PŘÍKLADY K MATEMATICE 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "PŘÍKLADY K MATEMATICE 2"

Transkript

1 PŘÍKLADY K MATEMATICE ZDENĚK ŠIBRAVA. Funkce více proměnných.. Základní pojmy funkce více proměnných. Příklad.. Určeme definiční obor funkce tří proměnných f(x, y, z) = x y + x z. Řešení: Definičním oborem funkce f bude taková podmnožina bodů z R 3, pro které má předpis zadávající funkci smysl. (Víme, že t je definována pouze pro t 0.) Musí tedy platit x y 0 x z 0, tj. x + y x + z. Definičním oborem funkce f je tedy uzavřený průnik dvou rotačních válců s osami z a y a poloměry (Obr. ). 0,5 z 0-0, ,5-0,5 y 0 0 0,5 0,5 x Obr. Příklad.. Určete definiční obor f(x, y, z) = x + y + z. Výsledek: 0, + ) 0, + ) 0, + ) Date:

2 ZDENĚK ŠIBRAVA Příklad.3. Určete definiční obor f(x, y, z) = ln (xyz). Výsledek: Body z R 3, pro které platí xyz > 0, tj. body ležící v.,3.,6. a 8. oktantu a současně x 0, y 0, z 0 Příklad.4. Určete definiční obor f(x, y, z) = arcsin x + arccos y + arctg z. Výsledek:,, (, + ) Příklad.5. Určete definiční obor f(x, y, z) = x y z. Výsledek: x + y + z, tj. všechny body koule se středem v počátku a poloměrem Příklad.6. Určete definiční obor f(x, y, z) = ln (4 x y z ) x +4y +z 4. Výsledek: x /4 + y + z /4 > x + y + z < 4, tj. všechny body, které jsou současně vnější body elipsoidu se středem v počátku a poloosami a =, b =, c = a vnitřní body koule se středem v počátku a poloměrem Příklad.7. Určete definiční obor vektorové funkce F(x) = (arcsin(x ), ln (x 4)). Výsledek: (, 3 Příklad.8. Určete definiční obor vektorové funkce F(x, y) = (arcsin x + arccos y, arcsin (x + y)). Výsledek: Uzavřený šestiúhelník s vrcholy (, 0), (0, ), (, ), (, 0), (0, ), (, ) Příklad.9. Najděme vrstevnice (úrovňové plochy) funkce f(x, y, z) = x y+z. Řešení: Funkce f je definována v celém R 3 a oborem jejích funkčních hodnot je R. Pro dané q R je tedy její vrstevnicí rovina q = x y + z. Všechny vrstevnice pak tvoří systém rovnoběžných rovin x y + z q = 0, q R. Příklad.0. Najděte vrstevnice funkce f(x, y, z) = x + y + z. Výsledek: Rovnoběžné roviny x + y + z q = 0, q R Příklad.. Najděte vrstevnice funkce f(x, y, z) = x + y + z. Výsledek: Soustředné kulové plochy x + y + z = q, q 0. Příklad.. Najděte vrstevnice funkce f(x, y, z) = x + y z. Výsledek: Pro q = 0 rotační kužel z = x + y, pro q > 0 (Obr. ) a pro q < 0 (Obr. 3) rotační hyperboloidy. Příklad.3. Funkce f je skalární funkce tří proměnných taková, že f(,, 3) = (4,, ). Dále funkce ψ je vektorová funkce jedné proměnné taková, že ψ() = (,, 3) a ψ () = (,, ). Vypočítejme derivaci funkce h(t) = f(ψ(t)) v bodě t =. Řešení: Pro derivaci funkce složené z vnější skalární funkce f a vnitřní vektorové funkce ψ platí h (t) = f(ψ(t))ψ (t)

