XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny...

Rozměr: px
Začít zobrazení ze stránky:

Download "XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny..."

Transkript

1 XI- Nesacionární elekromagneické pole... XI- Rovinná harmonická elekromagneická vlna...3 XI- Vlasnosi rovinné elekromagneické vlny...5 XI-3 obrazení rovinné elekromagneické vlny v prosoru...7 XI-4 Fázová rychlos...8 XI-5 Fázory při popisu rovinné harmonické elekromagneické vlny a konsana šíření...8 XI-6 Charakerisická impedance prosředí...0 XI-7 Výkon přenášený rovinnou harmonickou elekromagneickou vlnou...0 XI-8 Výkon přeměněný na eplo... XI-9 Bilance činného výkonu v prosoru s rovinnou elekromagneickou vlnou... XI-0 Určení konsany šíření, měrného úlumu, fázové konsany a charakerisická impedance prosředí...4 XI- Odvození rovnice pro popis rovinné elekromagneické vlny...8

2 XI- Nesacionární elekromagneické pole Nesacionární elekromagneické pole je obecně popsáno dvojicí základních Maxvellových rovnic. Tyo rovnice jsou formálně podobné a symerické, vyjadřují základní zákony plané pro elekromagneické pole. První rovnice [] je zobecněný Ampérův zákon celkového proudu v diferenciálním varu, na levé sraně má veličinu magneického pole inenziu H a v členu, kerý předsavuje husou akzvaného posuvného proudu, je časová změna veličiny elekrického pole elekrické indukce D. Teno zákon vyjadřuje důležiou skuečnos, že časově proměnné magneické pole je buzeno časovou změnou elekrického pole: [] ro H J + D Druhá rovnice [] je Faradayův indukční zákon v diferenciálním varu, kerý má na levé sraně veličinu elekrického pole inenziu E a na pravé sraně časovou změna veličiny magneického pole magneickou indukce B. Tao rovnice vyjadřuje skuečnos, že časově proměnné elekrické pole je buzeno časovou změnou magneického pole: [] ro E B Elekrické a magneické pole jsou duální složky elekromagneického pole. Kde exisuje časově proměnné pole jedné formy, exisuje i časově proměnné pole druhé formy. maemaického hlediska voří uvedené rovnice sousavu dvou parciálních diferenciálních rovnic, ve kerých je poče neznámých veličin zdánlivě věší než dvě. V ěcho rovnicích se vyskyuje celkem pě veličin. Tři veličiny popisující rozložení elekrického pole: Inenzia elekrického pole E, elekrická indukce D a proudová husoa J. Dvě veličiny popisují rozložení magneického pole: Inenzia magneického pole H a magneická indukce B. Jednolivé veličiny elekrického a magneického pole však nejsou navzájem nezávislé. Jsou vázány akzvanými maeriálovými rovnicemi : Ohmovým zákonem v diferenciálním varu : [3] J σ E Rovnicí respekující vliv magneizace maeriálu : [4] B µ H Rovnicí respekující vliv polarizace maeriálu : [5] D ε E S ohledem na vzájemné vazby si můžeme při řešení sousavy vybra jednu veličinu popisující elekrické pole a jednu veličinu popisující magneické pole. Například inenziu elekrického pole E a inenziu magneického pole H. Všechny osaní veličiny v sousavě je možno pomocí ěcho dvou snadno vyjádři. Po akové úpravě dosaneme skuečně sousavu dvou rovnic o dvou neznámých veličinách : E a H [6] ro H σ E + ε E [7] ro E µ H

3 Formální zápis rovnic však v žádném případě neznamená, že řešení uvedené sousavy bude jednoduchý problém s vždy jednoznačně exisujícím řešením. Nejedná se oiž o algebraické rovnice, je o sousava parciálních diferenciálních rovnic, ve kerých je vždy jedna veličina skrya ve vekorové funkci zvané roace. Roace v sobě zahrnuje parciální derivace podle prosorových souřadnic. Druhá veličina se vyskyuje ve formě časové derivace. Řešení hledáme pro konkréní problém s uvážením určiých okrajových podmínek. Každá formálně zapsaná veličina elekrického a magneického pole ve vzazích [6],[7] obecně předsavuje vekorovou funkci prosoru a času. To znamená, že veličiny mohou v každém bodě prosoru nabýva různé velikosi a směru a v závislosi na čase se mohou měni podle obecných časových funkcí. Pro vekorovou funkci, kerá by popisovala prosorové rozložení inenziy elekrického pole, se dá například formálně napsa : [8] E( xy,, z, ) E x ( xy,, z, ) x 0 + E y ( xy,, z, ) y 0 + E z ( xy,, z, ) z 0 Podle éo rovnice je každému bodu prosoru v určiém čase přiřazen vekor E, kerý je možno rozděli na složky ve směru souřadných os. Každá složka je popsána odpovídající skalární funkcí : Ex,Ey,Ez. Každá z ěcho funkcí je samozřejmě funkcí prosorových souřadnic a času. Xo,Yo,o jsou jednokové vekory ve směru souřadných os. (viz obrázek ) Obrázek XI- Rovinná harmonická elekromagneická vlna Když se při řešení rovnice omezíme pouze na určiý specifický var pole a na určié funkce udávající časovou závislos, můžeme nají řešení sousavy[6],[7] jednodušším způsobem. Jedno speciální a velice důležié řešení v neohraničeném prosoru se nazývá rovinná harmonická elekromagneická vlna. Obrázek V omo případě je celý problém z hlediska prosorového rozložení veličin zásadně zjednodušen dvěma podmínkami(o jsou uměle zvolené podmínky ale povedou na řešení, keré má velké prakické aplikace): a) množiny všech možných prosorových rozložení elekromagneického pole si vybereme jenom akové, ve kerém má vekor inenziy elekrického pole složku v jednom směru, například ve směru osy x ( viz obrázek ). b) Vybraná složka inenziy elekrického pole E X se nemění ve všech směrech, ale pouze ve směru osy z, což se dá zapsa v podobě: [9] E x ( z, ) [0] E x fxy (, )

4 Jinými slovy o znamená, že na libovolné rovině vedené z určiého bodu na ose z rovnoběžně s osami x,y má inenzia elekrického pole pouze složku ve směru osy x, inenzia elekrického pole je na celé éo rovině konsanní. Její velikos je závislá pouze na poloze roviny vůči ose z. Při akové volbě směru inenziy elekrického pole poom vyplyne z vlasnosí Maxvellových rovnic a edy z vlasnosi elekromagneického pole skuečnos, že inenzia magneického pole má pouze složku ve směru osy y a ao složka se mění aké pouze ve směru osy z (viz obrázek 3). Tao skuečnos je ukázána v čási, kde jsou odvozeny rovnice rovinné elekromagneické vlny. Obrázek 3 Maemaicky se dá ao skuečnos zapsa v podobě: [] H y ( z, ) [] H y fxy (, ) éo volby geomerického rozložení veličin elekromagneického pole vyplývá název : Rovinná elekromagneická vlna. hlediska časové změny veličin elekromagneického pole je celý problém dále zjednodušen ím, že neuvažujeme libovolný časový průběh veličin, ale pouze harmonický průběh. Popis časové závislosi obsahuje pouze harmonické funkce ( sin, cos). Tao volba umožní při řešení diferenciálních rovnic zavedení fázorů a odsranění závislosi na čase. Touo úpravou zbude pouze jediná proměnná veličina - souřadnice z. I ao podmínka se odráží v názvu celého problému, mluvíme o rovinné harmonické elekromagneické vlně. Poznámka: Mohlo by se zdá, že ak velké zjednodušení povede k výsledům, keré nebudou prakicky použielné, opak je však pravdou. eoreického hlediska má rovinná harmonická elekromagneická vlna velký význam. V praxi se var pole v podobě rovinných vlnoploch časo vyskyuje. Je omu ak například u elekromagneické vlny v dosaečné vzdálenosi od zdroje vlnění. Harmonický časový průběh aké nemusí znamena velké omezení v obecnosi. Budeme-li uvažova lineární prosředí, plaí princip superpozice, obecný časový průběh lze rozloži na jednolivé harmonické složky a počía odděleně. Posup řešení sousavy rovnic pro veličiny elekromagneického pole s respekováním omezení pro rovinnou vlnu je uvedeno v kapiole XI-. Výsledkem celého řešení jsou poom dvě základní rovnice: Časové a prosorové rozložení inenziy elekrického pole E je popsáno vzahem : [3] E x ( z, ) E m e α z sin ω βz + φ 0 Podobný vzah plaí i pro časové a prosorové rozložení inenziy magneického pole H: [4] H y ( z, ) H m e α z sin ω βz φ z + φ 0 Na ěcho rovnicích je parno, že splňují z geomerického hlediska vyýčené podmínky (9),(0),(),() a skuečně se jedná o harmonické časové průběhy. Fyzikální význam veličin, keré se vyskyují v rovnicích [3],[4], je popsán v kapiole 3.

