2 body. U zaškrtávacích otázek, je vždy správná právě

Více

Soustavu státních zastupitelství tvoří v návaznosti na soustavu soudů podle 6 odst. 1 zákona o státním zastupitelství:

Soustavu státních zastupitelství tvoří v návaznosti na soustavu soudů podle 6 odst. 1 zákona o státním zastupitelství: Soustavu státních zastupitelství tvoří v návaznosti na soustavu soudů podle 6 odst. 1 zákona o státním zastupitelství: - Nejvyšší státní zastupitelství - Vrchní státní zastupitelství - Krajská státní zastupitelství

Více

Tab. č. 1 Druhy investic

Tab. č. 1 Druhy investic Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.

Více

Téma 9: Vícenásobná regrese

Téma 9: Vícenásobná regrese Téma 9: Vícenásobná regrese 1) Vytvoření modelu V menu Statistika zvolíme nabídku Vícerozměrná regrese. Aktivujeme kartu Detailní nastavení viz obr.1. Nastavíme Proměnné tak, že v příslušném okně viz.

Více

SIMULAČNÍ MODEL ČINNOSTÍ VEŘEJNÉHO LOGISTICKÉHO CENTRA

SIMULAČNÍ MODEL ČINNOSTÍ VEŘEJNÉHO LOGISTICKÉHO CENTRA SIMULAČNÍ MODEL ČINNOSTÍ VEŘEJNÉHO LOGISTICKÉHO CENTRA Ing. Jaromír Široký, Ph.D. Ing. Michal Dorda VŠB - TU Ostrava Fakulta strojní Institut dopravy Obsah: 1. Definice cílů a účelu simulace VLC. 2. Struktura

Více

Zpracování chybějících dat a dat mimo rozsah

Zpracování chybějících dat a dat mimo rozsah StatSoft Zpracování chybějících dat a dat mimo rozsah V tomto článku si představíme jeden z možných postupů, jak se rychle a snadno vypořádat s detekcí chybějících dat a dat mimo stanovený rozsah. Načtení

Více

ČVUT FEL X36PAA - Problémy a algoritmy. 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu

ČVUT FEL X36PAA - Problémy a algoritmy. 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu ČVUT FEL X36PAA - Problémy a algoritmy 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu Jméno: Marek Handl Datum: 3. 2. 29 Cvičení: Pondělí 9: Zadání Prozkoumejte citlivost metod

Více