3 PŘÍKLADY K MATEMATICE 3 3,5 0,5 0 z -0,5 z ,5-0 y 0 x - - Obr x Obr. 3 y 3 a to znamená, že všechny potřebné informace k výpočtu derivace h () máme k dispozici. Pro t = je ψ() = (,, 3) a dále víme, že f(,, 3) = (4,, ). Známe také ψ () = (,, ) a tedy h () = f(ψ())ψ () = f(,, 3)ψ () = (4,, ) (,, ) = 4. Příklad.4. Funkce f je skalární funkce dvou proměnných taková, že f(, ) = (, 3). Dále funkce ψ je vektorová funkce jedné proměnné taková, že ψ() = (, ) a ψ () = (, ). Vypočítejme derivaci funkce h(t) = f(ψ(t)) v bodě t =. Výsledek: Příklad.5. Funkce f je skalární funkce tří proměnných taková, že f(,, 3) = (,, 3). Dále funkce ψ je vektorová funkce jedné proměnné taková, že ψ(3) = (,, 3) a ψ (3) = (,, ). Vypočítejme derivaci funkce h(t) = f(ψ(t)) v bodě t = 3. Výsledek: Příklad.6. Funkce f je skalární funkce dvou proměnných taková, že f(, ) = (, ) a ψ je vektorová funkce jedné proměnné taková, že ψ() = (, ) a ψ () = (, ). Vypočítejme derivaci funkce h(t) = f(ψ(t)) v bodě t =. Výsledek: 4 Příklad.7. Funkce f je skalární funkce dvou proměnných taková, že f(4, ) = (8, 4) a ψ je vektorová funkce jedné proměnné taková, že ψ() = (4, ) a ψ () = (4, ).Vypočítejme derivaci funkce h(t) = f(ψ(t)) v bodě t =. Výsledek: 36 Příklad.8. Vypočítejme derivaci funkce f(x, y, z) = x y + yz xz 3 v bodě P = (,, ) ve směru vektoru v = (,, ). Řešení: Pro derivaci funkce f v bodě P ve směru jednotkového vektoru u platí u = f(p ) u,

4 4 ZDENĚK ŠIBRAVA kde f(p ) je gradient funkce f v bodě P, tj. ( f(p ) = x,, ). z Je = xy z 3 (x,y,z)=(,, ) = 5, x = x + z (x,y,z)=(,, ) =, = yz 3xz (x,y,z)=(,, ) = 7 z a f(p ) = (5,, 7). Vektor v = (,, ), v jehož směru máme počítat derivaci, však není jednotkový. Nahradíme ho tedy vektorem u, kde u = v v = (,, ), 3 tj. jednotkovým vektorem ve směru vektoru v. Potom u = f(p ) u = 3 (5,, 7) (,, ) = 7 3. Příklad.9. Derivace funkce f dvou proměnných v bodě P ve směru vektoru u = (, 0) je a derivace této funkce ve směru vektoru u = (0, ) je ( 3. Najděme derivaci funkce f ve směru vektoru u 3 =, ) 3. Řešení: ( K nalezení derivaci ) funkce f ve směru vektoru u 3 potřebujeme znát f(p ) =,. Víme, že x ( = f(p ) u = u x, ) (, 0) = a ( = f(p ) u = u x, ) (0, ) = 3. Je tedy a tedy x = = 3 f(p ) = (, 3) = f(p ) u 3 = (, ( 3) u 3, ) 3 =. V příkladech.0.5 vypočítejte derivaci funkce f v bodě P ve směru vektoru u. Příklad.0. f(x, y) = 3x 4xy + 5y 3, P = (, ), u = (3, ). Výsledek: 0/ 3