5 XI- Vlasnosi rovinné elekromagneické vlny Při zkoumání vlasnosí rovinné elekromagneické vlny a rovnic pro veličiny elekromagneického pole, keré ji popisují, si můžeme přesavi, že jsme pozorovael, kerý se může volně pohybova v prosoru a v každém mísě má možnos sledova inenziu elekrického a magneického pole E a H. Máme k dispozici anénu, kerá nám umožní vysledova směr veličin elekromagneického pole a osciloskop, na kerém můžeme pozorova velikos a časový průběh veličin. Pozorování budeme provádě na rovinách rovnoběžných s osami x,y, keré jsou znázorněny na obrázku 4. Obrázek 4 Pozorování začneme na rovině, kerá prochází počákem, bodem z=0 (vlevo na obrázku 4). Když budeme anénu v prosoru naáče ak, abychom nalezli směr, ve kerém bude nejvěší ampliuda měřených veličin a současně i směr, ve kerém směřují vekory veličin pole, zjisíme zcela jisě, že inenzia elekrického pole E má pouze složku ve směru osy x a inenzia magneického pole H pouze složku ve směru osy y. To bude plai v kerémkoliv mísě zvolené roviny (rovinná vlna). Na osciloskopu uvidíme časový průběh veličin, keré dosaneme z rovnice (3),(4) po dosazení za z=0 (obrázek 5): Obrázek 5 E x ( z 0, ) E m sin ω + φ [5] 0 [6] H y ( z 0, ) H m sin ω φ z + φ 0 Tyo časové průběhy budou v libovolném bodě vyýčené roviny(z=0) zcela sejné, veličiny pole oiž nejsou závislé na souřadnici x a y a je o parno i v rovnicích (3),(4),(5),(6). Jako pozorovael se edy můžeme pohybova nahoru, dolů, doleva i doprava do libovolné vzdálenosi, aniž bychom na osciloskopu pozorovali jakoukoliv změnu. Na rovnicích (5),(6) a obrázku 5 vidíme, že se jedná o obyčejné harmonické průběhy s ampliudami Em,Hm, keré se mění s úhlovým kmiočem ω. Úhel φo udává okamžiou hodnou inenziy elekrického pole v bodě z=0 a čase =0. Je o jakási vzažná hodnoa, na základě keré lze poom vypočía inenziu elekrického a magneického pole v libovolném čase a mísě : E x ( z 0, 0) E m sin( φ [7] 0 )

6 Poznámka: V dalším exu bude ukázáno, že veličiny E a H jsou na sobě závislé, navíc jsou v celém prosoru popsané jednoznačnými rovnicemi [3],[4]. Sačí nám proo zná hodnou jedné z ěcho veličin právě v jednom bodě a v jednom časovém okamžiku, abychom z oho určili, jaká hodnoa bude v jiném bodě a v jiném časovém okamžiku pro libovolnou z veličin. Je li například φo=π/, nabývá inenzia elekrického pole v bodě z=0 a čase =0 svého maxima, keré je rovno její ampliudě. Pro φo=0 je inenzia elekrického pole v čase =0 a bodě z=0 nulová. Úhel φz udává fázové (časové) zpoždění průběhu inenziy magneického pole H za inenziou elekrického pole E. rovnic (6) a (7) neplyne, jak by bylo možno eno úhel urči a na čem závisí, o bude předměem podrobnějšího rozboru. Už v éo chvíli se však dá říci, že eno fázový posuv je podobný fázovému posuvu mezi napěím a proudem v elekrickém obvodu s indukčnosí. V akovém obvodu předbíhá napěí elekrický proud. Navíc zjednodušeně plaí, že napěí je inegrální veličina ve vzahu k inenziě elekrického pole a proud je inegrální veličina ve vzahu k inenziě magneického pole. Velikos úhlu je závislá na charakeru prsředí. Bude ukázáno, že v dielekrickém(bezezráovém) maeriálu je eno úhel nulový, v dokonalém vodiči je roven 45. ajímavý jev nasane, když se jako pozorovael přemísíme na rovinu, kerá prochází bodem z=z (obrázek 4). V omo případě uvidíme na osciloskopu časové průběhy, keré jsou popsané rovnicemi (8),(9). Vzniknou z rovnic (3), (4) po dosazení z=z. Jsou o opě harmonické průběhy, ale od průběhů na rovině z=0 se poněkud liší : [8] [9] E m e α E x z, H m e α H y z, z z sin ω βz + φ 0 sin ω βz. φ z + φ 0 obrázek 6 Porovnáme-li časový průběhy inenziy E na nové rovině (z=z) s původním průběhem inenziy E na rovině z=0 (viz obrázek 6) uvidíme, že se časový průběh zpozdil o úhel β*z a jeho ampliuda poklesla e - α * z krá. oho vyplývá význam koeficienů β a α. Konsana α se nazývá měrný úlum. Měrný úlum udává, o kolik se na dané vzdálenosi ulumí ampliuda veličin elekromagneického pole. Měrný proo, že po vynásobení určiou vzdálenosi udává velikos exponenu v lumícím členu rovnice. Konsana β se nazývá fázová konsana a udává měrný fázový posun na jednoku délky. Po vynásobení určiou vzdálenosí udává úhel, o jaký se na éo vzdálenosi časově zpozdí průběh veličin elekromagneického pole. jednodušeně si lze předsavi, že oo zpoždění je dané skuečnosí, že do nějakého vzdálenějšího mísa ( v našem případě do bodu z) doleí elekromagneická vlna s určiým časovým zpožděním a na své cesě zraí něco ze své ampliudy - rochu se ulumí. Konsany α a β jsou závislé na paramerech prosředí a kmioču vlnění. Rovnice (8) a (9) podobně jako v případě úhlu φz ješě nedává návod, jak skuečně urči velikos konsan α a β, o bude aké předměem dalšího rozboru.

