Data mining v Terminologické databázi. knihovnictví a informační vědy (TDKIV)

Rozměr: px
Začít zobrazení ze stránky:

Download "Data mining v Terminologické databázi. knihovnictví a informační vědy (TDKIV)"

Transkript

1 VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY VYŠŠÍ ODBORNÁ ŠKOLA INFORMAČNÍCH SLUŽEB Data mining v Terminologické databázi knihovnictví a informační vědy (TDKIV) Projekt Martin Peter Nazeli Abrahamyan Galina Barkova Evgeniy Kalinin Alesia Khimchuk Omir Nugmanov Lukáš Sčislák Praha, květen 2012

2 Tento projekt je zaměřen na analýzu a dolování dat (jinak data mining ) v oblasti knihovnických systémů. Zevrubně přibližuje konkrétní dojmy a závěry vycházející z analýzy přístupů a používání systému Národní knihovny. V dokumentaci jsou vystiženy zajímavé, respektive zvláštní případy užití této databáze, zkoumání stálosti uživatelů systému a zároveň časové analýzy související s přístupy uživatelů. Práce jako celek dá čtenáři z oboru kvalitní přehled o tom, co se ve skutečnosti v interní databázi děje a jak je se systémem pracováno.

3 Předmluva Tato dokumentace je výsledkem společné práce členů týmu, který byl sestaven v zájmu absolvování předmětu s názvem Projekt, který je součástí výuky oboru Podnikové informační systémy na Vysoké škole ekonomické v letním semestru. S ohledem na nutnost dodržení časového limitu při zpracovávání tohoto projektu je na začátku dokumentace poskytnut propracovaný použitý harmonogram, který bylo nutno plnit a řídit se jím. Úvodní část je koncipována tak, aby bylo možné pochopit veškeré zkratky a značky bez předchozí znalosti. Na úvod navazuje hlavní část, resp. dvě části, které jsou zaměřeny na statistické rozbory a na samotný data mining. Obě tyto části obsahují řešení konkrétních námětů. V závěru je uveden stručný přehled nejdůležitějších přínosů pro členy týmu, ale zároveň i přehled problémů, s nimiž se kolektiv musel vypořádat. 3

4 4

5 Obsah 1 Harmonogram Dokumentace projektu Úvod Řešené náměty a úkoly Statistický rozbor vyhledávacích logů... 8 Četnost zadávaných výrazů Zipfův zákon a Paretovo rozdělení... 8 Četnost podle typu vyhledávání Četnost hledaných a nalezených výrazů Extrémní dotazy Paretovo rozdělení Paretovo rozdělení Četnost podle doby vyhledávání Data mining a business inteligence Shoda hledaného slova s databází Podíl dotazů na termíny z oblasti ICT Podíl úspěšných dotazů Četnost typů vyhledávání CWOK Analýza Podíl nepreferovaných termínů Závěr Přínos pro členy týmu Problémy při řešení úkolu

6 1 Harmonogram Návštěva zadavatelského pracoviště, kontakt se zadavateli Formulace zadání, stanovení harmonogramu projektu předložení vyučujícímu. Inventarizace schopností a znalost členů týmu využitelných v projektu Zahájení prací a sestavení detailního plánu následujícího postupu kontrolní den projektu - prezentace věcných výsledků dosavadního průběhu řešení zadavateli. 20% Konzultace vyvstalých nesrovnalostí nebo nejasností se zadavatelem, práce z 33% hotova Feedback jednotlivých úkolů vedoucímu, konzultace a upřesnění dalších požadavků. 50% kontrolní den projektu - příprava na odevzdání výsledků práce zadavateli, fáze kontroly a ladění výsledků. 90% Odevzdání výsledků práce zadavateli, odevzdání tištěné dokumentace projektu vyučujícímu Veřejná prezentace projektu, odevzdání elektronické verze dokumentace projektu vyučujícímu. 6

7 2 Dokumentace projektu 2.1 Úvod Disponujeme daty od zadavatele, která reprezentují vyhledávané údaje, včetně dalších informací. Jedná se o výrazy, které jsou vyhledávány prostřednictvím TDKIV databáze NK. Data byla uložena v souborech Excel. Ještě než se pustíme do samotné analýzy, vysvětlíme si zkratky, které se v datech vyskytují. Data jsou rozdělena do sloupců s názvy: TIME_STAMP časové razítko čas, kdy byl dotaz zadán DATUM datum dotazu ve formátu YYYYMMDD CAS čas dotazu ve formátu HHMM IP část IP adresy počítače, ze kterého byl dotaz zadán HITS počet nalezených záznamů TDKIV a KKL vysvětlení údajů TYP událost; ve sloupci jsou uvedeny kódy událostí: 10 hledání záznamy nalezeny 11 hledání dosaženo limitu 12 hledání záznamy nenalezeny 20 vyhledávání z více polí (find-a) 21 základní vyhledávání (find-b) 22 vyhledávání CCL (find-c) 23 pokročilé vyhledávání (find-d) 24 vyhledávání z více bází (find-m) 25 zpřesnit dotaz 26 kombinovat dotaz 29 vyhledávání v rejstřících 31 vyhledávání protokolem Z prohlížení rejstříků protokolem Z39.50 DB báze, ve které byl proveden dotaz: KTD oficiální báze KTDP pracovní báze KTDBN dílčí báze Termíny bez normativního výkladu KTDN dílčí báze Termíny s normativním výkladem SEARCH / SCAN vyhledávání / prohlížení rejstříků Označení rejstříků TDKIV TR termín/ekvivalent TE anglický ekvivalent TK věcná skupina 7

8 AU autor hesla RE redaktor hesla KZ konzultant hesla LK lektor hesla ZD zdroj/norma (kód bez hodnoty např. TR= znamená, že dotaz pouze odklepnut bez zadání) 2.2 Řešené náměty a úkoly Statistický rozbor vyhledávacích logů Četnost zadávaných výrazů Zipfův zákon a Paretovo rozdělení Zipfův zákon je zákon o rozdělení četnosti slov v nějakém jazyce: pokud všechna slova v jazyce uspořádáme podle sestupné četnosti jejich používání, četnost n-tého slova bude nepřímo úměrná jeho pořadovému číslu n. Například druhé nejpoužívanější slovo se vyskytne dvakrát méně než první, třetí třikrát atd. Byla zhotovena analýza četnosti výrazů vyhledávaných v databázi TDKIV a zkompletovány níže uvedené výsledky. n Výraz Počet výskytů 1 knihovna informace rešerše Akvizice dokument anotace bibliografie abstrakt databáze kniha tezaurus Verifikace rss web Žurnalismus Mileny Jesenské Kritický hlas v meziválečné střední Evropě 1 Z tabulky můžeme vidět, že počet výskytů klesá mnohem rychleji, než roste pořadové číslo slova n. 8