5 PŘÍKLADY K MATEMATICE 5 Příklad.. f(x, y, z) = 3x yz + 4xy z + 5xyz, P = (,, ), u = (6, 6, 3). Výsledek: 5 Příklad.. f(x, y) = ln (x + y), P = (, ), u = (u, u ) je směrový vektor tečny paraboly y = 4x sestrojené v bodě P (u < 0). Výsledek: /3 Příklad.3. f(x, y) = x, P = ( 3, 3), u = (u y, u ) je směrový vektor tečny kružnice x + y + 4y = 0 sestrojené v bodě P (u < 0). Výsledek: 3/ Příklad.4. f(x, y) = arcsin x, P = (, ), u = (u y, u ) je směrový vektor normály hyperboly xy = sestrojené v bodě P (u > 0). Výsledek: 55/34 Příklad.5. f(x, y, z) = xy +z 3 xyz, P = (,, ), u svírá se souřadnicovými osami úhly α = π/3, β = π/4, γ = π/3. Výsledek: 5 Příklad.6. Derivace funkce dvou proměnných f v bodě P ve směru vektoru u = (, ) je a derivace této funkce ve směru vektoru u = (, 3) je 3. Vypočítejte derivaci funkce f v bodě P ve směru vektoru u 3 = (, ). Výsledek: 0 Příklad.7. Derivace funkce tří proměnných f v bodě P ve směru vektoru u = (,, 0) je, ve směru vektoru u = (, 0, ) je a ve směru vektoru u 3 = (,, ) je 4 3. Vypočítejte derivaci funkce f v bodě P ve směru vektoru u 4 = (,, ). Výsledek: /3 Příklad.8. Derivace funkce tří proměnných f v bodě P ve směru vektoru 6 u = (, 3, ) je 4 a ve směru vektoru u = (, 3, ) je 6. Vypočítejte derivaci funkce f v bodě P ve směru vektoru u 3 = (,, ). Výsledek: / 3 Příklad.9. Najděme rovnici tečné roviny k ploše x y + z = 3 rovnoběžné s rovinou ϱ : x + y + z = 0. Řešení: Pro nalezení rovnice tečné roviny ax + by + cz + d = 0 potřebujeme znát např. normálový vektor této roviny a jeden bod, který v této rovině leží. Protože hledaná tečná rovina má být rovnoběžná s rovinou ϱ, musí být jejich normálové vektory rovnoběžné, tj. (a, b, c) = k(,, ), k R. O ploše x y + z = 3 můžeme předpokládat, že je vrstevnicí (úrovňovou plochou) funkce tří proměnných f(x, y, z) = x y + z pro q = 3. Dále víme, že gradient funkce v každém bodě P je normálovým vektorem vrstevnice procházející tímto bodem a je tedy normálovým vektorem tečné roviny v bodě P. Tedy ( f(p ) = x,, ) = (a, b, c). z

6 6 ZDENĚK ŠIBRAVA Nechť tedy P = (x 0, y 0, z 0 ) je dotykový bod plochy a tečné roviny. Potom = x 0, x 0 = k x 0 = k x, () = 4y 0, 4y 0 = k y 0 = k, = z 0, z 0 = k z 0 = k. z Protože bod P leží na ploše x y + z = 3, musí jeho souřadnice splňovat rovnici plochy, tj. k 4 k + k = 3 k = ±. Z () pak dostáváme dva dotykové body P = (,, ) a P = (,, ) a to znamená, že k dané ploše existují dvě tečné roviny rovnoběžné s rovinou ϱ x + y + z ± 3 = 0. V příkladech.30.3 najděte rovnice tečné roviny a normály k dané ploše v bodě P. Příklad.30. x 3y z = 0, P = ( 3,, 6). Výsledek: 6x + 6y + z + 6 = 0, X = P + t(6, 6, ) Příklad.3. x + y + z = 69, P = (3, 4, ). Výsledek: 3x + 4y + z 69 = 0, X = P + t(3, 4, ) Příklad.3. e xz +yz = 0, P = (0,, ). Výsledek: x + y z + = 0, X = P + t(,, ) Příklad.33. Najděte rovnice tečných rovin k ploše x + y + z = 7, které jsou rovnoběžné s rovinou x + y z + = 0. Výsledek: x + y z ± 7 = 0 Příklad.34. Najděte rovnice tečných rovin k ploše x +y +3z 4xz 3 = 0, které jsou rovnoběžné s rovinou x + 4y 3z = 0. Výsledek: x + 4y 3z ± 6 = 0 Příklad.35. Najděte rovnice tečných rovin k ploše 3x + y + z 4xz = 8, které jsou rovnoběžné s rovinou 3x 4y z = 0. Výsledek: 3x 4y z ± 8 = 0

