Rozdělování dat do trénovacích a testovacích množin

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Rozdělování dat do trénovacích a testovacích množin"

Transkript

1 Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném objektu a jeho následná klasifikace. Pořízení dat je problematikou samo o sobě a je úzce svázáno s rozlišovací úrovní. V každém případě získaná data obsahují jen část informace, kterou objekt představuje. Klasifikace, která je druhým krokem v úloze rozpoznávání, představuje proces zatřiďování objektů do tříd. Objekty jsou v tomto případě popsány příznaky, které tvoří tzv. příznakový vektor, který také označujeme jako vzor. V případě, kdy řešíme klasifikační úlohu, je potřeba získat k daným vzorům i odpovídající informaci o třídě identifikátor. Pokud máme naměřena data a zpracovány příznaky resp. vzory, stojíme před úlohou jak nastavit klasifikátor, abychom dosáhli úspěšné klasifikace. V zásadě existují dva možné přístupy. Jedním z nich je nastavit klasifikátor na základě analýzy problému přímo tím, kdo úlohu řeší. Druhý přístup je využít přímo dostupná data o objektech a na jejich základě klasifikátor nastavit. Existuje celá řada klasifikačních algoritmů. Mohli bychom je rozdělit na dvě skupiny. Na ty, co klasifikují podle minimální vzdálenosti a ty, které klasifikují podle nejmenší chyby. Příkladem první skupiny je např. lineární klasifikátor nebo metoda k-nejbližších sousedů. Příkladem druhé skupiny je např. tzv. Bayesův klasifikátor založený na Bayesově vztahu. Specifikace problému Zaměřme se blíže na nastavování klasifikátorů, které je založeno na využití naměřených datech o objektech. Předpokládejme, že jsme naměřili data, ty zpracovali na příznaky, z nich sestavili příznakové vektory vzory a tyto vzory máme následně k dispozici v podobě tabulky, kde řádky představují jednotlivé vzory a sloupce jednotlivé příznaky doplněné o informaci o třídě, kam daný objekt popsaný vzorem zařadit. Základním krokem, který je potřeba provést, je rozdělení dat do trénovací a testovací množiny. Často bývá tento krok doplněn o rozdělení vzorů ještě do tzv. validační množiny. Doporučené a nejčastěji používané rozdělení je v poměru 2:1:1. Trénovací množina slouží k nastavení, tzv. trénování, klasifikátoru a testovací množina k otestování, jak úspěšně byl klasifikátor nastaven (natrénován). Validační množina slouží k zabránění přeučení (overfittingu) klasifikátoru. Pro naše úvahy se omezme pouze na případ, kdy rozdělujeme data do dvou množin a to do trénovací a testovací množiny. Zobecnění úlohy pro validační množinu je pak jednoduché. Všeobecně rozšířeným způsobem rozdělovaní dat do množin je náhodný výběr z dostupné množiny vzorů. Nejčastěji bez opakování, ale je možné toto rozdělení provést i s opakováním. V takovém případě se tento proces v anglické literatuře označuje pojmem bootstrapping (vzorkování s opakováním). V množinách se tedy může vyskytovat více stejných vzorů a součet všech vzorů v trénovací a testovací množině je tak vyšší než celkový počet dostupných vzorů. Náhodný výběr, který se používá, je přirozeným způsobem jak rozdělit data. Zdá se být i spravedlivý. Pokud bude vzorkování rovnoměrné a vzorů bude dostatek, pak je velká šance, že budou vzory rozděleny do množin tak, aby nesly stejný díl informace, která je důležitá pro správné nastavení klasifikátoru. Spoléháme tedy na zákon velkých čísel. V každém případě se může ale stát, že toto rozdělení nebude ideální a je to navíc bohužel