9 Graficky znázorníme výsledek pro prvních 500 slov: Z grafů je vidět, že slova, které se vyskytují cca 50krát jsou uprostřed grafu. Slova s výskytem 30 mají n = 500. Vidíme, že se výsledek grafu hodně podobá výše zmíněnému Zipfovu pravidlu. Nyní zbývá ověřit, že četnost zadávaných výrazů odpovídá Paretovu pravidlu, tedy že nastává situace, kdy 80% následků způsobuje 20% příčin. Včetně překlepů celkově bylo provedeno unikátních vyhledávání (znamená to, že mezi vyhledávání se ani jedno neopakovalo). Vypočítáme, že z toho 20% je cca 3766 slov. Roztřídíme slova podle nejvyhledávanějších a vezmeme si 3766 slov shora (nejpopulárnější). Dále byl proveden výpočet, kolikrát byly tyto výrazy vyhledané (teď už i s opakovanými výsledky). Dostaneme se k číslu 71891, což je 74,65% z celkového počtu vyhledávání. Výsledkem porovnávání byl závěr, že 75% výsledků z celé databáze bylo tvořeno pouze 20 procenty všech možných vyhledávání. 9

10 Četnost podle typu vyhledávání Četnost podle typu vyhledávání byla nalezena použitím nástrojů pro data mining STATISTICA společnosti StatSoft ČR, s.r.o. Zaprvé jsme museli roztřídit log TDKIV podle typu vyhledávání. Dále jsme udělali rozklad údajů a zjistilo se, že ze všech existujících 12 typů vyhledávání bylo použito pouze 5: 21 - základní vyhledávání (find-b) 22 - vyhledávání CCL (find-c) 25 - zpřesnit dotaz 26 - kombinovat dotaz 31 - vyhledávání protokolem Z Přičemž podíl typu 21 je 97,84%, 22-1,28%, 25-0,03%, 31-0,85%; typ 26 byl použit pouze jednou což je jedna tisícina jednoho procenta. Závěrem - skoro všichni uživatelé používají jednoduché základní vyhledávání bez ohledu na to, jestli se jim podaří něco najít. Pokud ne, tak většinou z databáze odejdou - skoro žádný uživatel totiž nestuduje návody k vyhledávání, aby našel něco konkrétnějšího a věnoval méně času pátrání po výsledku. 10

11 Četnost hledaných a nalezených výrazů V tomto případě šlo o nalezení četnosti hledaných a nalezených výrazů v průběhu jedné session pro jednu IP adresu. Pro práci s daty v programu Microsoft Excel byly jako vhodný postup zvoleny kontingenční tabulky, protože kontingenční tabulky mohou shrnout velké množství dat různými typy výpočtů, dá se automaticky zbavit duplicit, zjistit vztahy mezi dvěma kategoriálními veličinami atd. Nejprve byla celá tabulka s daty v Excelu označena jako databáze pod určitým názvem. Pak byla vytvořena kontingenční tabulka s popisem řádků IP, Session ID a s hodnotou HITS. Z vytvořené kontingenční tabulky můžeme vidět celkový součet nalezených výrazů (96305) a celkový součet nenalezených výrazů (34979), vydělíme celkový součet nalezených výrazů celkovým součtem nalezených a nenalezených výrazů a dostaneme celkovou četnost hledaných a nalezených výrazů 0,73. Porovnáním sloupců nalezených a nenalezených výrazů jsme zjistili jednotlivou četnost nalezených a nenalezených výrazů. Jednotlivá četnost nalezených a nenalezených výrazů je 1,4. 11

12 Extrémní dotazy Jako extrémní dotazy do databáze TDKIV jsou chápány dotazy, které mají největší počet HITS (viz Úvod). Použit byl stejný postup jako v předchozím případě. Byla vytvořena kontingenční tabulka a pomocí filtru byly seřazeny dotazy v pořadí od největšího počtu do nejmenšího. Výsledkem je 455 dotazů v databázi TDKIV, které mají více než 200 hitů tedy kliknutí/návštěv/otevření. Nejvyhledávanější dotaz je Free-text= informace s počtem hitů. Viz. Tab

13 Paretovo rozdělení Pomocí statistiky bylo vypočítáno kolik vyhledávání má každá IP adresa. Následně bylo zjištěno, kolik je 20% ze všech IP adres. Výsledkem je 111 IP adres. Zhotovením součtu vyšlo, že z 20% všech IP adres bylo vyhledáno 87 % všech dotazů. Z ostatních 80% bylo vyhledáváno pouze 13 procent všech dotazů. Ze zjištění vyplývá, že: Paretovo pravidlo je nejen potvrzeno, ale ještě přesaženo. Existuje rozsáhlá skupina stabilních častých uživatelů, protože 20% IP adres vyhledávalo 87% dotazů. Četnost podle doby vyhledávání Četnost podle doby vyhledávání uživatele je uvedena na příkladu 3 IP adres. Všichni uživatelé byli rozdělení podle IP adres. Pomocí filtru kontingenční tabulky bylo dále rozděleno přihlášení podle kódu data a času, který v databázi uživatelé strávili. Výsledný čas bylo nutno spočítat samostatně pro každý den. Výslednými časy jsme získali přehled, jak dlouhou dobu byl uživatel celkově připojen. Průměrně uživatelé v databázi strávili kolem 55 minut. Příklad: Počet spojení Celková doba strávená v DB Průměrně v DB na připojení hod 58min 120 minut 17 8hod 15min 29 minut 13 18hod 28min 85 min 13