7 .. Extrémy funkcí více proměnných.... Lokální extrémy funkcí více proměnných. PŘÍKLADY K MATEMATICE 7 Příklad.36. Najděme lokální extrémy funkce f(x, y) = 4x 3 + 8y 3 4xy + 3. Řešení: Funkce f je spojitá v celém R a má také v celém R vlastní derivace. To znamená, že lokální extrémy může mít pouze ve svých stacionárních bodech, tj. v bodech kde se obě první parciální derivace rovnají nule. f(x,y) x = x 4y, tj. x y = 0, f(x,y) = 4y 4x, tj. y x = 0. Vyjádříme-li z první rovnice y = x a dosadíme-li do druhé rovnice, dostaneme x(x 3 4) = 0. Odtud pak x = 0 y = 0 a x = 3 4 y = 3. Funkce f má tedy dva stacionární body P = (0, 0) a P = ( 3 4, 3 ). O tom, zda v těchto bodech má funkce lokální extrém, rozhodneme na základě znaménka determinantu () D = det tj. znaménka výrazu ( fxx (P ) f xy (P ) f yx (P ) f yy (P ) f(p ) f(p ) x ), ( ) f(p ) x v jednotlivých stacionárních bodech. Funkce f má v bodě P extrém pouze v případě, že je D > 0. V případě, že je D < 0, funkce v bodě P extrém nemá. Předně je f(x, y) x = 4x, f(x, y) = 48y, f(x, y) x = 4. Pro P = (0, 0) dostáváme dosazením do () ( ) 0 4 D = det = ( 4) 4 0 = 4 < 0 f v bodě P nemá extrém. Pro P = ( 3 4, 3 ) dostáváme dosazením do () ( ) D = det = 78 > 0 a funkce f má v bodě P = ( 3 4, 3 ) extrém. O tom, zda má funkce v tomto bodě lokální maximum nebo minimum, rozhodneme na základě znaménka druhé derivace f(p )/ x. Platí V našem případě je f xx (P ) > 0 f má v bodě P lokální minimum, f xx (P ) < 0 f má v bodě P lokální maximum. f(p ) x = > 0

8 8 ZDENĚK ŠIBRAVA a funkce f má v bodě P = ( 3 4, 3 ) ostré lokální minimum. Hodnota tohoto minima je f( 3 4, 3 ) =. Příklad.37. Najděme lokální extrémy funkce f(x, y) = xy(6 x y). Řešení: Funkce f má parciální derivace v celém R. Lokální extrémy může mít tedy pouze ve stacionárních bodech. Tedy tj. (3) (4) f(x,y) x f(x,y) = y(6 x y) xy = y(6 x y), = x(6 x y) xy = x(6 x y), y(6 x y) = 0, x(6 x y) = 0. Při řešení soustavy (3),(4) budeme postupovat následovně: (i) Nechť je x = 0 y = 0. Potom je splněna rovnice (3) i (4) a bod P = (0, 0) je stacionární bod funkce f. (ii) Nechť je x = 0 y 0. Potom je splněna rovnice (4). Aby byla splněna rovnice (3) musí být (6 x y) = 0. Podle předpokladu je však x = 0 a tedy y = 6 a bod P = (0, 6) je stacionární bod funkce f. (iii) Nechť je x 0 y = 0. Potom je splněna rovnice (3). Aby byla splněna rovnice (4) musí být (6 x y) = 0. Podle předpokladu je však y = 0 a tedy x = 6 a bod P 3 = (6, 0) je stacionární bod funkce f. (iv) Nechť je x 0 y 0. Potom, aby byla splněna rovnice (3), resp. rovnice (4), musí být (6 x y) = 0, resp. (6 x y) = 0. Další stacionární bod tedy dostaneme řešením soustavy 6 x y = 0, 6 x y = 0. Odtud P 4 = (, ). Je zřejmé, že další možnost již nemůže nastat. Pro další vyšetření extrémů potřebujeme druhé derivace funkce f. f(x, y) x = y, f(x, y) = x, f(x, y) x = 6 x y. Pro P = (0, 0) dostáváme ( ) 0 6 D = det = 36 < 0 funkce nemá v bodě P 6 0 = (0, 0) extrém. Pro P = (0, 6) dostáváme ( ) 6 D = det = 36 < 0 funkce nemá v bodě P 6 0 = (0, 6) extrém. Pro P 3 = (6, 0) dostáváme ( ) 0 6 D = det = 36 < 0 funkce nemá v bodě P 6 3 = (6, 0) extrém.