7 Když budeme jako pozorovael posupova k dalším rovinám v kladném směru osy z, jak je naznačeno na obrázku 4, uvidíme časové průběhy, keré budou mí sále menší ampliudu a budou čím dál ím více fázově zpožděny ve vzahu k časovému průběhu v bodě z=0. Na rovině v bodě z=z (viz obrázek 4) se může například sá, že budou veličiny pole kmia s opačnou fází To bude ehdy, když bude plai : Obrázek 7 [0] β z π (průběh viz obrázek 7). Když posoupíme ješě dál, může se například sá, že na rovině z=z3 (viz obrázek 4) uvidíme časový průběh, kerý splyne s průběhem pro z=0 (bude s ním ve fázi). To se sane ehdy, když bude plai : β z 3 [] (průběh viz obrázek 7). π Taková vzdálenos z3 se nazývá vlnová délka a označuje se λ [] π λ z 3 β S ohledem na oo značení leží rovina z=z ve vzdálenosi, kerá je rovna polovině vlnové délky. Vlnová délka je vzdálenos dvou vlnoploch, na kerých kmiají veličiny elekromagneického pole se sejnou fází. XI-3 obrazení rovinné elekromagneické vlny v prosoru Doposud jsme veličiny elekromagneického pole zobrazovali jako časový průběh v určié zadané vzdálenos od počáku souřadnic ( viz obrázek 5,6,7). V rovnicích (3) až (9) byla vzdálenos z považována za paramer a čas za proměnnou veličinu. Když se na yo rovnice podíváme z opačné srany a budeme považova čas za paramer a souřadnici z za proměnnou veličinu, můžeme si rovnice (3) a (4) zobrazi jako prosorové rozložení veličin E a H pro různé, po sobě jdoucí časové okamžiky. Tímo posupem uvidíme harmonické rozložení veličin v prosoru (rovinnou vlnu), kerá se v závislosi na čase sěhuje v kladném směru osy z. S posupující vzdálenosi se navíc vlna lumí. Tok výkonu (Poyningův vekor) je dán vekorovým součinem vekorů inenziy elekrického a magneického pole E a H : [3] S E H Výsledný Poyningův vekor musí bý kolmý na vekor E i H. V našem případě má vekor E pouze složku E X a vekor H pouze složku H Y, svírají edy pravý úhel a vekor S musí nuně mí pouze složku S, což je složka ve směru pohybu vlny.

8 XI-4 Fázová rychlos Obrázek 8 geomerického uspořádání rovinné vlny je parno, že na rovinách rovnoběžných s osami x a y jsou veličiny elekromagneického pole orienovány ve směru : Ex, Hy. Když si jednu akovou rovinu vybereme (viz obrázek 8), jsou v každém mísě éo roviny v jednom konkréním okamžiku veličiny pole všude sejně veliké. Když například na jedné rovině nabývají svého maxima, s určiým časovým zpožděním nabudou svého maxima i na rovině sousední, ležící napravo ve směru pohybu vlny. Když yo roviny, na kerých jsou veličiny ve sejné fázi, nazveme vlnoplochy, můžeme si poom předsavi, že se yo vlnoplochy pohybují v prosoru rychlosí, kerá se nazývá fázová rychlos. Bude ukázáno, že velikos fázové rychlosi je obecně závislá na paramerech prosředí a kmioču. Pro elekromagneickou vlnu ve vakuu(vzduchu) je fázová rychlos rovna rychlosi svěla. Dvě mísa se sejnou fází (vlnoplochy) mají mezi sebou vzdálenos, kerá je rovna vlnové délce: λ π β Můžeme si předsavi, že vlnoplocha uo vzdálenos urazí za čas, pro kerý plaí : ω π ( o je perioda, se kerou se v jednom mísě opakují sejné hodnoy, za eno čas do nějakého mísa doleí další vlnoplocha se sejnou fází). Pro fázovou rychlos - rychlos s jakou se v prosoru pohybují vlnoplochy ( roviny se sejnou fází) edy plaí : [4] v f λ π β π ω ω β XI-5 Fázory při popisu rovinné harmonické elekromagneické vlny a konsana šíření Při řešení sousavy parciálních diferenciálních rovnic (6),(7). se s výhodou používá fázorů. Fázor je komplexní veličina, vekor v komplexní rovině, kerý je obrazem harmonicky časově proměnné veličiny. Při zavedení fázorů předpokládáme, že se všechny veličiny mění se sejným kmiočem, časová závislos je u všech sejná a je možné jí odsrani. Fázor jako komplexní číslo v sobě obsahuje dva údaje, kerými se dvě harmonicky proměnné veličiny od sebe navzájem liší a o je ampliuda a vzájemný fázový posun. Ampliuda je reprezenována absoluní hodnoou fázoru, fázový posuv je obsažen v argumenu fázoru. Celá ao ransformace do komplexní roviny je založena na vzahu : [5] e j α cos α + jsin( α) Po zavedení fázorů při odvození vlnové rovnice se objeví dvě další důležié komplexní veličin. Je o konsana šíření a charakerisická impedance prosředí. Konsana šíření k v sobě obsahuje měrný úlum a fázovou konsanu, o jejichž významu

9 jsme již mluvili: [6] k β jα Pro fázor, kerý reprezenuje inenziu elekrického pole plaí: [7] E x () z E 0 e j k z E m e j φ 0 e j ( β j α) z E m e α z e j φ 0 β z V definiční rovnici se vyskyuje ješě jeden fázor, označený jako Eo, kerý předsavuje hodnou fázoru pro z=0. [8] E 0 E m e j φ 0 Na rovnicích (6),(7),(8) je parno, že fázor v sobě zahrnuje všechny důležié prvky, keré jednoznačně popisují rozložení inenziy elekrického pole a keré jsou obsaženy i v časovém průběhu( rovnice 3) : je o ampliuda Em, konsany α a β, úhel φo. Fázor je pouze funkcí proměnné z, čas zde již nefiguruje. Mezi časovou závislosí inenziy elekrického pole a fázorem plaí zpěný ransformační vzah (9), pro kerý lze snadno dokáza s použiím rovnic 5-8., že plaí : [9] [30] [3] [3] [33] E x ( z, ) Im E x z E x ( z, ) Im E m e j φ 0 ( e j ω ) Im E 0 e j ( e α z e j βz e ) j ω E x ( z, ) E m e α z Im e j ω ( βz + φ 0) k z e j ω E x ( z, ) E m e αz Im cos + ω βz + φ 0 + jsin ω E x ( z, ) E m e α z sin ω βz + φ 0 βz + φ 0 Výsledkem je skuečně časový průběh, kerý byl popsán v rovnici (3). cela analogicky plaí pro fázor inenziy magneického pole H : [34] H y () z H 0 e j k z H 0 e j ( β j α) z H 0 e α z e j βz pro fázor v Ho v bodě z=0 [35] ( ) H 0 H m e j φ 0 φ z a pro zpěnou ransformaci do časové roviny :