14 Data mining a business inteligence Shoda hledaného slova s databází Veškerá analýza dat byla realizována v Excelu (neduplicitní údaje). Pomocí speciální funkce byly porovnány logy vyhledávaných výrazů (termíny, které uživatelé zadali do databáze) s výpisem obsahu TDKIV (zásobník databáze). Funkce porovnávala každé slovo ze sloupce vyhledávané logy s celým sloupcem výpis obsahu TDKIV, a výstupem byl sloupec, který obsahoval vyhledávané termíny, které se přesně shodují s termíny z databáze. Stejným postupem bylo nalezeno, na které termíny z databáze se uživatelé vůbec neptali. Podíl dotazů na termíny z oblasti ICT Seznam termínů z oblasti ICT byl vyhledán na stránkách NKP (zadáním zkratek IA, ABC,ABDB do vyhledávacího pole třídník). Následně byly porovnány ICT termíny výše uvedeným postupem se sloupcem shoda vyhledávaných slov s TDKIV. (Počet vyhledávaných ICT termínů vydělen celkovým počtem úspěšně vyhledávaných slov, čímž byl získán podíl.) POČET VYHLEDÁVANÝCH SLOV Z DATABÁZE TDKIV 2458 POČET DOTAZŮ NA TERMÍNY Z OBLASTI ICT 149 PODÍL DOTAZŮ NA TERMÍNY Z OBLASTI ICT 1/16 14

15 Podíl úspěšných dotazů Abychom se mohli dozvědět podíl neúspěšných dotazů, bylo nutno použít data s výsledky vyhledávání v databázi, která jsme obdrželi od našeho zadavatele. Našli jsme všechny neúspěšné dotazy a odstranili duplicity. Dalším krokem bylo srovnání neúspěšných dotazů s úspěšnými a porovnání jejich objemu. Podíl neúspěšných dotazů je 36,3%. Graf pro lepší náhled: PODÍL DOTAZŮ Dotazy Počet Podíl úspěšné ,70% neúspěšné ,30% celkem % 15

16 Četnost typů vyhledávání Během fáze pokusů a testování jsme dospěli k závěru, že systém v 99,9% případů při změně typu vyhledávání přiřazuje nové Session ID. Aby naše zadání mělo smysl, musíme zaprvé definovat, jak chápeme jednu session, tedy jedno aktuální sezení, v daný moment, na daném PC. To by dávalo smysl, pokud bychom se na to podívali ze strany uživatele: jaké typy využijeme za dobu jednoho připojení. Takže, jaké typy využívá, jedná IP adresa během jednoho dne? Průběžným výsledkem bylo zjištění, že uživatelé používali jenom 5 typů: 21, 22, 25, 26,31. V 70% případů uživatel během jedné Session využíval pouze jeden typ - buď 21, nebo 22. Pokud se uživateli nepovedlo výraz najít, pak pouze v 30% případů zkoušeli uživatelé hledat výraz jako jiný typ. Z těchto 30% dále 48% uživatelů zase zkoušelo typ, který používali předtím (střídali třeba 21 a 22). Co se týká pořadí, tak ho nelze jednoznačně určit. Každý uživatel každý den využívá typy v různém pořadí. U IP adres, které využívají databáze často, začínalo někdy hledání typem 22., jinak ostatní uživatelé většinou začínali vyhledávání typem 21. Četnost v jednotlivých typech v průběhu 1 session je tedy skoro stejná, jako celková četnost typů. Dobře to znázorňuje graf: 16

17 CWOK Analýza Zaprvé odstraníme nulový počet vyhledávání ve sloupci HITS (list Search KTD). Upravíme do přijatelného tvaru text ve sloupci SEARCH TEXT a odstraníme duplicity. Dále zkopírujeme SEARCH text do zvláštního listu CWOK. Pak tento text rozdělíme dle jednotlivých slov a seřadíme od nejdelšího do nejkratšího. Tím pádem nejdelší věta je obsazena v buňkách B až P. Věta o jedno menší se nachází v rozmezí buněk B, až K. Pokračujeme zprava doleva a skončíme tím, že jedno slovo se rovná jedné větě. Dále zkopírujeme tento výstup a vyčíslujeme ho římskými ciframi od I do XV. Jelikož se jedná o metodu CWOK, musíme přidat celé věty mezi buňky s těmito římskými ciframi. Výstupem je srovnání klíčového slova s celou větou. Např. obrázek ukazuje klíčové slovo Recepce a sousloví recepce díla vnímání díla přijetí díla. Další klíčové slovo se nachází ve sloupci S díla a vedle zase máme větu. Celková databáze CWOK se nachází v rozmezí sloupců Q až AT. 17

18 Podíl nepreferovaných termínů Zaprvé odstraníme nulový počet vyhledávání ve sloupci HITS (list Search KTD). Upravíme do přijatelného tvaru text ve sloupci SEARCH TEXT a odstraníme duplicity. Dále zkopírujeme SEARCH text do zvláštního listu Analýza. Také upravíme do přijatelného tvaru, odstraníme duplicity a oddělíme zvlášť slova obsahující 3 velká písmena. Pak použijeme logickou funkci NEBO pro ověření argumentů ve sloupcích SEARCH_TEXT a Obsah TDKTV. Jako výstup nás zajímá pouze PRAVDA. Celkový počet polí PRAVDA činí Jedná se o preferované termíny. Pro zjištění nepreferovaných termínů musíme nastavit filtr ve sloupci Kriterium a zvolit EKV. Celkový počet nepreferovaných termínů činí 349. Procentuální podíl nepreferovaných termínů činí 14, 88 %. 18

19 3 Závěr Tímto projektem si celý tým ucelil svoje pracovní nebo organizační schopnosti, zjistil v čem je dobrý více a v čem méně. Analyzování a dolování informací z dat je činnost zajímavá a pro návrháře, testery a vývojáře i obohacující, protože na základě zjištěných údajů mohou přizpůsobovat nebo vylepšovat jejich aplikace. Pro společnost vlastnící takovou databázovou aplikaci je také data mining důležitý zjistí na které skupiny uživatelů se více zaměřit, zdali mají stále uživatele a tak dále. Projekt byl úspěšný, v každém případě byl nalezen nějaký výsledek, ať už pozitivní, nebo překvapivý. 3.1 Přínos pro členy týmu Zkušenost s vedením týmu, aby dosáhl nejlepšího výsledku. Pro mě osobně největším přínosem v za prvé byl sledování vedoucího týmu při delegování úkolů, a za druhé praktické zkušenosti analýzy dat a jejích hodnocení. Tento projekt mi změnil názor na to, co všechno se dá s daty dělat. Taky to, že z takového malého množství sloupců (kategorií) se dá vyvodit mnoho informací užitečných, které nejdou na první pohled vidět. Uvědomil jsem si, že se data miningem v budoucnu už zabývat nechci, není to obor pro mě. Možnost pracovat s týmem a řídit jej je pro mě velice cenná, spolupráce týmu mě z 90% potěšila a mile překvapila. 3.2 Problémy při řešení úkolu Při analýze dat bylo těžké najít správný software. Většinou program, který má funkce data mining je placený. Když jsme zkusili analyzovat ručně, pochopili jsme, že rozsah je větší, než jsou možnosti studenta. Ale všechno jsme vyřešili díky aktivní spolupráci a správnému koučování. Nepochopení individuálních úkolů a zdržení při jejích řešení. 19

Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Podnikové informační systémy

Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Podnikové informační systémy Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Podnikové informační systémy Datamining v bázi KKL Řešitelský tým: Jan Duchaň - vedoucí týmu Jakub Malina - zástupce vedoucího týmu Ondřej

Více

Odborná terminologie knihovnictví a informační vědy očima uživatelů databáze TDKIV Předběžné výsledky projektu. Helena Kučerová VOŠIS Praha

Odborná terminologie knihovnictví a informační vědy očima uživatelů databáze TDKIV Předběžné výsledky projektu. Helena Kučerová VOŠIS Praha Odborná terminologie knihovnictví a informační vědy očima uživatelů databáze TDKIV Předběžné výsledky projektu Helena Kučerová VOŠIS Praha 1 Cíl projektu: Využít metody kvantitativní analýzy k objevení

Více

Slovníkové databáze Knihovnického institutu Národní knihovny ČR - TDKIV a KZK. Bc. Jaroslava Havlová, DiS. PhDr. Anna Machová

Slovníkové databáze Knihovnického institutu Národní knihovny ČR - TDKIV a KZK. Bc. Jaroslava Havlová, DiS. PhDr. Anna Machová Slovníkové databáze Knihovnického institutu Národní knihovny ČR - TDKIV a KZK Bc. Jaroslava Havlová, DiS. PhDr. Anna Machová Osnova Česká terminologická databáze knihovnictví a informační vědy TDKIV Databáze

Více

Data mining pro Terminologickou databázi knihovnictví a informačních věd (TDKIV) (Projektová dokumentace)

Data mining pro Terminologickou databázi knihovnictví a informačních věd (TDKIV) (Projektová dokumentace) Data mining pro Terminologickou databázi knihovnictví a informačních věd (TDKIV) (Projektová dokumentace) Vojtěch Pudil (Vedoucí projektu) Petr Kohout (Zástupce vedoucího projektu) Dana Čapkovičová (Člen

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 MS Access 2002 Grada - po spuštění je třeba kliknout do středu obrazovky - v dalším dialogovém okně (Přihlášení) vybrat uživatele, zřídit Nového uživatele nebo zvolit variantu Bez přihlášení (pro anonymní

Více

Microsoft Office. Excel vyhledávací funkce

Microsoft Office. Excel vyhledávací funkce Microsoft Office Excel vyhledávací funkce Karel Dvořák 2011 Vyhledávání v tabulkách Vzhledem ke skutečnosti, že Excel je na mnoha pracovištích používán i jako nástroj pro správu jednoduchých databází,

Více

Evropský zemědělský fond pro rozvoj venkova: Evropa investuje do venkovských oblastí. v cestovním ruchu P3. Pavel Petr Petr.USII@upce.

Evropský zemědělský fond pro rozvoj venkova: Evropa investuje do venkovských oblastí. v cestovním ruchu P3. Pavel Petr Petr.USII@upce. Využití informačních technologií v cestovním ruchu P3 Pavel Petr Petr.USII@upce.cz 1 Obsah kurzu Princip vyhledávání Definování vyhledávacích požadavků Vyhledávací nástroje Zdroje informací Nástroje pro

Více

Využití tabulkového procesoru MS Excel

Využití tabulkového procesoru MS Excel Semestrální práce Licenční studium Galileo srpen, 2015 Využití tabulkového procesoru MS Excel Ing Marek Bilko Třinecké železárny, a.s. Stránka 1 z 10 OBSAH 1. ÚVOD... 2 2. DATOVÝ SOUBOR... 2 3. APLIKACE...

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat

Více

Efektivní práce s Excelem (středně pokročilí uživatelé)

Efektivní práce s Excelem (středně pokročilí uživatelé) 2015 Efektivní práce s Excelem (středně pokročilí uživatelé) rozsah: 2 dny (10 hodin) Mgr. Jiří Číhař www.dataspectrum.cz Efektivní práce s Excelem pro středně pokročilé uživatele Práce s rozsáhlými tabulkami

Více

StatSoft Odkud tak asi je?

StatSoft Odkud tak asi je? StatSoft Odkud tak asi je? Ukážeme si, jak bychom mohli vypočítat pravděpodobnosti, na které jsme se ptali v minulém newsletteru Úkolem bylo zjistit, z kterého kraje nejpravděpodobněji pochází náš výherce

Více

Řazení řádků ve vzestupném pořadí (A až Z nebo 0 až 9) nebo sestupném pořadí (Z až A nebo 9 až 0)

Řazení řádků ve vzestupném pořadí (A až Z nebo 0 až 9) nebo sestupném pořadí (Z až A nebo 9 až 0) Řazení oblasti Řazení řádků ve vzestupném pořadí (A až Z nebo 0 až 9) nebo sestupném pořadí (Z až A nebo 9 až 0) 1. Klepněte na buňku ve sloupci, podle kterého chcete řádek seřadit. 2. Klepněte na tlačítko

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 MS Excel 2002 Grada - po spuštění je třeba kliknout do středu obrazovky - v dalším dialogovém okně (Přihlášení) vybrat uživatele, zřídit Nového uživatele nebo zvolit variantu Bez přihlášení (pro anonymní

Více

Předmluva 11 Typografická konvence použitá v knize 12. 1 Úvod do Excelu 2003 13

Předmluva 11 Typografická konvence použitá v knize 12. 1 Úvod do Excelu 2003 13 Předmluva 11 Typografická konvence použitá v knize 12 1 Úvod do Excelu 2003 13 Spuštění a ukončení Excelu 14 Spuštění Excelu 14 Ukončení práce s Excelem 15 Přepínání mezi otevřenými sešity 16 Oprava aplikace

Více

Analýza a testování uživatelského rozhraní bibliografické oborové brány Knihovnictví a informační vědy (KIV)

Analýza a testování uživatelského rozhraní bibliografické oborové brány Knihovnictví a informační vědy (KIV) Analýza a testování uživatelského rozhraní bibliografické oborové brány Knihovnictví a informační vědy (KIV) Dokumentace Řešitelský tým: Petra Kastlová Magdaléna Vrbasová Martin Gajdoš Petr Bartaloš Zimní

Více

PRODUKTY. Tovek Tools

PRODUKTY. Tovek Tools jsou desktopovou aplikací určenou k vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci i s velkým objemem textových dat z různorodých informačních zdrojů.

