IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

Rozměr: px
Začít zobrazení ze stránky:

Download "IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,"

Transkript

1 IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie disribucí) δ pro pro Jednokový impuls musí splňova inegrál δ d Mohunos jednokového impulsu je edy rovna. Maemaická definice jednokového impulsu (spojié funkce) () δ ( ) f d f Pro účely analýzy elekrických obvodů (v maemaice exisují další definice) bude jednokový impuls definován: V praxi nelze samozřejmě akový impuls vyvoři, pro konkréní obvod ale sačí, pokud τ (nejkraší časová konsana obvodu) Velký význam má u diskréních obvodů, kde přechází na prosé číslo (a např. u obvodů ypu FIR je impulsová odezva rovna přímo koeficienům filru). S Grafické znázornění: Laplaceův obraz: L { w ()} Pavel Máša, X3EO, přednáška č. 9 srana

2 Jednokový skok, < (), > Časé je značení u( ), v elekrických obvodech by se ale plelo s napěím. Velikos skoku v bodě budeme v elekrických obvodech předpokláda ( ), ( ), maemaicky se jednokový skok časo zobecňuje, < ().5, > Graficky jednokový skok znázorníme:.5 Mezi jednokovým impulsem a jednokovým skokem se někdy uvádí vzah d δ (), () δ ( τ) d Ačkoli rigorózní maemaika by mohla mí k uvedeným rovnicím oprávněné výhrady (eorie disribucí), rovnice poskyují dobrou předsavu o relaci mezi ěmio funkcemi viz minulý semesr, měření napěí a proudu na L, C; pokud yo prvky jednu obvodovou veličinu derivovaly, a ao obvodová veličina měla obdélníkový průběh, objevil se jako druhá veličina (přibližně) diracův impuls. Prakická realizace připojení zdroje napěí o velikosi V. { } Laplaceův obraz: L () p dτ Pavel Máša, X3EO, přednáška č. 9 srana

3 Impulsní a přechodová charakerisika Uvažujme lineární obvod, kerý byl v čase bez energie. u () LO u () Vzah mezi vsupním a výsupním napěím můžeme popsa v oboru (Laplaceových) obrazů přenosem U ( p) P( p) U p. Obdobně bychom mohli přenos vyjádři pro fázory (HUS), nebo jω (Fourierova ransformace), ale nikdy ne v časové oblasi. Např. u ( ) je sejnosměrné napěí, na výsupu se může objevi kupř. exponencielní impuls podíl funkcí bude obecně v každém časovém okamžiku různý, zaímco přenos je sále sejná racionálně lomená funkce. V HUS vede přenos na komplexní číslo, keré se mění s frekvencí (ampliuda a fáze, v časové oblasi ampliuda a časové zpoždění). Impulsní charakerisika u δ, w u Přechodová charakerisika u, a u V případě obrazů je přímo daný vzah mezi přenosem obvodu a obrazem impulsní / přechodové charakerisiky: U p W p P p P p W( p) P( p) P p U ( p) A( p) P( p) p p P p A( p) P p pa p p Pavel Máša, X3EO, přednáška č. 9 srana 3

4 Změřením časového průběho výsupního napěí u a jeho ransformací ak nalezneme přenos neznámého obvodu. Odud můžeme naléz m.j. kmiočovou charakerisiku obvodu. Pro impulsní charakerisiku plaí obdobně pro Fourierův obraz () P( jω ) w F, { } ale ekvivalenní vzah neexisuje pro přechodovou charakerisiku (neexisuje Fourierův obraz jednokového skoku). Vzah mezi impulsní a přechodovou charakerisikou v časové oblasi můžeme naléz z vlasnosí obrazů derivace a inegrálu: d u pu p u d L () ( ), u( ) limu da P( p) W( p) p A( p) L a d () da w () a d ( ) δ ( ) () ( ) a wτ dτ a Pavel Máša, X3EO, přednáška č. 9 srana 4