9 PŘÍKLADY K MATEMATICE 9 Pro P 4 = (, ) dostáváme ( ) 4 D = det = > 0 funkce má v bodě P 4 4 = (, ) extrém. Protože v bodě P 4 = (, ) je f(p 4 )/ x = 4 < 0, má funkce f v tomto bodě ostré lokální maximum. Jeho hodnota je f(, ) = 4(6 ) = 8. Příklad.38. Najděme lokální extrémy funkce f(x, y) = (x y + ). Řešení: Funkce f má parciální derivace v celém R. Lokální extrémy může mít tedy pouze ve stacionárních bodech. Protože dostáváme f(x,y) x = 4x(x y + ), f(x,y) = 4(x y + ), 4x(x y + ) = 0, 4(x y + ) = 0. Obě rovnice budou splněny pouze v případě, když x y + = 0, tj. funce má nekonečně mnoho stacionárních bodů, které všechny leží na parabole y = (x +). Z definice funkce plyne, že obor funkčních hodnot Hf = 0, + ) a že f(x, y) = 0 právě tehdy, když x y + = 0 a ve všech ostatních bodech R je f(x, y) > 0. To znamená, že funkce f nabývá ve všech bodech paraboly y = (x + ) svého neostrého minima 0. Poznámka.39. Je zřejmé, že příklad.38 jsme mohli vyřešit pouhou úvahou. Jak jsme již uvedli, je obor funkčních hodnot funkce funkce f(x, y) = (x y +) interval 0, + ) a minimum funkce f je 0. Platí (x y + ) = 0 x y + = 0 a to znamená, že funkce f nabývá svého neostrého minima ve všech bodech paraboly y = (x + ). Příklad.40. Najděme lokální extrémy funkce f(x, y) = 3 (x y). Řešení: Funkce f je definována v celém R. Její první parciální derivace jsou f(x, y) x = 3 3 x y, f(x, y) = 3 3 x y. Je zřejmé, že parciální derivace funkce f neexistují pro body (x, y), které leží na přímce y = x. Všechny tyto body jsou vratkými body funkce f a to znamená, že funkce f může v těchto bodech mít lokální extrém. Oborem hodnot funkce f je interval (,, přičemž f(x, y) = právě tehdy, když y = x, a ve všech ostatních bodech R je f(x, y) <. To znamená, že funkce f(x, y) = 3 (x y) ve všech bodech přímky y = x nabývá svého neostrého lokálního maxima. (Při řešení tohoto příkladu jsme mohli postupovat analogickým způsobem podle poznámky.39). Příklad.4. Najděme lokální extrémy funkce f(x, y, z) = x 3 +y +z +xy+z.