Více

PRODUKTY. Tovek Tools

PRODUKTY. Tovek Tools Analyst Pack je desktopovou aplikací určenou k vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci i s velkým objemem textových dat z různorodých informačních

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

Slučování tabulek. Sloučení dvou tabulek

Slučování tabulek. Sloučení dvou tabulek Slučování tabulek Newsletter Statistica ACADEMY Téma: Příprava dat Typ článku: Návody Máte informace ve více tabulkách a chcete je sloučit dohromady? Pak je tento článek právě pro Vás. Vysvětlíme, jaké

Více

POKROČILÉ POUŽITÍ DATABÁZÍ

POKROČILÉ POUŽITÍ DATABÁZÍ POKROČILÉ POUŽITÍ DATABÁZÍ Barbora Tesařová Cíle kurzu Po ukončení tohoto kurzu budete schopni pochopit podstatu koncepce databází, navrhnout relační databázi s využitím pokročilých metod, navrhovat a

Více

MS Excel 2007 Kontingenční tabulky

MS Excel 2007 Kontingenční tabulky MS Excel 2007 Kontingenční tabulky Obsah kapitoly V této kapitole se seznámíme s nástrojem, který se používá k analýze dat rozsáhlých seznamů. Studijní cíle Studenti budou umět pro analýzu dat rozsáhlých

Více

Tovek Tools. Tovek Tools jsou standardně dodávány ve dvou variantách: Tovek Tools Search Pack Tovek Tools Analyst Pack. Připojené informační zdroje

Tovek Tools. Tovek Tools jsou standardně dodávány ve dvou variantách: Tovek Tools Search Pack Tovek Tools Analyst Pack. Připojené informační zdroje jsou souborem klientských desktopových aplikací určených k indexování dat, vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci s velkým objemem textových

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Grafy opakování a prohloubení Při sestrojování grafu označíme tabulku a na kartě Vložit klikneme na zvolený graf

Grafy opakování a prohloubení Při sestrojování grafu označíme tabulku a na kartě Vložit klikneme na zvolený graf Pátek 30. září Grafy opakování a prohloubení Při sestrojování grafu označíme tabulku a na kartě Vložit klikneme na zvolený graf Nástroje grafu (objeví se při označeném grafu) - 3 záložky návrh, rozložení,

Více

Pracovní list VY_32_INOVACE_33_15 Databáze Databáze Databáze Test Ing. Petr Vilímek

Pracovní list VY_32_INOVACE_33_15 Databáze Databáze Databáze Test Ing. Petr Vilímek VY_32_INOVACE_33_15 Pracovní list Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, roč. Anotace Přínos/cílové kompetence

Více

Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků)

Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků) Základní výpočty pro MPPZ Teorie Aritmetický průměr = součet hodnot znaku zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Modus = hodnota souboru s nejvyšší četností Medián =

Více

Obsahy kurzů MS Office

Obsahy kurzů MS Office Obsahy kurzů MS Office V současné době probíhají kurzy MS Office 2010 s následující osnovou: 1. Základy práce na PC, MS Office - praktické užití Kurz je určen pro všechny, kteří mají s prací na PC minimální

Více

NÁVOD NA PŘÍSTUP K SEZNAMU VÝPISŮ A DUPLIKÁTŮ

NÁVOD NA PŘÍSTUP K SEZNAMU VÝPISŮ A DUPLIKÁTŮ INSTITUT PRO TESTOVÁNÍ A CERTIFIKACI, a. s. www.itczlin.cz NÁVOD NA PŘÍSTUP K SEZNAMU VÝPISŮ A DUPLIKÁTŮ Obsah: I. Návod na registraci pro přístup k Seznamu osvědčených VHP i TZ a seznamu duplikátů II.

Více

EBSCO. http://search.ebscohost.com. Poklikneme na možnost EBSCOhost Web. Vybereme (poklepeme, zaškrtneme) databázi, s kterou chceme pracovat.

EBSCO. http://search.ebscohost.com. Poklikneme na možnost EBSCOhost Web. Vybereme (poklepeme, zaškrtneme) databázi, s kterou chceme pracovat. EBSCO http://search.ebscohost.com Poklikneme na možnost EBSCOhost Web Vybereme (poklepeme, zaškrtneme) databázi, s kterou chceme pracovat. Vyhledávací techniky Rejstříky Pomůckou pro vyhledávání jsou rejstříky,

Více

Statistika. pro žáky 8. ročníku. úterý, 26. března 13

Statistika. pro žáky 8. ročníku. úterý, 26. března 13 Statistika pro žáky 8. ročníku Co je to statistika? Statistika je věda, která se snaží zkoumat reálná data a přibližuje nám zkoumaný jev a zákonitosti s ním spojené. Co nám statistika přináší? Co nám statistika

Více

OSOBA JEDNAJÍCÍ ZA SPRÁVCE ČÍSELNÍKU NÁVOD K OBSLUZE INFORMAČNÍHO SYSTÉMU O DATOVÝCH PRVCÍCH (ISDP)

OSOBA JEDNAJÍCÍ ZA SPRÁVCE ČÍSELNÍKU NÁVOD K OBSLUZE INFORMAČNÍHO SYSTÉMU O DATOVÝCH PRVCÍCH (ISDP) OSOBA JEDNAJÍCÍ ZA SPRÁVCE ČÍSELNÍKU NÁVOD K OBSLUZE INFORMAČNÍHO SYSTÉMU O DATOVÝCH PRVCÍCH (ISDP) Obsah Úvod...2 Co je ISDP...2 Jaké jsou funkce ISDP...2 Slovník pojmů...2 Dílčí DP...2 DS...2 ISDP...2

Více

Databáze v Excelu EU peníze středním školám Didaktický učební materiál

Databáze v Excelu EU peníze středním školám Didaktický učební materiál Databáze v Excelu EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT4.18 Předmět: IVT Tematická oblast: Microsoft Office 2007 Autor: Ing. Vladimír Šauer Škola:

Více

KAPITOLA 11 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 11 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 11 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM FILTROVÁNÍ DAT Po filtrování dat jsou zobrazeny pouze řádky, které splňují zadaná kritéria, a řádky, které nechcete zobrazit, jsou skryty. Filtrovat