10 [36] H y ( z, ) Im H y z ( e j ω ) Im H 0 e j k z e j ω H m e α z sin ω βz φ z + φ 0 XI-6 Charakerisická impedance prosředí Charakerisická impedance prosředí je velice důležiá veličina, kerá udává vzah mezi inenziou elekrického a magneického pole. Má podobnou úlohu jako impedance ve sřídavých obvodech, je definována jako podíl fázorů veličin, jednokou je Ohm. Vzah pro impedanci vyplyne při řešení sousavy rovnic (),() po zavedení fázorů. e sousavy se nejprve vypoče jedna neznámá veličina( například E) a zpěně se dosazení pro výpoče druhé veličiny. To bude ukázáno v čási. [37] E x H y E 0 e j k H 0 e j k z z E 0 H 0 E m e H m e j j φ 0 ( φ 0 φ z ) E m e j φ z e j φ z H m Charakerisická impedance jako komplexní číslo v sobě nese dva údaje. Absoluní hodnoa impedance udává podíl ampliud inenziy elekrického a magneického pole, úhel vlnové impedance udává vzájemné fázové naočení mezi fázory E a H, popřípadě úhel fázového zpoždění mezi časovými průběhy E a H. XI-7 Výkon přenášený rovinnou harmonickou elekromagneickou vlnou Výkon přenášený elekromagneickým polem je obecně charakerizován Poyningovým vekorem. Poyningův vekor předsavuje plošnou husou výkonu. Podle definice je o výkon přenášený jednokou plochy kolmé ke směru šíření. Pro Poyningův vekor plaí vzah : [38] S E H Kde E a H jsou vekory inenzi elekrického a magneického pole. Když budeme chí vypočía celkový výkon, kerý prochází určiou plochou A, je nuné sečís kolmé průměy Poyningova vekoru v různých mísech plochy, řeši edy inegrál : [39] P S da V rovinné vlně má E pouze složku Ex a H pouze složku Hy. Poyningův vekor, kerý musí bý podle definice vekorového součinu kolmý na oba součiniele, musí mí proo pouze složku Sz. Pro okamžiou hodnou Poyningova vekoru v libovolném mísě na rovině z=kons plaí vzah : [40] S z ( z, ) E x ( z, ) H y ( z, ) Okamžiá hodnoa výkonu nemá příliš velké prakické použií. Daleko důležiější je sřední hodnoa přenášeného výkonu a edy sřední hodnoa Poyningova vekoru, kerou lze vypočía podobně jako činný výkon v elekrickém obvodu: [4] S sr () z Re E x ()H z y () z

11 Pozn.: Teno vzah vyplývá z vlasnosí fázorových veličin, jeden z fázorů v naznačeném součinu musí bý komplexně sdružený, jinak by neměl součin fázorů náležiý fyzikální smysl. Po dosazení za fázory E a H poom plaí : [4] [43] S sr () z S sr () z e α z e j( φ 0 β z φ z ) Re E me α z e j φ 0 β z E m e α z H m e α z H m cos( φ z ) E m H m e αz cos( φ z ) [44] S sr () z E m e αz cos( φ z ) H m e αz cos( φ z ) Srovnáme-li vzahy ve vzorcích (4)-(44) s definičním vzahem pro činný výkon v elekrickém obvodu, vidíme, že jsou zcela idenické. U rovinné vlny se však navíc vyskyuje člen udávající lumení ampliudy v závislosi na souřadnici z. [45] P UI Re UI cos φ U m I m cos φ U m I m cos( φ) XI-8 Výkon přeměněný na eplo Obrázek 9 Při průchodu elekromagneické vlny prosředím s nenulovou vodivosí je v každém bodě prosoru proudová husoa úměrná velikosi inenziy elekrického pole v omo mísě (Viz Ohmův zákon v diferenciálním varu, rovnice (3)). V našem souřadném sysému se edy vyvoří elekrický proud, kerý eče ve směru osy x. Elekrický proud procházející vodivým prosředím vyvolá Joulovy zráy - čás výkonu přenášeného elekromagneickou vlnou se přemění v eplo. Když si vykneme ve vzdálenosi z kvádr, kerý bude mí podsavu o ploše S a výšku hrany h (obrázek 9) a když budeme předpokláda, že velikos podsavy je naolik malá, že inenzia elekrického pole na ní zůsává konsanní rovná inenziě v bodě na rovině z, poeče podsavou proud : [46] I () J x ( z, ) S σ E x ( z, ) S σ E m e α z sin ω βz + φ 0 S

12 Efekivní hodnoa proudu ekoucího kvádrem bude : [47] I ef σ E m e α z S Ohmický odpor, kerý by měl vyknuý kvádr ve směru průchodu proudu je : [48] R h σ S Výkon, kerý se v kvádru přemění na eplo bude: [49] P RI ef σ E m e αz S h e vzahu (49) se dá snadno urči objemová husoa zrá ( výkon, kerý se přemění v jednoce objemu na eplo) : [50] pz () P V P S h σ E m e αz XI-9 Bilance činného výkonu v prosoru s rovinnou elekromagneickou vlnou Obrázek 0 Energeickou bilanci je nuno provádě v uzavřeném objemu, pro jednoduchos o může bý kvádr s jednokovými čelními plochami jako na obrázku 0. K sanovení, jak velký výkon do kvádru přieče a jaký na druhé sraně odeče nám pomůže Poyningův vekor. Poyningův vekor předsavuje plošnou husou výkonu, procházejícího určiou plochou. V případě rovinné vlny s naší orienací vekorů má pouze směr osy z, edy směr šíření elekromagneické vlny a je ve všech bodech libovolné roviny, rovnoběžné s x,y, konsanní.

13 Do uzavřeného objemu kvádru vsoupí podle rovnice (44) čelní šedě vyznačenou jednokovou plochou (z=0) sřední výkon: (viz obrázek 0) [5] Pz ( 0) S sr ( z 0) A m S sr ( z 0) E m cos( φ z ) adní šedě vyznačenou plochou z=z na druhé sraně vysoupí výkon : [5] P( z z ) S sr z ()A m S sr () z E m e α z cos( φ z ) Osaními plochami kvádru nemůže žádný výkon vsoupi, ani vysoupi., proože jsou vůči orienaci Poyningova vekoru rovnoběžné. Když porovnáme vsupující a vysupující výkon, vidíme, že jsou sejné pouze pro α=0 (nulový činiel měrného úlumu bezezráové prosředí) Když od sebe vsupní a výsupní sřední výkon odečeme, výsledek musí bý roven podle zákona zachování energie výkonu, kerý se v daném objemu zraí ( přemění na eplo) [53] Pz ( 0) P( z z) E m ( αz ) cos φ z e Když umíme podle rovnice (50) vypočía zráy v jednoce objemu, dokážeme je vypočía i v celém objemu vyknuého kvádru a měly by se rovna hodnoě ze vzahu (53) : [54] P θ p dv A m 0 z pz () dz 0 z σ E m e αz dz σ E m 4α ( e αz ) Porovnáme-li edy vzahy (53) a (54), měly by se rovna členy, keré jsou vyknuy v rovnici (55), osaní čási obou vzahů jsou sejné : [55] cos( φ z ) σ 4 α Dokáza, že je levá a pravá srana rovnice (55) sejná se nám podaří, když uvážíme, že plaí následující rovnosi ( vzahy (56) až (60) ): definiční rovnice pro konsanu šíření dosaneme zajímavé vzahy pro α a β [56] k β jα β α e srovnání reálných čásí rovnice (56): + jαβ j ωµ jωε + σ ω µε j ωµ σ

14 [57] α + β ω µε e srovnání imaginárních čásí rovnice (56): [58] αβ ωµ σ definiční rovnice pro charakerisickou impedanci vyplyne: [59] ωµ k ωµ α + β [60] cos( φ z ) β α + β Tím je dokázán předpoklad, že rozdíl sřední hodnoy výkonu vsupujícího a vysupujícího povrchovou plochou z uzavřeného objemu, vypočený pomocí Poyningova vekoru, je roven celkovým zráám v omo objemu : [6] P θ p dv Pz ( 0) P( z z) XI-0 Určení konsany šíření, měrného úlumu, fázové konsany a charakerisická impedance prosředí Konsana šíření je komplexní veličina, označuje se jako k. Konsana šíření vyplyne při řešení vlnové rovnice po zavedení fázorových veličin a obsahuje v sobě dvě konsany, keré mají základní význam pro popis rovinné harmonické elekromagneické vlny. Je o fázová konsana α a měrný úlum β. O významu ěcho veličin při popisu vlny bylo pojednáno v předchozím exu. Konsana šíření se svými složkami je definována vzahem : [6] k β jα α činiel měrného úlumu [ /m ] β fázová konsana [ /m ] Konsana šíření je jednoznačně určena paramery prosředí a kmiočem vlnění : [63] k β jα j ω µ jωε + σ ω π f úhlový kmioče [ rad/s ] µ permeabilia [H/m]