10 0 ZDENĚK ŠIBRAVA Řešení: Funkce f má parciální derivace v celém R 3. Lokální extrémy může mít tedy pouze ve stacionárních bodech. f(x, y, z) = 3x + y, x Odtud f(x, y, z) = y + x, 3x + y = 0, y + x = 0, z + = 0. f(x, y, z) z = z +. Z poslední rovnice dostáváme z =. Z druhé rovnice vyjádříme y = 6x a dosadíme do první. Dostaneme kvadratickou rovnici x 4x = 0. Odtud x = 0, x = 4. Funkce má dva stacionární body P = (0, 0, ) a P = (4, 44, ). O tom, zda v těchto bodech má funkce lokální extrém, rozhodneme na základě znamének D, D a D 3, kde Protože D = f xx (P ), D 3 = det f(x, y, z) x = 6x, ( fxx (P ) f D = det xy (P ) f yx (P ) f yy (P ) f xx(p ) f xy (P ) f xz (P ) f yx (P ) f yy (P ) f yz (P ) f zx (P ) f zy (P ) f zz (P ) f(x, y, z) =, f(x, y, z) f(x, y, z) =, = 0, x x z dostáváme pro P = (0, 0, ) ( ) 0 D = 0, D = det = 44, D 3 = det ), f(x, y, z) z =, f(x, y, z) z = 0, = 88. Protože D < 0 a dále D 3 0, nemá funkce f v bodě P = (0, 0, ) lokální extrém. Pro P = (4, 44, ) je D = 44, ( 44 D = det ) = 44, D 3 = det = 88. Protože D > 0, D > 0, D 3 > 0, má funkce f v bodě P = (0, 0, ) lokální extrém, a to minimum. Jeho hodnota je f(4, 44, ) = 693. V příkladech.4.57 najděte lokální extrémy daných funkcí. Příklad.4. f(x, y) = (x + ) + y. Výsledek: Ostré lok. min. f(, 0) = 0

11 PŘÍKLADY K MATEMATICE Příklad.43. f(x, y) = x 3 6x 6xy + 6y + 3y. Výsledek: Ostré lok. min. f(, ) = 7 Příklad.44. f(x, y) = x + y xy x y +. Výsledek: Ostré lok. min. f(, ) = Příklad.45. f(x, y) = 7x y + 4y 3 69y 54x. Výsledek: Ostré lok. min. f(, ) = 8, ostré lok.max. f(, ) = 8 Příklad.46. f(x, y) = x y + x 4y. Výsledek: Funkce nemá lok. extrémy Příklad.47. f(x, y) = x 3 + y 3 8xy + 5. Výsledek: Ostré lok. min. f(6, 6) = Příklad.48. f(x, y) = e x y (x + y ). Výsledek: Ostré lok. min. f(0, 0) = 0, lok. max. / e v bodech kružnice x + y = Příklad.49. f(x, y) = (x y + ). Výsledek: Funkce má neostré lok. max. ve všech bodech přímky x y + = 0 Příklad.50. f(x, y) = x ( + y ). Výsledek: Funkce má neostré lok. min. 0 ve všech bodech přímky x = 0 Příklad.5. f(x, y) = 3 (x + y ). Výsledek: Ostré lok. min. f(0, 0) = 0 Příklad.5. f(x, y) = 3 x y. Výsledek: Funkce nemá lok. extrémy Příklad.53. f(x, y, z) = x + y + z + zy z + y x. Výsledek: Ostré lok. min. f(,, ) = Příklad.54. f(x, y, z) = x 3 + 3x + y + z + xy + 5x + 4y + 4z + 7. Výsledek: Ostré lok. min. f(3, 45, ) = 693 Příklad.55. f(x, y, z) = xyz(4 x y z). (Body ležící v souřadnicových rovinách nepočítejte, ale pokuste se zdůvodnit, že funkce v těchto bodech nemá extrém.) Výsledek: Ostré lok. max. f(,, ) = Příklad.56. f(x, y, z) = x + y + z xy xz. Výsledek: Funkce nemá lok. extrémy Příklad.57. f(x, y, z) = (3x + y + z) e x y z. Výsledek: Ostré lok. max. f(3 7/4, 7/7, 7/4) = 7 e /, Ostré lok. min. f( 3 7/4, 7/7, 7/4) = 7 e /