Více

INFORMATIKA EXCEL 2007

INFORMATIKA EXCEL 2007 INFORMATIKA EXCEL 2007 Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Vzdělávací okruh Druh učebního materiálu Cílová skupina Střední

Více

Seznam funkcí pro kurz EXCEL I. Jaroslav Nedoma

Seznam funkcí pro kurz EXCEL I. Jaroslav Nedoma Seznam funkcí pro kurz EXCEL I Jaroslav Nedoma 2010 Obsah ÚVOD... 3 SUMA... 4 PRŮMĚR... 6 MIN... 8 MAX... 10 POČET... 12 POČET2... 14 ZAOKROUHLIT... 16 COUNTIF... 18 SVYHLEDAT... 22 2 ÚVOD Autor zpracoval

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

Excel - pokračování. Př. Porovnání cestovních kanceláří ohraničení tabulky, úprava šířky sloupců, sestrojení grafu

Excel - pokračování. Př. Porovnání cestovních kanceláří ohraničení tabulky, úprava šířky sloupců, sestrojení grafu Excel - pokračování Př. Porovnání cestovních kanceláří ohraničení tabulky, úprava šířky sloupců, sestrojení grafu Př. Analýza prodeje CD základní jednoduché vzorce karta Domů Př. Skoky do dálky - funkce

Více

Bibliografické databáze umění vyhledávat v záplavě pramenů relevantní informace

Bibliografické databáze umění vyhledávat v záplavě pramenů relevantní informace Bibliografické databáze umění vyhledávat v záplavě pramenů relevantní informace Jitka Stejskalová Ústav vědeckých informací 1. LF UK Jak si obstarám informace? informační exploze mnoho informací a jak

Více

Informační a komunikační technologie

Informační a komunikační technologie Dodatek č. Školního vzdělávacího programu Obchodní akademie Lysá nad Labem, obor 63-4-M/02 Obchodní akademie, platného od. 9. 202 - platnost dodatku je od. 9. 206 Informační a komunikační technologie je

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Informační

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Návod pro práci s aplikací

Návod pro práci s aplikací Návod pro práci s aplikací NASTAVENÍ FAKTURACÍ...1 NASTAVENÍ FAKTURAČNÍCH ÚDA JŮ...1 Texty - doklady...1 Fakturační řady Ostatní volby...1 Logo Razítko dokladu...2 NASTAVENÍ DALŠÍCH ÚDA JŮ (SEZNAMŮ HODNOT)...2

Více

ISI WEB OF SCIENCE - manuál

ISI WEB OF SCIENCE - manuál ISI WEB OF SCIENCE - manuál Obsahuje především bibliografické údaje a abstrakty článků cca 8 000 vědeckých a odborných časopisů z oblasti přírodních a společenských věd od roku 1945 do současnosti. U některých

Více

Příručka aplikace Registr de minimis

Příručka aplikace Registr de minimis Příručka aplikace Registr de minimis Obsah Úvod...1 Souhrnné informace...2 Podrobné informace o podporách konkrétního příjemce...3 Číselníky...4 Informace o subjektu přihlášeného uživatele...5 Podrobné

Více

EXCELentní tipy a triky pro mírně pokročilé. Martina Litschmannová

EXCELentní tipy a triky pro mírně pokročilé. Martina Litschmannová EXCELentní tipy a triky pro mírně pokročilé Martina Litschmannová Obsah semináře definování názvu dynamicky měněné oblasti, kontingenční tabulky úvod, kontingenční tabulky násobné oblasti sloučení, převod

Více

OBSAH. Word. První spuštění a hlavní obrazovka Wordu 3 Základní nastavení Wordu 6 Kontrola pravopisu a mluvnice 8 Nastavení ukládání dokumentu 12

OBSAH. Word. První spuštění a hlavní obrazovka Wordu 3 Základní nastavení Wordu 6 Kontrola pravopisu a mluvnice 8 Nastavení ukládání dokumentu 12 OBSAH Word Uživatelské prostředí Wordu...................3 První spuštění a hlavní obrazovka Wordu 3 Základní nastavení Wordu 6 Kontrola pravopisu a mluvnice 8 Nastavení ukládání dokumentu 12 Vytvoření

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Informační

Více

Vyhledávací a databázové funkce v MS Excel 2007. Martin Tůma

Vyhledávací a databázové funkce v MS Excel 2007. Martin Tůma 1 Úvod Vyhledávací a databázové funkce v MS Excel 2007 Martin Tůma Cílem této seminární práce je stručně vysvětlit princip a syntaxi vyhledávacích a databázových funkcí v aplikaci MS Excel 2007 a na praktických

Více

Stručný obsah. K2118.indd 3 19.6.2013 9:15:27

Stručný obsah. K2118.indd 3 19.6.2013 9:15:27 Stručný obsah 1. Stručný obsah 3 2. Úvod 11 3. Seznamy a databáze v Excelu 13 4. Excel a externí data 45 5. Vytvoření kontingenční tabulky 65 6. Využití kontingenčních tabulek 81 7. Kontingenční grafy

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_33_05 Škola Střední průmyslová škola Zlín Název projektu, reg. č. Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávací oblast Vzdělávání v informačních a komunikačních

Více

MANUÁL K PROGRAMU JEDNODUCHÝ SKLAD (VER-1.2)

MANUÁL K PROGRAMU JEDNODUCHÝ SKLAD (VER-1.2) MANUÁL K PROGRAMU JEDNODUCHÝ SKLAD (VER-1.2) Program byl vytvořený za účelem uchovávání artiklů (položek) a jejich cen. Základním cílem bylo vytvořit uživatelsky příjemné prostředí s mnoha funkcemi ve

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Evidence technických dat

Evidence technických dat 4 Evidence technických dat V té to ka pi to le: Evidence majetku Evidence zakázek Evidence technické dokumentace Kapitola 4 Evidence technických dat Povinnost evidovat různé druhy dat má každý podnikatelský

Více

Středoškolská odborná činnost SOČ

Středoškolská odborná činnost SOČ Středoškolská odborná činnost SOČ 33. ročník - 2010/2011 1. CO JE SOČ? Středoškolská odborná činnost (SOČ) je dobrovolná zájmová činnost studentů středních škol. Výsledkem SOČ je samostatně vypracovaná

Více

Grafy EU peníze středním školám Didaktický učební materiál

Grafy EU peníze středním školám Didaktický učební materiál Grafy EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT4.09 Předmět: IVT Tematická oblast: Microsoft Office 2007 Autor: Ing. Vladimír Šauer Škola: Gymnázium,

Více

Řešení. ŘEŠENÍ 36 Výsledková listina soutěže

Řešení. ŘEŠENÍ 36 Výsledková listina soutěže Příklad zahrnuje Textová editace buněk Základní vzorce Vložené kliparty Propojené listy Grafická úprava buněk Složitější vzorce Vložené externí obrázky Formuláře Úprava formátu Vysoce speciální funkce

Více

FUNKCE 3. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika

FUNKCE 3. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika FUNKCE 3 Autor: Mgr. Dana Kaprálová Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

Vzorová prezentace do předmětu Statistika

Vzorová prezentace do předmětu Statistika Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Níže uvedená tabulka obsahuje technické údaje a omezení aplikace Excel (viz také článek Technické údaje a omezení aplikace Excel (2007).