2 velmi pravděpodobné. Nejistota je tak dána stochastickým přístupem k rozdělování vzorů. Zřejmou výhodou je, že tento přístup má přirozené opodstatnění a je dobře statisticky podchycen. Je ovšem lákavé zvolit jiný přístup, který by byl deterministický a přesto by byl funkční a plně ospravedlnitelný. Rozdělování vzorů Nejprve uvažme následující případ. Máme množinu vzorů, která je sestavena ze vzorů, které patří do dvou tříd. Vzory první třídy jsou uspořádány do prstence. Vzory druhé třídy jsou uspořádány vně tohoto prstence s tím, že dva vzory se nacházejí uvnitř prstence, viz obrázek níže. Příklad rozložení vzorů dvou tříd Připusťme, že budeme tuto množinu vzorů rozdělovat do dvou množin, trénovací a testovací, ve stejném poměru a pomocí náhodného výběru. Vzory z prstence i vzory vně tohoto prstence si podle všeho zachovají zhruba stejný tvar, tj. výběr vzorů bude celkem spravedlivý. Podívejme se ale podrobněji na dva vzory uvnitř prstence. Při náhodném výběru mohou nastat čtyři možné situace: oba vzory budou zařazeny do jedné nebo druhé třídy nebo jeden vzor bude zařazen do jedné třídy a druhý do druhé resp. naopak. Pravděpodobnost, že jeden vzor bude zařazen do jedné třídy a druhý do druhé je jen ½. Tento případ je ale žádoucí. Důvodem je, že chceme, aby v trénovací množině byly zařazeny vzory, na kterých se může klasifikátor natrénovat a být tedy schopen správně klasifikovat vzory z testovací množiny. Pokud tento případ nenastane, nemá klasifikátor možnost podchytit tyto případy a jeho klasifikační schopnost může klesnout. Uvažme následující algoritmus rozdělování vzorů do dvou množit ve stejném poměru. Navíc uvažujme pouze jednu třídu dat. Pro druhou množinu je algoritmus stejný. Nejprve vezmeme všechny dostupné vzory a najdeme takové dvojice vzorů, aby součet vzdáleností všech dvojic vzorů byl minimální. Toto rozdělení považujeme za optimální. Pokud by se nám to podařilo, můžeme nyní rozdělit dvojice vzorů tak, aby se do jedné množiny dostal jeden vzor a do druhé množiny druhý vzor. Je otázkou jaký vzor z dvojice dát do které množiny. Tím, že jsou vzory blízko sebe, není tato otázka kritická a rozdělení můžeme provést např. náhodně.

3 Pokud se podíváme na obě množiny takto rozdělených vzorů vidíme, že obě množiny si jsou velmi podobné. To je tedy dobrým předpokladem pro následné úspěšné natrénování klasifikátoru. Výše jsme uvedli příklad, kdy jsme měli dva vzory uvnitř prstence. V případě popsaného algoritmu máme zajištěno, že se jeden vzor dostane do trénovací množiny a druhý vzor do testovací množiny. Pokud se zamyslíme nad kritériem optimality rozdělení vzorů, které jsme zavedli výše, je úloha nalezení optimálního nalezení dvojit vzorů časově velmi náročná. Měli bychom vlastně vyzkoušet všechny kombinace dvojic vzorů a z nich vybrat tu optimální. To ale povede na exponenciální složitost a tedy tento algoritmus je kandidátem na NP-úplnou úlohu. Z tohoto důvodu je účelné se zamýšlet nad vhodnými heuristikami, které by se optimálnímu rozdělení blížili, ale současně by byly výpočetně zvládnutelné. Dále uvedeme dvě možné jednoduché heuristiky, ale nabízí se řada dalších. Heuristiky pro rozdělování vzorů První heuristika, kterou zde uvedeme, je pravděpodobně nejpřímějším řešením problému rozdělování vzorů. Její princip je následující: Vyberme libovolný vzor a k němu najděme nejbližšího souseda, se kterým vytvoříme dvojici. Tyto vzory nově zařadíme do trénovací a testovací množiny a celý proces opakujme. Je zřejmé, že tato heuristika není příliš kvalitní. Lze předpokládat, a obrázek níže to potvrzuje, že ze začátku vybíráme dvojice, které si jsou blízké, ale s postupem času se díky vyřazování vzorů vzdálenosti mezi nejbližšími sousedy prodlužují. Ke konci je tento jev mimořádně výrazný. Na druhou stranu je tato heuristika v průměru stále úspěšnější než náhodné rozdělní vzorů a je navíc rychlá. Poznamenejme, že se bohužel může stát i to, že vzory, které jsou blízko sebe a současně oba vzdáleny mimo hlavní skupinu, viz příklad výše, vzorů mohou být rozděleny nevhodně. Je to dáno tím, že tyto vzory mohou zůstat nevybrány téměř až do konce celého rozdělovacího procesu a potom se stanou nejbližšími kandidáty pro jiné vzory. Závislost vzdálenosti dvou nejbližších vzorů na počtu iterací pro první heuristiku Variantou k uvedené heuristice je, že zpětně ověříme, zda pro druhý vzor je první vzor také nejbližší.