5 Konvoluce Jak vyjádři vzah mezi vsupním napěím u ( ) a u () v časové oblasi? přímo Takový vzah již vyjádři umíme bohužel pouze pro dva signály jednokový impuls δ () a jednokový skok ( ). Výsupním napěím je impulsní, resp. přechodová charakerisika. Různé časové průběhy je možné aproximova (nekonečně mnoha) jednokovými impulsy, resp. jednokovými skoky, násobené funkční hodnoou pro daný časový okamžik. souče impulsních (přechodových) charakerisik. Vzdálenos mezi impulsy x Mohunos impulsu ( k ) Odpovídající výsupní napěí x ( ) w( ) k k Celkové výsupní napěí bude součem reakcí na jednolivé impulsy (impulsních charakerisik), n () ( ) x x w k k keré pro přejde v inegraci konvoluorní inegrál k () ( ) x x τ w τ dτ Pavel Máša, X3EO, přednáška č. 9 srana 5

6 Symbolem konvoluce je hvězdička (*) a plaí: () ()* () () ( ) ( ) () x x w x w τ dτ x τ w dτ Geomerický význam: u( τ ) u ( τ ) w(.75 τ ), S u (.75 ) w( τ ) u ( τ ) w( τ ), S u ( ).5.5 w ( τ ) u ( τ ) w( τ ), S u (.5 ).5 ( τ ) w( τ ), S u (.5 ) u ( τ ) w( τ ), S u (.5 ) u.5.5 ( τ ) w( τ ), S u (.5 ) u ( τ ) w( τ ), S u (.75 ) u.5.75 Pavel Máša, X3EO, přednáška č. 9 srana 6

7 Příklad: Mějme inegrační článek, buzený ze zdroje u U e a e a Úkol: nají časový průběh výsupního napěí u ( ). a) Laplaceova ransformace přenos P( p) p p, U p U p a U U U ( p) p a p a p a p U a u () e e a b) Impulsní charakerisika konvoluce () e, w u Ue a ( τ aτ ) u () u () * w() U e e dτ U e d e e τ a a τ U a c) Přechodová charakerisika Duhamelův vzorec, viz dále Pavel Máša, X3EO, přednáška č. 9 srana 7

8 Duhamelův vzorec Namíso obdélníkových impulsů jako v případě konvoluce je možné vsupní veličinu aproximova pomocí skokových funkcí: Vzdálenos mezi skoky Výška skoku x k x ( k) Odpovídající výsupní napěí xk( k) a( k) Časový průběh výsupního napěí u na jednolivé skoky () ( ) () x x a x a k n k bude součem všech odezev obvodu Pokud, pak souče přechází v inegraci a dosaneme Duhamelův vzorec k () ( ) () ( ) x x a x τ a τ dτ Z operáorového poču: X p X p P p X p p A p dx () L, pa( p) px p x d () da L a d ( ) Pavel Máša, X3EO, přednáška č. 9 srana 8

9 () dx X( p) L x( ) A( p) d da() L a( ) X ( p) d Zpěnou ransformací další vary Duhamelova vzorce: Nebo () ( ) () ()* () ( ) () ( ) u x a x a x a x τ a τ dτ () ( ) () ()* () ( ) () u a x x a a x x τ a τ dτ Sabilia ( ) a x x τ a τ dτ Obvod nazveme sabilním, pokud se po odeznění budících veličin posupně navráí do sabilního savu, edy lim u u lim w u () () p jinými slovy, odezní přechodná složka Takový obvod je sabilní. Obvody rozdělujeme na sabilní na mezi sabiliy nesabilní p Pavel Máša, X3EO, přednáška č. 9 srana 9

10 u [V] Sabilní obvody [s].5 u [V] [s].5 Obvod na mezi sabiliy u [V] u [V] [s] Nesabilní obvod [s] Pavel Máša, X3EO, přednáška č. 9 srana

11 Při sudiu přechodných dějů jsme poznali, že obecné řešení, keré popisuje vlasní přechodnou složku nezávisí na charakeru buzení impulsní charakerisika je obecným řešením přechodného děje Polynom v čiaeli přenosu musí bý nižšího supně, nežli supeň polynomu ve jmenovaeli: M ( p) Q( p) W( p) P( p) D N p N p Pak - Q p w () Dδ () L N p Zpěná ransformace rozklad na parciální zlomky, je určena polynomem N( p ); kořeny póly mohou bý p n reálné w Ke n vícenásobné ( n n ) komplexně sdružené sin( ω ψ ) p n w K K e n w K e α n n n Ve všech případech obsahuje řešení exponenciální funkci, akže pokud je pól (jeho reálná čás) záporný, je obvod sabilní, pro kladný pól nesabilní p - rovina Sabilní oblas Im Nesabilní oblas Mez sabiliy Re Pavel Máša, X3EO, přednáška č. 9 srana