Níže uvedená tabulka obsahuje technické údaje a omezení aplikace Excel (viz také článek Technické údaje a omezení aplikace Excel (2007). Níže uvedená tabulka obsahuje technické údaje a omezení aplikace - (viz také článek Technické údaje a omezení aplikace Excel (). otevřených sešitů a systémovými prostředky a systémovými prostředky a systémovými

Více

6 Ordinální informace o kritériích

6 Ordinální informace o kritériích 6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní

Více

VYHODNOCENÍ DOTAZNÍKU ABSOLVENTŮ U3V

VYHODNOCENÍ DOTAZNÍKU ABSOLVENTŮ U3V VYHODNOCENÍ DOTAZNÍKU ABSOLVENTŮ U3V Jana Borůvková Anotace: Příspěvek se zabývá vyhodnocením dotazníků, které vyplňovali absolventi jihlavské U3V. V první části jsou porovnávány odpovědi absolventů jednotlivých

Více

Digitální knihovny v České republice

Digitální knihovny v České republice Digitální knihovny v České republice PhDr. Martina Machátová Moravská zemská knihovna v Brně Tel.: 541 646 170 E-mail: machat@mzk.cz Aktualizace: 19. prosince 2016 Digitální knihovna Definice 1 Integrovaný

Více

Microsoft Excel kopírování vzorců, adresování, podmíněný formát. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie

Microsoft Excel kopírování vzorců, adresování, podmíněný formát. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Microsoft Excel kopírování vzorců, adresování, podmíněný formát Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Kopírování vzorců v mnoha případech je třeba provést stejný výpočet

Více

EBSCO. EBSCOhost Web. Databáze je přístupná na adrese http://search.epnet.com Poté se můžete buď přihlásit, nebo vstoupit jako host.

EBSCO. EBSCOhost Web. Databáze je přístupná na adrese http://search.epnet.com Poté se můžete buď přihlásit, nebo vstoupit jako host. EBSCO Databáze je přístupná na adrese http://search.epnet.com Poté se můžete buď přihlásit, nebo vstoupit jako host. Pod EBSCO spadají tyto databáze: Historical Abstracts with Full Text Central & Eastern

Více

Souborný katalog ČR pro veřejné knihovny Veřejné knihovny pro Souborný katalog ČR

Souborný katalog ČR pro veřejné knihovny Veřejné knihovny pro Souborný katalog ČR Souborný katalog ČR pro veřejné knihovny Veřejné knihovny pro Souborný katalog ČR Celostátní seminář Regionální funkce knihoven 2009 Pardubice 16-17. září 2009 Eva Svobodová - Danuše Vyorálková Národní

Více

Uloha B - Kvantitativní test. Radek Kubica A7B39TUR. B1 Radek Kubica Kvantitativní testování Stránka 1

Uloha B - Kvantitativní test. Radek Kubica A7B39TUR. B1 Radek Kubica Kvantitativní testování Stránka 1 Uloha B - Kvantitativní test Radek Kubica A7B39TUR B1 Radek Kubica Kvantitativní testování 26.4.2014 Stránka 1 Obsah Úvod... 3 Nezávislé proměnné... 3 Závislé proměnné... 3 Popis uživatelů pro tento testování...

Více

Použijeme-li prostorový typ grafu, můžeme pro každou datovou zvolit jiný tvar. Označíme datovou řadu, zvolíme Formát datové řady - Obrazec

Použijeme-li prostorový typ grafu, můžeme pro každou datovou zvolit jiný tvar. Označíme datovou řadu, zvolíme Formát datové řady - Obrazec Čtvrtek 15. září Grafy v Excelu 2010 U grafů, ve kterých se znázorňují hodnoty řádově rozdílné, je vhodné zobrazit ještě vedlejší osu 1994 1995 1996 1997 1998 1999 2000 hmotná investice 500 550 540 500

Více

Elektronické zpracování dotazníků AGEL. Verze 2.0.0.1

Elektronické zpracování dotazníků AGEL. Verze 2.0.0.1 Elektronické zpracování dotazníků AGEL Verze 2.0.0.1 1 Obsah 2 Přihlášení do systému... 1 3 Zápis hodnot dotazníků... 2 3.1 Výběr formuláře pro vyplnění dotazníku... 2 3.2 Vyplnění formuláře dotazníku...

Více

Zadání zápočtové práce

Zadání zápočtové práce 1. Zadání Vypracujte případovou studii s pomocí finanční a technologické analýzy na téma Návrh HW a SW vybavení PC v budoucím profesním zaměření, včetně síťového prostředí, ve variantě: maximální (m).