12 ZDENĚK ŠIBRAVA 0 8 z yx 4 4 Obr Vázané extrémy funkcí dvou proměnných. Příklad.58. Najděme lokální extrémy funkce f(x, y) = x + y + 6 vázané na podmínku x + y 5 = 0. Řešení: Pro pochopení vázaného lokálního extrému si představme, že se pohybujeme po nějaké ploše (grafu nějaké funkce dvou proměnných f) po cestě, jejíž kolmý průmět do roviny xy je dán rovnicí g(x, y) = 0. V našem případě se pohybujeme po nakloněné rovině z = x + y + 6 po cestě (elipse), jejímž kolmým průmětem do roviny xy je kružnice x + y = 5 (Obr. 4). Nás zajímá minimální a maximální nadmořská výška, do které se na naši cestě dostaneme (obecně nás zajímají všechna taková místa, kde po sestupu začneme opět stoupat a naopak, kde po stoupání začneme opět klesat), tj. hledáme lokální extrémy funkce f vázané na podmínku g(x, y) = 0. Tyto extrémy můžeme najít např. následujícím způsobem. Najdeme body P, ve kterých jsou vektory f a g rovnoběžné, tedy platí, že jeden je nějakým λ-násobkem druhého, tj. platí f(p ) = λ g(p ). Spolu s podmínkou, že P je bod, který leží na naší cestě, tj. g(p ) = 0, dostáváme (je f(x, y) = (, ) a g(x, y) = (x, y)) (5) = λx, = λy, x + y 5 = 0. Můžeme postupovat také tak, že si setrojíme tzv. Lagrangeovu funkci Φ(x, y) = x + y + 6 λ(x + y 5), kde λ je pevné, zatím neznámé číslo. Pro ukázněné turisty, tj. pro takové, kteří neopustí vyznačenou cestu (tj. platí x + y 5 = 0), jsou funkce f a Φ totožné. Nyní budeme hledat lokální extrémy této nové funkce Φ. Jelikož funkce Φ má spojité parciální derivace v celém R, může mít extrémy

13 pouze ve svých stacionárních bodech. Φ(x, y) x PŘÍKLADY K MATEMATICE 3 = λx, Φ(x, y) = λy. Jak už bylo řečeno, jsme ukáznění turisté, a proto nás zajímají body, ve kterých se parciální derivace funkce Φ rovnají nule, ale navíc, tyto body musí ležet na naší cestě, tedy musí splňovat podmínku x + y 5 = 0. Odtud dostáváme soustavu tří rovnic pro neznámé x, y a λ λx = 0, λy = 0, x + y 5 = 0, která je totožná se soustavou (5). Vyjádříme-li z první rovnice x = /λ, z druhé y = /(λ) a dosadíme-li do třetí, dostaneme a λ = x = y =, λ = x = y =. Funkce Φ má dva stacionární body vázané na podmínku x + y 5 = 0, a to P = (, ), kde λ = / a P = (, ), kde λ = /. Dále je Φ(x, y) x = λ, Φ(x, y) = λ, Φ(x, y) x = 0. Potom pro P = (, ) a λ = / je ( ) 0 D = det = > 0 funkce má v bodě P 0 = (, ) extrém. Protože v bodě P = (, ) je Φ(P )/ x = > 0, má funkce Φ v tomto bodě ostré lokální minimum vázané na podmínku x + y 5 = 0. Pro P = (, ) a λ = / je ( ) 0 D = det = > 0 funkce má v bodě P 0 = (, ) extrém. Protože v bodě P = (, ) je Φ(P )/ x = < 0, má funkce Φ v tomto bodě ostré lokální maximum vázané na podmínku x + y 5 = 0. Jak už bylo řečeno, pro všechna (x, y) M = {(x, y) R : x + y 5 = 0} je Φ(x, y) = f(x, y). To ovšem znamená, že funkce Φ a f mají tytéž vázané extrémy vzhledem k množině M, tj. funkce f má dva lokální extrémy vázané na podmínku x + y 5 = 0 a to ostré lokální minimum f(, ) = = a ostré lokální maximum f(, ) = =. Příklad.59. Najděme lokální extrém funkce f(x, y) = 6 + xy vázaný na podmínku x y = 0.