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

Bipolární tranzistor jako

Bipolární tranzistor jako Elekronické součásky - laboraorní cvičení 1 Bipolární ranzisor jako Úkol: 1. Bipolární ranzisor jako řízený odpor (spínač) ověření činnosi. 2. Unipolární ranzisor jako řízený odpor (spínač) ověření činnosi.

Více

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N PLL Fázový deekor Filr smyčky (analogový) Napěím řízený osciláor F g Dělič kmioču 1:N Číače s velkým modulem V současné době k návrhu samoného číače přisupujeme jen ve výjimečných případech. Daleko časěni

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

2. MĚŘICÍ ZESILOVAČE A PŘEVODNÍKY

2. MĚŘICÍ ZESILOVAČE A PŘEVODNÍKY . MĚŘCÍ ZESLOVAČE A PŘEVODNÍKY Senzor předsavuje vsupní blok měřicího řeězce. Snímá sledovanou veličinu a převádí ji na veličinu měronosnou, nejčasěji analogový elekrický signál. Výsupem akivního senzoru

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

Diferenciální rovnice 1. řádu

Diferenciální rovnice 1. řádu Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou

Více

3B Přechodné děje v obvodech RC a RLC

3B Přechodné děje v obvodech RC a RLC 3B Přechodné děje v obvodech a íl úlohy Prohloubi eoreické znalosi o přechodných dějích na a obvodu. Ukáza možnos měření paramerů přechodných dějů v ěcho obvodech. U obvodu 2. řádu () demonsrova vliv lumicího

Více

Kmitání tělesa s danou budicí frekvencí

Kmitání tělesa s danou budicí frekvencí EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY - 54-10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY (V.LYSENKO) Základní princip analogově - číslicového převodu Analogové (spojié) y se v nich ransformují (převádí) do číslicové formy. Vsupní spojiý (analogový) doby

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2 STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:

Více

Simulační schemata, stavový popis. Petr Hušek

Simulační schemata, stavový popis. Petr Hušek Simulační schemaa, savový popis Per Hušek Simulační schemaa, savový popis Per Hušek husek@fel.cvu.cz kaedra řídicí echniky Fakula elekroechnická ČVUT v Praze MAS 007/08 ČVUT v Praze 6,7 - Simulační schemaa,

Více

ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV

ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV VŠB TU Osrava, Fakula elekroechniky a informaiky, Kaedra měřící a řídící echniky ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV Pavel Nevřiva 007 PŘEDMLUVA Too skripum je věnováno základním meodám, používaným při analýze

Více

XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny...

XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny... XI- Nesacionární elekromagneické pole... XI- Rovinná harmonická elekromagneická vlna...3 XI- Vlasnosi rovinné elekromagneické vlny...5 XI-3 obrazení rovinné elekromagneické vlny v prosoru...7 XI-4 Fázová

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský

Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský Jan Malinsý V omo doumenu bude odvozeno sperum vysenuého sinusového signálu pomocí onvoluce ve frevenční oblasi. V časové oblasi e možno eno vysenuý signál vyvoři násobením obdélníového ( V a sinusového

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka Analýza časových řad Klasický přísup k analýze ČŘ dekompozice časové řady - rozklad ČŘ na složky charakerizující různé druhy pohybů v ČŘ, keré umíme popsa a kvanifikova rend periodické kolísání cyklické

Více

Přechodné děje 2. řádu v časové oblasti

Přechodné děje 2. řádu v časové oblasti Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Fyzikální praktikum II - úloha č. 4

Fyzikální praktikum II - úloha č. 4 Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných

Více

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

Hlavní body. Úvod do nauky o kmitech Harmonické kmity Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

Vybrané metody statistické regulace procesu pro autokorelovaná data

Vybrané metody statistické regulace procesu pro autokorelovaná data XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

Reologické modely měkkých tkání

Reologické modely měkkých tkání Reologické modely měkkých kání Tomas Mares 1. Úvod Výchozím principem mechaniky měkkých kání (j. kůže, cév, pojivových kání, kání vniřních orgánů, šlach, vazů, chrupavek, sinoviální ekuiny) je reologie.