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce:

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce: STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE Školní 664, 277 11 Neratovice, tel.: 315 682 314, IČO: 683 834 95, IZO: 110 450 639 Ředitelství školy: Spojovací 632, 277 11 Neratovice tel.:

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

Zpracování chybějících dat a dat mimo rozsah

Zpracování chybějících dat a dat mimo rozsah StatSoft Zpracování chybějících dat a dat mimo rozsah V tomto článku si představíme jeden z možných postupů, jak se rychle a snadno vypořádat s detekcí chybějících dat a dat mimo stanovený rozsah. Načtení

Více

Sada 2 - MS Office, Excel

Sada 2 - MS Office, Excel S třední škola stavební Jihlava Sada 2 - MS Office, Excel 19. Excel 2007. Databázové funkce Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona:

Více

PRACUJEME S TSRM. Modul Samoobsluha

PRACUJEME S TSRM. Modul Samoobsluha PRACUJEME S TSRM Modul Samoobsluha V této kapitole Tato kapitola obsahuje následující témata: Téma Na straně Přehled kapitoly 6-1 Užití modulu Samoobsluha 6-2 Přihlášení k systému 6-3 Hlavní nabídka TSRM

Více

Ukázka knihy z internetového knihkupectví

Ukázka knihy z internetového knihkupectví Ukázka knihy z internetového knihkupectví www.kosmas.cz Věnováno mé rodině ACCESS 2007 PODROBNÝ PRŮVODCE 5 Úvod... 13 Komu je tato kniha určena...13 Co v této knize naleznete...14 Použité konvence a struktura

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

POČÍTAČOVÉ PRAKTIKUM. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení

POČÍTAČOVÉ PRAKTIKUM. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení 6. 9. ročník Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Realizován v 6. až 9. ročníku po jedné hodině týdně. Obsahuje část vzdělávacího obsahu vzdělávacího oboru Informační

Více

Příprava dat v softwaru Statistica

Příprava dat v softwaru Statistica Příprava dat v softwaru Statistica Software Statistica obsahuje pokročilé nástroje pro přípravu dat a tvorbu nových proměnných. Tyto funkcionality přinášejí značnou úsporu času při přípravě datového souboru,

Více

Informace k e-learningu

Informace k e-learningu Informace k e-learningu Příprava na testy bude probíhat samostatně formou e-learningových školení přístupných způsobem popsaným níže. Zkušební testy, pomocí kterých se budete připravovat na závěrečný test,

Více

Protokol č. 7. Jednotné objemové křivky. Je zadána výměra porostu, výška dřevin a počty stromů v jednotlivých tloušťkových stupních.

Protokol č. 7. Jednotné objemové křivky. Je zadána výměra porostu, výška dřevin a počty stromů v jednotlivých tloušťkových stupních. Protokol č. 7 Jednotné objemové křivky Zadání: Pro zadané dřeviny stanovte zásobu pomocí JOK tabulek. Součástí protokolu bude tabulka obsahující střední Weisseho tloušťku, Weisseho procento, číslo JOK,

Více

Postup: Nejprve musíme vyplnit tabulku. Pak bude vypadat takto:

Postup: Nejprve musíme vyplnit tabulku. Pak bude vypadat takto: Úkol: Jednoduchá tabulka v Excelu Obrázky jsou vytvořené v Excelu verze 2003 CZ. Postupy jsou platné pro všechny běžně dostupné české verze Excelu s výjimkou verze roku 2007. Postup: Nejprve musíme vyplnit

Více

VYHLEDÁVÁNÍ V DATABÁZI WEB OF SCIENCE. Helena Landová Akademická knihovna JU

VYHLEDÁVÁNÍ V DATABÁZI WEB OF SCIENCE. Helena Landová Akademická knihovna JU VYHLEDÁVÁNÍ V DATABÁZI WEB OF SCIENCE Helena Landová Akademická knihovna JU Co je Web of Science? Web of Science (WOS) je součást platformy ISI Web of Knowledge (WOK) firmy Thomson Reuters WOS je multioborová

Více

Cestovní zpráva. Program akce: Průběh akce. O Anopress

Cestovní zpráva. Program akce: Průběh akce. O Anopress Cestovní zpráva Pracovník: Jiří Fišer Akce: Školení o obsluze databází z programu VISK8-A Datum konání: 4. 4. 2016 Místo konání: Praha, Národní knihovna Klíčová slova: Anopress -- vyhledávání -- tisk --

Více

KANCELÁŘSKÉ APLIKACE

KANCELÁŘSKÉ APLIKACE KANCELÁŘSKÉ APLIKACE Kurzy MS Office 2003, 2007 a OpenOffice jsou určeny zejména těm uživatelům PC, kteří běžně pracují s kancelářskými aplikacemi, ale chtěli by svoje znalosti a dovednosti prohloubit

Více

Integrace ICT na gymnáziu? Petr Naske

Integrace ICT na gymnáziu? Petr Naske Integrace ICT na gymnáziu? Petr Naske Jak se integruje ICT - zkušenosti mezi pilotními gymnázii integrovali v Rumburku a Litovli Rumburk úplná integrace, v době kdy byly jen 2H, do matematiky a českého

Více

František Hudek. květen 2012

František Hudek. květen 2012 VY_32_INOVACE_FH06 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek květen 2012 8. ročník

Více

UŽIVATELSKÁ PŘÍRUČKA K INTERNETOVÉ VERZI REGISTRU SČÍTACÍCH OBVODŮ A BUDOV (irso 4.x) VERZE 1.0

UŽIVATELSKÁ PŘÍRUČKA K INTERNETOVÉ VERZI REGISTRU SČÍTACÍCH OBVODŮ A BUDOV (irso 4.x) VERZE 1.0 UŽIVATELSKÁ PŘÍRUČKA K INTERNETOVÉ VERZI REGISTRU SČÍTACÍCH OBVODŮ A BUDOV (irso 4.x) VERZE 1.0 OBSAH 1 ÚVOD... 3 1.1 HOME STRÁNKA... 3 1.2 INFORMACE O GENEROVANÉ STRÁNCE... 4 2 VYHLEDÁVÁNÍ V ÚZEMÍ...

Více

Inovace výuky prostřednictvím šablon pro SŠ

Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH (Tento text je součástí výkladu k definičním oborům, tam najdete další příklady a pokud chcete část tohoto textu někde použít, můžete čerpat ze stažené kompletní verze definičních oborů ve formátu.doc.)

Více

INFORMAČNÍ TECHNOLOGIE. Charakteristika vyučovacího předmětu 2.stupeň

INFORMAČNÍ TECHNOLOGIE. Charakteristika vyučovacího předmětu 2.stupeň INFORMAČNÍ TECHNOLOGIE Charakteristika vyučovacího předmětu 2.stupeň Obsahové, časové a organizační vymezení realizován v 6. ročníku (1 vyučovací hodina týdně), dále v rámci pracovních činností Žáci jsou

Více

Stručný návod pro práci s knihovním katalogem OPAC

Stručný návod pro práci s knihovním katalogem OPAC Stručný návod pro práci s knihovním katalogem OPAC http://aleph.lib.vutbr.cz CO VŠECHNO SE ZDE MŮŽETE DOZVĚDĚT? Co je to Online Public Access Catalogue (OPAC). Jak se přihlásíte. Jak vyhledáte knihu. Jak

Více