4 Další heuristika sleduje podobnou myšlenku jako v prvním případě, s tím rozdílem, že v každém kroku nevezmeme libovolný vzor a k němu nejbližší vzor, ale vytvoříme nejbližší dvojice ze všech libovolně vybraných vzorů, ze kterých následně vybereme tu dvojici vzorů, které mají mezi sebou nejmenší vzdálenost. Ani tento algoritmus není optimální a navíc je časově náročnější než předchozí, ale opět mírně zlepšuje kvalitu rozdělení vzorů, viz obrázek níže. Diskuze Závislost vzdálenosti dvou nejbližších vzorů na počtu iterací pro druhou heuristiku Vzniká důležitá otázka, zda navrhované rozdělení je opravdu možné, resp. obhajitelné. Tím, že celý proces je daleko systematičtější než prostý náhodný výběr, mohou vzniknout dohady, zda tento přístup lze opravdu použít. Vyjděme z předpokladu, že dostupná data, která uvažujeme v klasifikační úloze jsou dostatečně reprezentativní. Už jen pojem dostatečně reprezentativní zaslouží zpřesnění. Tímto pojmem se obecně rozumí, že daná data zachycují veškerou informaci, kterou může měřený systém vygenerovat a nelze s jinými, dále naměřenými, daty získat novou informaci, která by mohla kvalitu klasifikace ovlivnit. Je to předpoklad, který nemusí být v praxi vždy splněn. Protože proces primárního pořízení dat neovlivníme, můžeme vzhledem k naší úloze předpokládat, že data, se kterými pracujeme, jsou dostatečně reprezentativní. Za uvedeného předpokladu pracujeme s daty, která obsahují nosnou informaci. Tím, že data budeme rozdělovat do dvou množin, na trénovací a testovací, může dojít ke ztrátě informace. Pokud data nebudou obsahovat redundantní informaci, jakékoliv rozdělení původních dat nutně povede ke ztrátě informace a tedy i úspěšné natrénování klasifikátoru nemusí být možné. Pokud budeme předpokládat, že podobnost vzorů je dána jejich vzdáleností, a tedy že dva sobě blízké vzory nesou přibližně stejnou informaci, je navržené rozdělení ospravedlnitelné. Daným rozdělením zaručíme, že v obou množinách je obsažena téměř stejná informace. Poděkování

5 Problematika uvedená v tomto příspěvku je řešena v rámci projektu Transdisciplinární výzkum v oblasti biomedicínského inženýrství II, MSM Literatura [1] Kotek, Z., Vysoký, P., Zdráhal, Z.: Kybernetika. SNTL, 1990 [2] Mařík, V., Štěpánková, O., Lažanský, J. a kol.: Umělá inteligence (1), Academia, Praha 1993

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

Klasifikace předmětů a jevů

Klasifikace předmětů a jevů Klasifikace předmětů a jevů 1. Úvod Rozpoznávání neboli klasifikace je základní znak lidské činnosti. Rozpoznávání (klasifikace) předmětů a jevů spočívá v jejich zařazování do jednotlivých tříd. Třídou

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY

Více

Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz

Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz 25. 10. 2012, Praha Ing. Petr Vahalík Ústav geoinformačních technologií Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz 21. konference GIS Esri v ČR Lesní vegetační stupně

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

5 Minimální kostry, Hladový algoritmus

5 Minimální kostry, Hladový algoritmus 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Studie Rekonstrukce kina Bc. Petr Kvasnička 2009. STUDIE Rekonstrukce Konstantinovy Lázně bývalé kino Bratrská jednota baptistů ČÁST 3 (26.2.