15 µ µ 0 µ r µ 0 4 π 0 7 permeabilia vakua ε permiivia [F/m] ε ε 0 ε r ε π permiivia vakua Konsanu šíření je možno vypočía přímo z definičního vzahu (63) po provedení naznačených komplexních operací. Vzah (63) je však aké možné analyicky upravi, pro konsany α a β poom vyplyne : [64] α ω εµ + + σ ω ε [65] β ω εµ + + σ ω ε Charakerisická impedance prosředí je komplexní veličina, kerá udává vzah mezi inenziou elekrického a magneického pole. Absoluní hodnoa charakerisické impedance udává podíl ampliud inenziy elekrického a magneického pole, argumen udává fázový posuv mezi fázorem E a H ( časové zpoždění průběhu inenziy magneického pole za inenziou elekrického pole). Obecně je ao veličiny závislá na paramerech prosředí a kmioču, je možno jí urči podle vzahu : [66] e j φ z ωµ k ωµ j ωµ jωε + σ jω j ωµ ε + σ Vzahy pro kosnanu šíření a charakerisickou impedanci jsou úmyslně upraveny ak, že se zde vyskyuje člen : jω ε + σ To je z oho důvodu, že člen ω.ε a σ má v Maxwellových rovnicích po převedení do fázorového varu podobný význam. aímco σ je vodivos pro vodivé proudy, člen j.ω.ε předsavuje jakousi vodivos pro proudy posuvné. Je o nejlépe vidě na rovnici (), kerá je převedena do fázorového varu: [67] ro H σ E + jω εe V závislosi na paramerech prosředí a kmioču může nasa několik evenuali. Posuvné a vodivé proudy mohou bý srovnaelně veliké, nebo se naopak může velikos jednoho druhu podsaně liši od druhého. Chování vzahů (63) až (66) je edy určeno vzájemným vzahem mezi členy σ a.ω.ε.

16 Pro Nevodivé prosředí převažuje posuvný proud a plaí : [68] ωε > σ V rovnici (63) a (66) se o projeví ím, že můžeme zanedba σ vůči ω.ε. Po omo kroku se vzahy pro konsanu síření a charakerisickou impedanci podsaně zjednoduší: [69] k β jα j ωµ jωε ω µ ε oho vyplyne, že konsana šíření má pouze reálno čás, pro kerou plaí: [70] β ω µ ε ω µ 0 ε r ε 0 ω ε r µ 0 ε 0 ω c ε r Měrný úlum je nulový, v nevodivém prosředí se vlna nelumí : [7] α 0 Konsana šíření je reálná a je rovna fázové konsaně : Rovnice (70) je dále upravena ím, že se předpokládá jednoková relaivní permeabilia, což je časý případ. Navíc je zde s výhodou použia míso permeabiliy a permiiviy vakua rychlos svěla podle známého vzahu: [7] c µ 0 ε 0 Pro vlnovou délku v nevodivém prosředí poom plaí : [73] λ π β π ω c ε r f c ε r A pro vlnovou délku ve vakuu ( vzduchu) poom plaí známý vzah : [74] λ v c f Jednoduchý vzah plaí i pro fázovou rychlos v nevodivém prosředí : [75] v f ω β ω ω c ε r c ε r e vzahu (75) plyne, že je fázová rychlos elekromagneické vlny ve volném prosoru ve vakuu (vzduchu) rovna rychlosi svěla :

17 [76] v fv c Pro charakerisickou impedanci plaí podle vzahu (66) s uvažováním (68): [77] e j φ z j ω µ jω ε µ ε µ 0 ε 0 ε r 0π ε r Charakerisická impedance prosředí má pouze reálnou složku. Pro absoluní hodnou, kerá udává podíl ampliud Em a Hm plaí: [78] 0π ε r Pro úhel, kerý udává fázový posuv mezi E a H plaí : [79] φ z 0 Ve vakuu plaí pro charakerisickou impedanci časo používaná hodnoa: [80] 0 0π ávěr : Ve nevodivém prosředí má konsana šíření i charakerisická impedance pouze reálnou složku. oho vyplývá, že se vlna nelumí ( koeficien měrného úlumu je nulový) a časový průběh inenziy elekrického a magneického pole je ve fázi. Fázová rychlos vlnění v dielekrickém maeriálu se zmenšuje s odmocninou relaivní permiiviy, fázová rychlos ve vakuu je rovna rychlosi svěla. Pro dobře vodivé prosředí plaí naopak, že převažuje vodivý proud nad posuvným : [8] ωε < σ Při výpoču konsany šíření a charakerisické impedance lze zanedba člen ω.ε a podle definiční rovnice (63) plaí: [8] k β jα j ωµ σ j ωµ σ j ωµ σ ( j) ωµ σ oho plyne zajímavá skuečnos : [83] α β ωµ σ Měrný úlum a fázová konsana jsou v omo případě sejně veliké. Pro charakerisickou impedanci plaí podle rovnice (66): [84] e j φ z j ωµ σ j ωµ σ ωµ σ π j e 4

18 Absoluní hodnoa charakerisické impedance, kerá udává podíl ampliud inenziy elekrického a magneického pole: [85] ωµ σ Fázový posun, kerý udává naočení fázorů E a H, respekive časový posuv průběhů inenzi E a H: [86] φ z π 4 ávěr : Ve vodivém prosředí má konsana šíření i charakerisická impedance shodnou reálnou a imaginární čás. Elekromagneická vlna je v omo prosředí lumena, časový průběh inenziy magneického pole je zpožděno o úhel 45 supňů. Je o mezní hodnoa fázového posunu, kerá může nasa. V maeriálu, kerý se nedá označi jako vodivý či nevodivý, leží hodnoa fázového posunu mezi nulou a 45 supni. Poznámka : Pojem dobře vodivé či nevodivé prosředí je vázán na kmioče vlnění. Bez uvážení, o jaký kmioče se bude jedna, nemůžeme prohlási, zda se prosředí chová jako vodivé či nevodivé. Sejný maeriál se z hlediska šíření elekromagneické vlny může pro nižší kmioče chova jako dokonalý vodič, pro vyšší kmioče jako dokonalý nevodič. XI- Odvození rovnice pro popis rovinné elekromagneické vlny Při odvození rovinné elekromagneické vlny lze vycháze z rovnic (6),(7), keré byly popsány v kapiole : ro H ro E σ E + µ H ε E V éo sousavě se vyskyují neznáme veličiny E a H. Je o inenzia elekrického a magneického pole, popsaná obecně vekorovými funkcemi, závislými aké na čase. Pro E plaí obecně podle rovnice (8) v kapiole : E( xy,, z, ) E x ( xy,, z, ) x 0 + E y ( xy,, z, ) y 0 + E z ( xy,, z, ) z 0 pro rovinnou vlnu je problém zjednodušen podmínkami (9),(0) z kapioly : E x ( z, ) E x fxy (, ) Uvedenou sousavu rovnic můžeme řeši ak, že jednu veličinu vyjádříme pomocí druhé veličiny. To však není ak jednoduché, veličiny jsou na jednom mísě rovnic v podobě časových derivací a na jiném mísě jako argumen vekorové funkce roace, kerá v sobě nese parciální derivace podle souřadnic. Není možné přímo z jedné rovnice vypočía jednu z veličin a dosadi do druhé rovnice. Teno problém lze obejí ak, že ješě jednou aplikujeme roaci na druhou rovnici :