Více

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ..0/.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol SLOVNÍ ÚLOHY VEDOUCÍ

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

4. MĚŘENÍ PROUDU, MĚŘENÍ KMITOČTU A FÁZE

4. MĚŘENÍ PROUDU, MĚŘENÍ KMITOČTU A FÁZE 4. MĚŘENÍ PROUDU, MĚŘENÍ KMIOČU A FÁZE Základní jednokou SI elekrický proud realizace: proudové váhy (primární ealonáž), dnes pomocí Josephsonova konaku (kvanový ealon napěí) a kvanového Hallova jevu (kvanový

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE VYTVÁŘENÍ TRŽNÍ ROVNOVÁHY VYBRANÝCH ZEMĚDĚLSKO-POTRAVINÁŘSKÝCH PRODUKTŮ Ing. Michal Malý Školiel: Prof. Ing. Jiří

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

1. Vzorkování, A/D převodníky, číslicový osciloskop.

1. Vzorkování, A/D převodníky, číslicový osciloskop. . Vzorkování, A/D převodníky, číslicový osciloskop. přednášky A3B38SME Senzory a měření zdroje převzaých obrázků: pokud není uvedeno jinak, zdrojem je monografie Haasz, Sedláček: Elekrická měření a skripa

Více

12. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY

12. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY 2. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY měření magneické indukce a inenziy magneického pole (sejnosměrné pole - Hallova a feromagneická sonda, anizoropní magneorezisor; sřídavé pole - měřicí cívka) analogový

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní

Více

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely

Více

4. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1, MĚŘENÍ KMITOČTU A FÁZOVÉHO ROZDÍLU

4. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1, MĚŘENÍ KMITOČTU A FÁZOVÉHO ROZDÍLU 4. MĚŘICÍ PŘEVODÍKY ELEKICKÝCH VELIČI, MĚŘEÍ KMIOČ A FÁZOVÉHO OZDÍL Převodníky pro měření soč a rozdíl (s operačním zesilovačem, s ransformáory) Inegrační zesilovač: základní princip a odvození přenos

Více

Matematické modely v ekologii a na co jsou dobré

Matematické modely v ekologii a na co jsou dobré Maemaické modely v ekologii a na co jsou dobré Indukivní a dedukivní uvažování o Indukce - mám spousu pozorování, a v nich se snažím naléz zákoniosi, zobecnní ad. o Dedukce - mám adu pravd, a hledám jejich

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU

5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU 5. MĚŘENÍ KMIOČU a FÁZOVÉHO ROZDÍLU Měření kmioč: zdroje ealonového kmioč, přímé měření osciloskopem, elekronické analogové kmioměry a vibrační kmioměr, číače (měření f přímo, měření, průměrování, možnos

Více

Grafické zobrazení frekvenčních závislostí

Grafické zobrazení frekvenčních závislostí Grafické zobrazení frekvenčních závislostí Z minulých přednášek již víme, že impedance / admitance kapacitoru a induktoru jsou frekvenčně závislé Nyní se budeme zabývat tím, jak tato frekvenční závislost

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Dynamické systémy. y(t) = g( x(t), t ) kde : g(t) je výstupní fce. x(t) je hodnota vnitřních stavů

Dynamické systémy. y(t) = g( x(t), t ) kde : g(t) je výstupní fce. x(t) je hodnota vnitřních stavů Dynamcké sysémy spojé-dskréní, lneární-nelneární a jejch modely df. rovnce, přenos, savový pops. Tvorba a převody modelů. Lnearzace a dskrezace. Smulace. Analoge mez sysémy různé fyzkální podsay. Idenfkace