Studie Rekonstrukce kina Bc. Petr Kvasnička 2009. STUDIE Rekonstrukce Konstantinovy Lázně bývalé kino Bratrská jednota baptistů ČÁST 3 (26.2. STUDIE Rekonstrukce Konstantinovy Lázně bývalé kino Bratrská jednota baptistů ČÁST 3 (26.2.2009) Obsah: 1 Varianta S1u 1.1 Schéma 1.2 Hlavní změny 2 Popis řešení 2.1 Hlavní vstup 2.2 Přístup do bytu (zádveří)

Více

Dobývání a vizualizace znalostí

Dobývání a vizualizace znalostí Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice OPERAČNÍ VÝZKUM 11. TEORIE ZÁSOB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery

Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery Termovizní měření Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery 1 Teoretický úvod Termovizní měření Termovizní kamera je přístroj pro bezkontaktní měření teplotních polí na

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

MS Excel grafická prezentace dat

MS Excel grafická prezentace dat Název projektu Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast - téma Označení materiálu (přílohy) Pracovní list Inovace ŠVP na OA a JŠ Třebíč CZ.1.07/1.5.00/34.0143 III/2 Inovace

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

A05 Stanovení způsobů ověření Praktické předvedení praktická neznamená jen manuální nebo ruční

A05 Stanovení způsobů ověření Praktické předvedení praktická neznamená jen manuální nebo ruční A05 Stanovení způsobů ověření Způsob ověření se stanovuje pro každé jednotlivé kritérium. Určuje, jakým postupem je kritérium ověřováno. Základní způsoby ověření jsou: - praktické předvedení - písemné

Více

Shluková analýza vícerozměrných dat v programu R

Shluková analýza vícerozměrných dat v programu R Shluková analýza vícerozměrných dat v programu R - příklad použití metod PAM, CLARA a fuzzy shlukové analýzy http://data.tulipany.cz Úvodní poznámky a popis dat Pro analýzu vícerozměrných dat existují

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

Styly odstavců. Word 2010. Přiřazení stylu odstavce odstavci. Změna stylu odstavce

Styly odstavců. Word 2010. Přiřazení stylu odstavce odstavci. Změna stylu odstavce Styly odstavců V textu, který přesahuje několik stránek a je nějakým způsobem strukturovaný (což znamená, že se dá rozdělit na části (v knize jim říkáme kapitoly) a jejich podřízené části (podkapitoly),

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Hromadná korespondence

Hromadná korespondence Kapitola dvanáctá Hromadná korespondence Učební text Mgr. Radek Hoszowski Hromadná korespondence Hromadná korespondence Představíme si jednoduchý nástroj, který nám může ušetřit velké množství práce. Je

Více

TECHNOLOGIE FUZZY-BAYESOVSKÉ KLASIFIKACE RASTROVÝCH OBRAZŮ

TECHNOLOGIE FUZZY-BAYESOVSKÉ KLASIFIKACE RASTROVÝCH OBRAZŮ TECHNOLOGIE FUZZY-BAYESOVSKÉ KLASIFIKACE RASTROVÝCH OBRAZŮ ÚVOD Technologie fuzzy-bayesovské klasifikace rastrových obrazů je realizována v rámci webové aplikace Waclass. Tato webová aplikace provádí řízenou

Více

4.8 Jak jsme na tom v porovnání s jinými přístupy

4.8 Jak jsme na tom v porovnání s jinými přístupy Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Název: Mentální testy

Název: Mentální testy Název: Mentální testy Výukové materiály Autor: Mgr. Blanka Machová Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: Biologie Ročník: 4. a 5. (2. a 3. vyššího gymnázia)

Více

1. Učební plán vzdělávacího programu NÁRODNÍ ŠKOLA, čj. 15724/97-20, s platností od 1.9.1997, 1. stupeň. Nadstavbová část umožňuje:

1. Učební plán vzdělávacího programu NÁRODNÍ ŠKOLA, čj. 15724/97-20, s platností od 1.9.1997, 1. stupeň. Nadstavbová část umožňuje: 1. Učební plán vzdělávacího programu NÁRODNÍ ŠKOLA, čj. 15724/97-20, s platností od 1.9.1997, 1. stupeň Rozvrh hodin v týdnu není chápán jako dogma. Je na učiteli, jak si rozvrhne denní program výuky,

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

Použijeme-li prostorový typ grafu, můžeme pro každou datovou zvolit jiný tvar. Označíme datovou řadu, zvolíme Formát datové řady - Obrazec

Použijeme-li prostorový typ grafu, můžeme pro každou datovou zvolit jiný tvar. Označíme datovou řadu, zvolíme Formát datové řady - Obrazec Čtvrtek 15. září Grafy v Excelu 2010 U grafů, ve kterých se znázorňují hodnoty řádově rozdílné, je vhodné zobrazit ještě vedlejší osu 1994 1995 1996 1997 1998 1999 2000 hmotná investice 500 550 540 500

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73) Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální

Více

Automatizované řešení úloh s omezeními

Automatizované řešení úloh s omezeními Automatizované řešení úloh s omezeními Martin Kot Katedra informatiky, FEI, Vysoká škola báňská Technická universita Ostrava 17. listopadu 15, Ostrava-Poruba 708 33 Česká republika 25. října 2012 M. Kot

Více

Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ. www.mestozlin.cz

Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ. www.mestozlin.cz Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ Město Zlín Jednou z možností monitorování a řízení dopravy v obcích je automatické snímání silničního provozu Monitorování dopravy vozidel

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

0,7 0,6 0,5 0,4 0,3 0,2 0,1

0,7 0,6 0,5 0,4 0,3 0,2 0,1 VÝVOJ PROSTŘEDKŮ VÝPOČTOVÉ INTELIGENCE PRO MONITOROVÁNÍ A ŘÍZENÍ OCELÁŘSKÝCH VÝROBNÍCH PROCESŮ Miroslav Pokorný¹ Václav Kafka² Zdeněk Bůžek³ 1) VŠB TU Ostrava, FEI, 17. listopadu 15, 708 33 Ostrava, ČR,

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Klasifikace Landau-Kleffnerova syndromu

Klasifikace Landau-Kleffnerova syndromu Klasifikace Landau-Kleffnerova syndromu malých dětí 1. Abstrakt Petr Zlatník ČVUT FEL, K13131 Katedra teorie obvodů Tento příspěvěk pojednává o klasifikaci Landau-Kleffnerova syndromu, který se projevuje

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Číslo materiálu Název školy Autor Tematický celek Ročník CZ.1.07/1.5.00/34.0029 VY_32_INOVACE_28-17 Střední průmyslová škola stavební, Resslova 2, České Budějovice

Více

Dotazníkové šetření na téma rodičovské dovolené

Dotazníkové šetření na téma rodičovské dovolené Dotazníkové šetření na téma rodičovské dovolené Poděkování Mnohokrát děkujeme všem respondentům a také těm, kdo dotazník pomáhali šířit. Vyhodnocení zpracovala Rut Kolínská. Vyplněné dotazníky v tištěné

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Číslo materiálu Název školy Autor Tematický celek Ročník CZ..07/.5.00/34.0029 VY_32_INOVACE_28-09 třední průmyslová škola stavební, Resslova 2, České Budějovice

Více

MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI

MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI ROBUST 2000, 119 124 c JČMF 2001 MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI ARNOŠT KOMÁREK Abstrakt. If somebody wants to distinguish objects from two groups,he can use a statistical model to achieve

Více

Webový editor MARKET INOVATOR verze 1.0.0.0

Webový editor MARKET INOVATOR verze 1.0.0.0 Webový editor MARKET INOVATOR verze 1.0.0.0 Uživatelská příručka Úprava hotových webových prezentací 1.krok stáhnout web ze serveru Chceme-li provádět úpravy na webových stránkách, které jsou na internetovém