19 [87] ro ro E µ roh Na pravé sraně ak dosaneme člen, kerý v sobě obsahuje první rovnice sousavy: [88] roroe µ σe + ε E µσ E + µ ε E Podle pravidel vekorového poču plaí v karézské sousavě souřadnic vzah: [89] roroe graddive E Když budeme uvažova, že se v naší úloze nenacházejí žádné volné náboje, bude první čás nulová: ( jinými slovy lze říci, že se nacházíme mimo oblas zdrojů ) [90] graddive 0 Pro druhou čás, kerá se nazývá Laplaceův operáor, plaí vzah: [9] E( x, y, z, ) E x ( x, y, z, ) x 0 + E y ( x, y, z, ) y 0 + E z ( x, y, z, ) z 0 ohoo vzahu přímo neplyne, jak eno operáor vyčísli, plyne z ní však další důležiá vlasnos, že jej lze aplikova na jednolivé složky vekorové funkce. V našem případě má inenzia elekrického pole pouze složku E x, druhé dva členy vypadnou: [9] E x ( x, y, z, ) x E x ( x, y, z, ) + y E x ( x, y, z, ) + z E x ( x, y, z, ) Když ješě uvážíme další podmínku, že složka E x je pouze funkcí z, nezávisí na x a y, vypadnou dva členy i v rovnici (9) a z celé rovnice (89) zbude pouze: [93] E x ( z, ) z E x ( z, ) Rovnice (88) přejde na var, kerý se dá chápa jako vlnová rovnice pro rovinnou vlnu v obecném prosředí a obecnou časovou závislos mimo oblas zdrojů: [94] z E x ( z, ) µσ E x ( z, ) µ ε E x ( z, ) 0 V rovnici (94) se sále ješě vyskyují dvě proměnné veličiny, souřadnice z a čas. Pro libovolnou časovou funkci by řešení nemuselo bý jednoduché. Budeme-li však uvažova harmonické průběhy pro veličiny elekromagneického pole ( sin, cos), je možné zavedení fázorů podle rovnice (95)

20 [95] ( ) E x ( z, ) Im E x ()e z jω Názorové veličiny jsou obrazy časových průběhů v komplexní rovině, naznačenou ransformaci můžeme použí na rovnici (94) : [96] z ( ) Im E x ()e z jω µσ ( ) Im E x ()e z jω µ ε Im( E x ()e z jω ) 0 Po provedení naznačených časových derivací a vykrácení exponenciálního členu, kerý je u všech čásí sejný, přejde celá rovnice do komplexní roviny a odsraní se závislos na čase. Fázory jsou pouze funkcí proměnné z, parcialní derivaci podle z lze nahradi obyčejnou, dosáváme lineární diferenciální rovnici s nulovou pravou sranou, kerá je snadno řešielná. Tao rovnice se dá chápa jako vlnová rovnice pro rovinnou elekromagneickou vlnu s harmonickým časovým průběhem zapsaná pomocí fázorů mimo oblas zdrojů: [97] d dz E x () z j ω µ σe x () z ω µ εe x () z + 0 Ve vzahu (97) můžeme všechny konsany slouči pod jednu, kerá se nazývá konsana šíření. Tao konsana má při popisu vlnění velký význam, bylo o ní pojednáno již v kapiole (3): [98] k ω µ ε j ωµ σ j ωµ jωε + σ Rovnice (97) se poom upraví do varu : [99] d dz E x () z k E x () z + 0 Při řešení akvého ypu diferenciálních rovnic se obvykle posupuje ím způsobem, že se sesaví charakerisická rovnice a vypočíají charakerisické koeficieny : [00] λ + k 0 [0] λ λ jk jk V ěcho vzazích plaí pro konsanu šíření s ohledem na vzah (98): [0] k k β jα j ωµ jω ε + σ Obecným řešením diferenciální (99) je například následující funkce :

21 [03] E x () z C e jk z + C e jk z První člen řešení v rovnici (03) předsavuje rovinnou vlnu posupující v záporném směru osy z, druhý člen rovinnou vlnu v kladném směru osy z. Že se jedná skuečně o popis elekromagneické vlny v daných směrech, o ješě v éo chvíli není vidě. Je řeba dokonči řešení rovnice, přeransformova zpě do časové roviny a poom se pokusi o fyzikální inerpreaci výsledků. Pro jednoduchos budeme však už v éo chvíli uvažova pouze vlnu v kladném směru osy z a položíme ak : [04] C 0 Pro vlnu v záporném směru osy z by bylo řešení zcela analogické. Konsanu C musíme urči z okrajových podmínek, je o hodnoa, kerou nabývá fázor v bodě z=0: [05] C E x ( z 0) E 0 E m e j φ 0 Později bude ukázáno, že fázor E 0 v sobě zahrnuje velikos ampliudy inenziy elekrického pole Em a fázový posun časového průběhu vůči nule na časové ose v bodě z=0. Rovnice 03 poom přejde do výsledného varu, což je řešení vlnové rovnice pro inenziu elekrického pole ve fázorovém varu: [06] E x () z E 0 e jk z E m e j φ 0 e j ( β jα) z E m e α z e j φ 0 e j βz Provedeme-li zpěnou ransformaci do časové roviny, výslednou rovnici, kerá udává časovou a prosorovou závislos inenziy elekrického pole pro rovinnou vlnu: [07] [08] E x ( z, ) Im E x ()e z jω E x ( z, ) E m e α ( ) E m e αz z sin ω βz + φ 0 Im cos + ω βz + φ 0 + jsin ω βz + φ 0 Rozbor vlasnosi vzahu (08) je podrobně proveden v kapiolách 3 a 4. de je ukázáno, že se skuečně jedná o rovinnou elekromagneickou vlnu, kerá se pohybuje v prosoru ve směru kladné osy z. Rovnice (08), kerá popisuje rozložení inenziy elekrického pole, je však pouze polovina řešení celého problému. Ješě je řeba vypočía druhou veličinu z výchozí sousavy, kerou je inenzia magneického pole H. Inenziu magneického pole získáme zpěným dosazením za E do rovnice : ro E µ H Pro roaci vekorové funkce plaí vzah, kerý lze zapsa v podobě symbolického deerminanu. Když opě uvážíme, že inenzia elekrického pole má pouze složku ve směru osy x, plaí: [09] ro E( xy,, z, ) x 0 x E x y 0 y E y z 0 z E z x 0 x E x ( z, ) y 0 y 0 z 0 z 0 z E x ( z, ) y 0