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

ROTORŮ TURBOSOUSTROJÍ

ROTORŮ TURBOSOUSTROJÍ ZJIŠŤOVÁNÍ PŘÍČIN ZVÝŠENÝCH VIBRACÍ ROTORŮ TURBOSOUSTROJÍ Prof Ing Miroslav Balda, DrSc Úsav ermomechaniky AVČR + Západočeská univerzia Veleslavínova 11, 301 14 Plzeň, el: 019-7236584, fax: 019-7220787,

Více

7. Měření kmitočtu a fázového rozdílu; 8. Analogové osciloskopy

7. Měření kmitočtu a fázového rozdílu; 8. Analogové osciloskopy 7. Měření kmioču a fázového rozdílu; Měření kmioču osciloskopem Měření kmioču číačem Měření fázového rozdílu osciloskopem Měření fázového rozdílu elekronickým fázoměrem 8. Analogové osciloskopy Blokové

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

Kontrolní technika. Nyní s rozsahy do 100 A! Nadproudové a podproudové relé IL 9277, IP 9277, SL 9277, SP 9277

Kontrolní technika. Nyní s rozsahy do 100 A! Nadproudové a podproudové relé IL 9277, IP 9277, SL 9277, SP 9277 Krolní echnika Nadproudové a podproudové relé IL 9277, IP 9277, SL 9277, SP 9277 varimeer Nyní s rozsahy do 100 A! 02226 IL 9277 IP 9277 SL 9277 SP 9277 splňuje požadavky norem IEC 255, EN 60 255, VDE

Více

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj

Více

ANALÝZA ČASOVÝCH ŘAD IVAN KŘIVÝ OSTRAVA URČENO PRO VZDĚLÁVÁNÍ V AKREDI TOVANÝCH STUDIJ NÍCH PROGRAMECH

ANALÝZA ČASOVÝCH ŘAD IVAN KŘIVÝ OSTRAVA URČENO PRO VZDĚLÁVÁNÍ V AKREDI TOVANÝCH STUDIJ NÍCH PROGRAMECH ANALÝZA ČASOVÝCH ŘAD URČENO PRO VZDĚLÁVÁNÍ V AKREDI TOVANÝCH STUDIJ NÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Více

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru Asabilní obvod s reálnými operačními zesilovači Josef PUNČOCHÁŘ Kaedra eoreické elekroechniky Fakula elekroechnicky a informaiky Vysoká škola báňská - Technická universia Osrava ř. 17 lisopadu 15, 708

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Matematika IV 9. týden Vytvořující funkce

Matematika IV 9. týden Vytvořující funkce Matematika IV 9. týden Vytvořující funkce Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Vytvořující funkce a Fibonacciho čísla 2 Vytvořující funkce - připomenutí 3 Řešení

Více

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena Ploché výrobky válcované za epla z ocelí s vyšší mezí kluzu pro váření za sudena ČSN EN 10149-1 Obecné echnické dodací podmínky Dodací podmínky pro ermomechanicky válcované Podle ČSN EN 10149-12-2013 ČSN

Více

IMPULSNÍ TECHNIKA II.

IMPULSNÍ TECHNIKA II. IMPULSNÍ TECHNIKA II. OBSAH II. DÍLU Předmluva 3 7 Generáory piloviých průběhů 4 7. Paramery lineárně se měnícího napěí 4 7.2 Funkční princip generáorů piloviého napěí 5 7.3 Generáor s nabíjením kondenzáoru

Více

SBĚRNICOVÝ ŘÍDICÍ SYSTÉM SOMFY IB. Technická specifikace

SBĚRNICOVÝ ŘÍDICÍ SYSTÉM SOMFY IB. Technická specifikace SBĚRNICOVÝ ŘÍDICÍ SYSTÉ SOFY IB Technická specifikace 1. Úvod Řídicí sysém SOFY IB je určen pro ovládání nejrůznějších zařízení sínicí echniky s moorickým pohonem roley, markýzy, žaluzie, screeny,... Rozsah

Více

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a Sbírka příkladů z okruhů a polynomů Algebra I Okruhy, podokruhy, obor integrity, těleso, homomorfismus 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): a) M = {a + i a R}, b) M = {a + i

Více

PJS Přednáška číslo 2

PJS Přednáška číslo 2 PJS Přednáška číslo Jednoduché elekromagnecké přechodné děje Předpoklady: onsanní rychlos všech očvých srojů (časové konsany delší než u el.-mg. dějů a v důsledku oho frekvence elekrckých velčn. Pops sysému

Více

14. Soustava lineárních rovnic s parametrem

14. Soustava lineárních rovnic s parametrem @66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné

Více

+ b) = R R R R 3. vystup. vstup. 1. Hodnota proudu protékajícího odporem R2 činí: 2. Aby oba obvody byly ekvivalentní musí nastávat m.j.