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Simulace příletů cestujících na schengenský terminál letiště Praha - Ruzyně a jejich přestupů na navazující lety SEMESTRÁLNÍ PRÁCE Vybrané statistické

Více

KAPITOLA 5 - POKROČILÉ ZPRACOVÁNÍ TEXTU

KAPITOLA 5 - POKROČILÉ ZPRACOVÁNÍ TEXTU KAPITOLA 5 - POKROČILÉ ZPRACOVÁNÍ TEXTU KLÍČOVÉ POJMY Oddíly, styly, poznámka pod čarou, revize, obsah, rejstřík, záložka, citace a seznamy literatury, vzorce, vložené a propojené objekty, oddíly, zabezpečení.

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

DTW. Petr Zlatník, Roman Čmejla. zlatnip@fel.cvut.cz, cmejla@fel.cvut.cz. Abstrakt: Příspěvek popisuje metodu, která byla vyvinuta pro vyhodnocení

DTW. Petr Zlatník, Roman Čmejla. zlatnip@fel.cvut.cz, cmejla@fel.cvut.cz. Abstrakt: Příspěvek popisuje metodu, která byla vyvinuta pro vyhodnocení Vyhodnocování vad řeči dětí s využitím algoritmu DTW Petr Zlatník, Roman Čmejla České vysoké učení technické v Praze, Fakulta elektrotechnická zlatnip@fel.cvut.cz, cmejla@fel.cvut.cz Abstrakt: Příspěvek

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

x T 1 matici 45.53 25.22 57.81 12.39 11.88 36.09 22.15 7.52 &0.31 20.94 27.97 48.06 1.41 16.77 66.21 S 1 kovarianční matici 74.42 &9.52 37.

x T 1 matici 45.53 25.22 57.81 12.39 11.88 36.09 22.15 7.52 &0.31 20.94 27.97 48.06 1.41 16.77 66.21 S 1 kovarianční matici 74.42 &9.52 37. Vzorová úloha 4.7 Užití lineární diskriminační funkce Předpokládejme, že máme data o 2 třídách objektů tibetských lebek v úloze B4.14 Aglomerativní hierarchické shlukování při analýze lebek Tibeťanů: prvních

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Processing of EEG Data Marek Penhaker Konference IT4Innovations, Ostrava 21. 10. 2013

Processing of EEG Data Marek Penhaker Konference IT4Innovations, Ostrava 21. 10. 2013 Processing of EEG Data Marek Penhaker Konference IT4Innovations, Ostrava 21. 10. 2013 Podstata biologických signálů Signál nosič informace Biosignál signál, který je generovaný živým organismem Rozdělení

Více

Návrh systému řízení

Návrh systému řízení Návrh systému řízení Jelikož popisované ostrovní systémy využívají zdroje elektrické energie s nestabilní dodávkou elektrické energie, jsou kladeny vysoké nároky na řídicí systém celého ostrovního systému.

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

Měření EEG, spánek, hodnocení EEG záznamů a následná vizualizace

Měření EEG, spánek, hodnocení EEG záznamů a následná vizualizace Měření EEG, spánek, hodnocení EEG záznamů a následná vizualizace Václav Gerla, Josef Rieger, Lenka Lhotská, Vladimír Krajča ČVUT, FEL, Katedra kybernetiky, Technická 2, Praha 6 Fakultní nemocnice Na Bulovce,

Více

Semestrální práce KIV/PC

Semestrální práce KIV/PC Semestrální práce KIV/PC Václav Löffelmann 2014-12-31 1 Zadání Naprogramujte v ANSI C přenositelnou konzolovou aplikaci, která jako vstup obdrží soubor obsahující obrázek ručně psané číslice a soubor s

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal

Více

Obr. 1 Biologický neuron

Obr. 1 Biologický neuron 5.4 Neuronové sítě Lidský mozek je složen asi z 10 10 nervových buněk (neuronů) které jsou mezi sebou navzájem propojeny ještě řádově vyšším počtem vazeb [Novák a kol.,1992]. Začněme tedy nejdříve jedním

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více