22 Po dosazení do za roaci do Výchozí rovnice bude edy: [0] z E x ( z, ) y 0 µ H x ( x, y, z, ) x 0 + H y ( x, y, z, ) y 0 + H z ( x, y, z, ) z 0 Srovnáním levé a pravé srany nuně vyplynou pro inenziu magneického pole yo vzahy : H y ( z, ) H y fxy (, ) Jinými slovy o znamená: Má-li inenzia elekrického pole pouze složku ve směru x, musí mí inenzia magneického pole pouze složku ve směru osy y a a se mění v prosoru pouze ve směru souřadnice z : Když v rovnici dále uvážíme, že veličiny se mění v závislosi na čase podle harmonických funkcí, můžeme zavés fázory veličin a plaí : [] z E x () z µ H y () z Po provedení naznačené časové a prosorové derivace vyplyne vzah: [] jke x () z j ωµ H y () z Pro hledaný fázor inenziy magneického pole lze poom napsa: [3] H y () z k ωµ E x () z E x () z E 0 e jk e j φ z z E m e j φ 0 e j e j φ z k z Při popisu je použia další velice důležiá veličina, kerá se nazývá charakerisická impedance prosředí : [4] ωµ k ωµ j ωµ jωε + σ jω j ωµ ε + σ e j φ z Význam charakerisické impedance prosředí byl popsán již v kapiole 3. Bylo řečeno, že je o komplexní veličina, jejíž absoluní hodnoa udává podíl ampliud inenziy elekrického a magneického pole, argumen udává naočení fázorů, respekive časové posunuí proběhů E a H. [5] H m E m rovnice (3) lze pro fázor inenziy magneického pole napsa formálně sejný vzah, jako byl vzah (06) pro fázor inenziy elekrického pole:

23 [6] ( ) H y () z H m e j φ 0 φ z e j k z H 0 e jk z Fázor Ho předsavuje hodnou pro z=0: [7] ( ) H y ( z 0) H 0 H m e j φ 0 φ z Konečný časový průběh inenziy magneického pole získáme zpěnou ransformací do časové roviny. [8] H y ( z, ) Im H y ()e z jω ( ) H m e αz sin ω βz φ z + φ 0 Fyzikální inerpreace a rozbor ohoo vzahu byl popsán v kapiole 3.

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

4.5.8 Elektromagnetická indukce

4.5.8 Elektromagnetická indukce 4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 důležiý jev sojící v samých základech moderní civilizace všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali žádný ekonomicky možný

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

3B Přechodné děje v obvodech RC a RLC

3B Přechodné děje v obvodech RC a RLC 3B Přechodné děje v obvodech a íl úlohy Prohloubi eoreické znalosi o přechodných dějích na a obvodu. Ukáza možnos měření paramerů přechodných dějů v ěcho obvodech. U obvodu 2. řádu () demonsrova vliv lumicího

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Kmitání tělesa s danou budicí frekvencí

Kmitání tělesa s danou budicí frekvencí EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

FYZIKA I. Pohyb těles po podložce

FYZIKA I. Pohyb těles po podložce VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová

Více

Diferenciální rovnice 1. řádu

Diferenciální rovnice 1. řádu Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci

Více

4.5.8 Elektromagnetická indukce

4.5.8 Elektromagnetická indukce 4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 Elekyromagneická indukce je velmi důležiý jev, jeden ze základů moderní civilizace. Všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

2. MĚŘICÍ ZESILOVAČE A PŘEVODNÍKY

2. MĚŘICÍ ZESILOVAČE A PŘEVODNÍKY . MĚŘCÍ ZESLOVAČE A PŘEVODNÍKY Senzor předsavuje vsupní blok měřicího řeězce. Snímá sledovanou veličinu a převádí ji na veličinu měronosnou, nejčasěji analogový elekrický signál. Výsupem akivního senzoru

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Úsav fyziky a měřicí echniky Pohodlně se usaďe Přednáška co nevidě začne! Základy fyziky + opakovaná výuka Fyziky I Web úsavu: ufm.vsch.cz : @ufm444 Zimní semesr opakovaná výuka + Základy fyziky 2 hodiny

Více

Fyzikální praktikum II - úloha č. 4

Fyzikální praktikum II - úloha č. 4 Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

Vliv funkce příslušnosti na průběh fuzzy regulace

Vliv funkce příslušnosti na průběh fuzzy regulace XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,

Více

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor). Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

Úloha VI.3... pracovní pohovor

Úloha VI.3... pracovní pohovor Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ Auoři: Ing. Radek Jandora, Honeywell spol s r.o. HTS CZ o.z., e-mail: radek.jandora@honeywell.com Anoace: V ovládacím mechanismu

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu

Více

2. ZÁKLADY TEORIE SPOLEHLIVOSTI

2. ZÁKLADY TEORIE SPOLEHLIVOSTI 2. ZÁKLADY TEORIE SPOLEHLIVOSTI Po úspěšném a akivním absolvování éo KAPITOLY Budee umě: orienova se v základním maemaickém aparáu pro eorii spolehlivosi, j. v poču pravděpodobnosi a maemaické saisice,

Více

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2 STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:

Více

14. Soustava lineárních rovnic s parametrem

14. Soustava lineárních rovnic s parametrem @66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský

Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský Jan Malinsý V omo doumenu bude odvozeno sperum vysenuého sinusového signálu pomocí onvoluce ve frevenční oblasi. V časové oblasi e možno eno vysenuý signál vyvoři násobením obdélníového ( V a sinusového

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

4. MĚŘENÍ PROUDU, MĚŘENÍ KMITOČTU A FÁZE

4. MĚŘENÍ PROUDU, MĚŘENÍ KMITOČTU A FÁZE 4. MĚŘENÍ PROUDU, MĚŘENÍ KMIOČU A FÁZE Základní jednokou SI elekrický proud realizace: proudové váhy (primární ealonáž), dnes pomocí Josephsonova konaku (kvanový ealon napěí) a kvanového Hallova jevu (kvanový

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

ROTORŮ TURBOSOUSTROJÍ

ROTORŮ TURBOSOUSTROJÍ ZJIŠŤOVÁNÍ PŘÍČIN ZVÝŠENÝCH VIBRACÍ ROTORŮ TURBOSOUSTROJÍ Prof Ing Miroslav Balda, DrSc Úsav ermomechaniky AVČR + Západočeská univerzia Veleslavínova 11, 301 14 Plzeň, el: 019-7236584, fax: 019-7220787,

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích

Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích Výpočy eploní bilance a chlazení na výkonových spínacích prvcích Úvod Při provozu polovodičového měniče vzniká na výkonových řídicích prvcích zráový výkon. volňuje se ve ormě epla, keré se musí odvés z

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

7. Měření kmitočtu a fázového rozdílu; 8. Analogové osciloskopy

7. Měření kmitočtu a fázového rozdílu; 8. Analogové osciloskopy 7. Měření kmioču a fázového rozdílu; Měření kmioču osciloskopem Měření kmioču číačem Měření fázového rozdílu osciloskopem Měření fázového rozdílu elekronickým fázoměrem 8. Analogové osciloskopy Blokové

Více

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS

Více

6. Optika. Konstrukce vlnoploch pro světlo:

6. Optika. Konstrukce vlnoploch pro světlo: 6. Opika 6. Základní pojmy Tělesa, kerá vysílají svělo, jsou svěelné zdroje. Zářivá energie v nich vzniká přeměnou z energie elekrické, chemické, jaderné. Zdrojem svěla mohou bý i osvělená ělesa (vidíme

Více

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N PLL Fázový deekor Filr smyčky (analogový) Napěím řízený osciláor F g Dělič kmioču 1:N Číače s velkým modulem V současné době k návrhu samoného číače přisupujeme jen ve výjimečných případech. Daleko časěni

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru Asabilní obvod s reálnými operačními zesilovači Josef PUNČOCHÁŘ Kaedra eoreické elekroechniky Fakula elekroechnicky a informaiky Vysoká škola báňská - Technická universia Osrava ř. 17 lisopadu 15, 708