+ b) = R R R R 3. vystup. vstup. 1. Hodnota proudu protékajícího odporem R2 činí: 2. Aby oba obvody byly ekvivalentní musí nastávat m.j. . odnoa proudu proékajícího odporem činí: I I [ ] I I I I. b oba obvod bl ekvivalenní musí nasáva m.j. vzah: ( ). Obvod se svorkami nahrazujeme Noronovým bipólem (skuečný zdroj proudu). odnoa proudu bude

Více

Identifikace systémů

Identifikace systémů Identifikace systémů Přednáška 2 Osvald Modrlák, Lukáš Hubka TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Zobrazování černobílých snímků v nepravých barvách

Zobrazování černobílých snímků v nepravých barvách VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ

VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ VYUŽITÍ MATLABU PRO ČÍSLICOVÉ ZPRACOVÁNÍ SIGNÁLU PŘI ZJIŠŤOVÁNÍ OKAMŽITÉ FREKVENCE SÍTĚ Jan Blaška, Miloš Sedláček České vysoké učení echnické v Praze Fakula elekroechnická, kaedra měření 1. Úvod Jak je

Více

MULTIFUNKČNÍ ČASOVÁ RELÉ

MULTIFUNKČNÍ ČASOVÁ RELÉ N Elekrická relé a spínací hodiny MULIFUNKČNÍ ČASOVÁ RELÉ U Re 1 2 0 = 1+2 Ke spínání elekrických obvodů do 8 A podle nasaveného času, funkce a zapojení Především pro účely auomaizace Mohou bý využia jako

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Elementární funkce. Polynomy

Elementární funkce. Polynomy Elementární funkce 1 Elementární funkce Elementární funkce jsou níže uvedené funkce a jejich složenin : 1. Polnom.. Racionální funkce. 3. Mocninné funkce. 4. Eponenciální funkce. 5. Logaritmické funkce.

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Návrh filtrů FIR, metoda okénkování, klasická okna, návrh pomocí počítače. Návrh filtrů IIR, základní typy filtrů, bilineární transformace

Návrh filtrů FIR, metoda okénkování, klasická okna, návrh pomocí počítače. Návrh filtrů IIR, základní typy filtrů, bilineární transformace 6. ČÍSLICOVÉ FILRY MEODY NÁVRHU Návrh diskrétních filtrů - úvod Návrh filtrů FIR, metoda okénkování, klasická okna, návrh pomocí počítače Návrh filtrů IIR, ákladní typy filtrů, bilineární transformace

Více

Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích

Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích Výpočy eploní bilance a chlazení na výkonových spínacích prvcích Úvod Při provozu polovodičového měniče vzniká na výkonových řídicích prvcích zráový výkon. volňuje se ve ormě epla, keré se musí odvés z

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Úsav fyziky a měřicí echniky Pohodlně se usaďe Přednáška co nevidě začne! Základy fyziky + opakovaná výuka Fyziky I Web úsavu: ufm.vsch.cz : @ufm444 Zimní semesr opakovaná výuka + Základy fyziky 2 hodiny

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

Matematika I (KMI/5MAT1)

Matematika I (KMI/5MAT1) Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Modely simulánních rovnic Problém idenifikace srukurních simulánních rovnic Cvičení Zuzana Dlouhá Modely simulánních rovnic (MSR) eisence vzájemných vazeb mezi proměnnými v modelu,

Více

Kvadratické rovnice a jejich užití

Kvadratické rovnice a jejich užití Kvadraické rovnice a jejich užií Určeno udenům ředního vzdělávání mauriní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní li vyvořil: Mgr. Helena Korejková Období vyvoření VM: proinec 2012 Klíčová

Více

Nauka o Kmitání Přednáška č. 4

Nauka o Kmitání Přednáška č. 4 Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená

Více