Více

Nakloněná rovina I

Nakloněná rovina I 1.2.14 Nakloněná rovina I Předoklady: 1213 Pomůcky: kulička, sada na měření řecí síly. Až dosud jsme se u všech říkladů uvažovali ouze vodorovné lochy. Př. 1: Vysvěli, roč jsme u všech dosavadních říkladů

Více

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

Hlavní body. Úvod do nauky o kmitech Harmonické kmity Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice

Více

12. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY

12. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY 2. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY měření magneické indukce a inenziy magneického pole (sejnosměrné pole - Hallova a feromagneická sonda, anizoropní magneorezisor; sřídavé pole - měřicí cívka) analogový

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

Popis regulátoru pro řízení směšovacích ventilů a TUV

Popis regulátoru pro řízení směšovacích ventilů a TUV Popis reguláoru pro řízení směšovacích venilů a TUV Reguláor je určen pro ekviermní řízení opení jak v rodinných domcích, ak i pro věší koelny. Umožňuje regulaci jednoho směšovacího okruhu, přípravu TUV

Více

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ..0/.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol SLOVNÍ ÚLOHY VEDOUCÍ

Více

Vybrané metody statistické regulace procesu pro autokorelovaná data

Vybrané metody statistické regulace procesu pro autokorelovaná data XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,

Více

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY - 54-10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY (V.LYSENKO) Základní princip analogově - číslicového převodu Analogové (spojié) y se v nich ransformují (převádí) do číslicové formy. Vsupní spojiý (analogový) doby

Více

PRAKTIKA z FOTOVOLTAIKY

PRAKTIKA z FOTOVOLTAIKY Vyšší odborná škola a Sřední průmyslová škola Varnsdorf PRAKTKA z FOTOVOTAKY ng. Per BANNERT Tao publikace vznikla v rámci projeku: Solární foovolaický sysém a Zelená energie v Českém Švýcarsku a jeho

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer Laboratorní úloha č. Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon Max Šauer 14. prosince 003 Obsah 1 Popis úlohy Úkol měření 3 Postup měření 4 Teoretický rozbor

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE

P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE P Ř Í K L A D Č. OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE Projek : FRVŠ 0 - Analýza meod výpoču železobeonových lokálně podepřených desek Řešielský kolekiv : Ing. Marin Tipka Ing. Josef

Více

PJS Přednáška číslo 2

PJS Přednáška číslo 2 PJS Přednáška číslo Jednoduché elekromagnecké přechodné děje Předpoklady: onsanní rychlos všech očvých srojů (časové konsany delší než u el.-mg. dějů a v důsledku oho frekvence elekrckých velčn. Pops sysému

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ UNVERZTA V LBERC Fakula mecharoniky, informaiky a mezioborových sudií Cvičení č3 k ředměu ELMO Přírava ke cvičení ng Jiří Primas, ng Michal Malík Liberec Maeriál vznikl v rámci rojeku ESF (CZ7//747)

Více

Bipolární tranzistor jako

Bipolární tranzistor jako Elekronické součásky - laboraorní cvičení 1 Bipolární ranzisor jako Úkol: 1. Bipolární ranzisor jako řízený odpor (spínač) ověření činnosi. 2. Unipolární ranzisor jako řízený odpor (spínač) ověření činnosi.

Více

OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE

OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE OBECNÁ LOÁLNĚ PODEPŘENÁ ŽELEZOBETONOÁ STROPNÍ ONSTRUCE Je dán železobeonový monoliický skele (viz schéma konsrukce). Sousední desková pole jsou zaížena rozdílným užiným zaížením. Meodou součových momenů

Více

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou

Více

VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ

VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ Jan Blaška, Miloš Sedláček České vysoké učení echnické v Praze Fakula elekroechnická, kaedra měření 1. Úvod Jak je

Více

5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU

5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU 5. MĚŘENÍ KMIOČU a FÁZOVÉHO ROZDÍLU Měření kmioč: zdroje ealonového kmioč, přímé měření osciloskopem, elekronické analogové kmioměry a vibrační kmioměr, číače (měření f přímo, měření, průměrování, možnos

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Úloha II.E... je mi to šumák

Úloha II.E... je mi to šumák Úloha II.E... je mi o šumák 8 bodů; (chybí saisiky) Kupe si v lékárně šumivý celaskon nebo cokoliv, co se podává v ableách určených k rozpušění ve vodě. Změře, jak dlouho rvá rozpušění jedné abley v závislosi

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

Elektronická měření pro aplikovanou fyziku

Elektronická měření pro aplikovanou fyziku Milan Vůjek Elekronická měření pro aplikovanou fyziku Předkládaný kompilá je určen k výuce sudenů oboru Aplikovaná fyzika. Podává přehled o základních principech elekronických měření a problemaice měření,

Více

5. MĚŘENÍ FÁZOVÉHO ROZDÍLU, MĚŘENÍ PROUDU A NAPĚTÍ

5. MĚŘENÍ FÁZOVÉHO ROZDÍLU, MĚŘENÍ PROUDU A NAPĚTÍ 5. MĚŘEÍ FÁZOVÉHO ROZDÍL, MĚŘEÍ PROD PĚÍ měření fázového rozdílu osciloskopem a číačem, další možnosi měření ϕ (přehled) měření proudu a napěí: ealony, referenční a kalibrační zdroje (včeně principu pulsně-šířkové

Více

2. Vlnění. π T. t T. x λ. Machův vlnostroj

2. Vlnění. π T. t T. x λ. Machův vlnostroj 2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné

Více

ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV

ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV VŠB TU Osrava, Fakula elekroechniky a informaiky, Kaedra měřící a řídící echniky ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV Pavel Nevřiva 007 PŘEDMLUVA Too skripum je věnováno základním meodám, používaným při analýze

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

4. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1, MĚŘENÍ KMITOČTU A FÁZOVÉHO ROZDÍLU

4. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1, MĚŘENÍ KMITOČTU A FÁZOVÉHO ROZDÍLU 4. MĚŘICÍ PŘEVODÍKY ELEKICKÝCH VELIČI, MĚŘEÍ KMIOČ A FÁZOVÉHO OZDÍL Převodníky pro měření soč a rozdíl (s operačním zesilovačem, s ransformáory) Inegrační zesilovač: základní princip a odvození přenos

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Modely simulánních rovnic Problém idenifikace srukurních simulánních rovnic Cvičení Zuzana Dlouhá Modely simulánních rovnic (MSR) eisence vzájemných vazeb mezi proměnnými v modelu,

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE VYTVÁŘENÍ TRŽNÍ ROVNOVÁHY VYBRANÝCH ZEMĚDĚLSKO-POTRAVINÁŘSKÝCH PRODUKTŮ Ing. Michal Malý Školiel: Prof. Ing. Jiří

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

3.2.4 Tekutinové dynamo

3.2.4 Tekutinové dynamo Vybrané jevy 151 1/2 1/2 1/2 2 2 K 2 0 K K K K 2 2 0L 20L 2 2 0L R a pro relaivní změnu heliciy plaí řádový odhad K K R 1/2 (394) Pro rychlé děje (Δ τ R ) je změna heliciy K zanedbaelná Například sluneční

Více

Výroba a užití elektrické energie

Výroba a užití elektrické energie Výroba a užií elekrické energie Tepelné elekrárny Příklad 1 Vypočíeje epelnou bilanci a dílčí účinnosi epelné elekrárny s kondenzační urbínou dle schémau naznačeného na obr. 1. Sesave Sankeyův diagram

Více

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Indexy základní, řeězové a empo přírůsku Aleš Drobník srana 1 7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU V kapiole Indexy při časovém srovnání jsme si řekli: Časové srovnání vzniká, srovnáme-li jednu

Více