14 4 ZDENĚK ŠIBRAVA 4 0 z y x Obr. 5 4 Řešení: Budeme postupovat podobně jako v příkladu.58. Sestrojíme Lagrangeovu funkci a budeme vyšetřovat její extrémy vázané na podmínku x y = 0: Φ(x, y) = 6 + xy λ(x y ). Potom Φ(x, y) Φ(x, y) = y λ, = x + λ. x Hledáme stacionární body funkce Φ takové, aby současně splňovaly podmínku x y = 0, tj. řešíme soustavu tří rovnic o třech neznámých y λ = 0, x + λ = 0, x y = 0. Odtud dostáváme, že λ = a x =, y =, tj. funkce Φ má jeden stacionární bod vázaný na podmínku x y = 0. Protože dostáváme Φ(x, y) x = 0, Φ(x, y) = 0, ( 0 D = det 0 ) = < 0. Φ(x, y) x =, Z této podmínky ale vyplývá, že funkce Φ nemá v bodě P = (, ) extrém. Otázkou je, co můžeme v této chvíli usoudit o extrému funkce f vázaného na podmínku x y = 0. Podívejme se předně na Obr. 5. Jako turisté se tentokrát pohybujeme po úbočí horského sedla, tj. po hyperbolickém paraboloidu z = 6 + xy po cestě, jejímž kolmým průmětem do roviny xy je přímka x y = 0. Cesta, po které se skutečně pohybujeme, má tvar paraboly, kdy nejdříve klesáme až do vrcholu paraboly a poté začneme na cestě opět

15 PŘÍKLADY K MATEMATICE 5 stoupat. Je tedy zřejmé, že na naší cestě zcela jistě dosáhneme ostrého lokálního minima (jisté minimální nadmořské výšky). K rozhodnutí, zda v bodě P = (, ) má funkce f skutečně extrém vázaný na podmínku x y = 0, bychom potřebovali znát některé další informace o vyšetřování vázaných extrémů. My však budeme většinou vyšetřovat absolutní extrémy funkcí na množině (Příklad.67), kde nám stačí nalézt pouze body podezřelé z vázaných extrémů (kritické body) a ty uvedenou metodou dokážeme nalézt. Přesto si ukažme, jak v některých jednodušších případech dokážeme rozhodnout o existenci vázaných extrémů. Položme x = t. Protože y = x a z = 6+xy, je y = t a tedy z = 6+t(t ). Potom ψ(t) = (t, t, 6 + t(t )), kde t R, není nic jiného, než parametrizace té paraboly, po které se ve skutečnosti pohybujeme. x a y jsou vlastně naše souřadnice, které bychom našli na mapě a souřadnice z nám určuje naši nadmořskou výšku. Jak jsme již uvedli v příkladu.58, nás zajímá minimální a maximální nadmořská výška, do které se na naší cestě dostaneme. Už víme, že tuto nadmořskou výšku popisuje právě z-tová souřadnice křivky, po které se pohybujeme, tedy funkce z = h(t), kde h(t) = 6 + t(t ). Její extrémy dokážeme nalézt snadno. Je h (t) = t t = 0 t =. Protože h (t) = > 0, má funkce h v bodě t = lokální extrém a to minimum. Na naší cestě tedy dosáhneme minimální nadmořské výšky h() = 6 + ( ) = 5 a to v bodě, jehož souřadnice jsou (, ) = (, ). Tímto způsobem jsme tedy našli lokální extrém funkce f(x, y) = 6 + xy vázaný na podmínku x y = 0. Funkce má jeden vázaný lokální extrém (minimum) v bodě P = (, ) a je f(, ) = 5. Druhý způsob, který jsme použili pro hledání vázaných extrémů funkcí dvou proměnných, se dá dobře použít v případě, že se nám podaří jednoduchým způsobem parametricky vyjádřit křivku, po které se na ploše pohybujeme. V opačném případě je pro nalezení kritických bodů vhodnější použít metodu Lagrangeových multiplikátorů. V příkladech najděte lokální extrémy daných funkcí vázaných na danou podmínku. Příklad.60. f(x, y) = x + y, x y + 5 = 0. Výsledek: Ostré lok. min. f(, ) = 5 Příklad.6. f(x, y) = x + y, x + y =. Výsledek: Ostré lok. max. f(/ 5, / 5) = 5/, Ostré lok. min. f( / 5, / 5) = 5/ Příklad.6. f(x, y) = xy x + y, x + y =. Výsledek: Ostré lok. max. f( /, 3/) = /4

16 6 ZDENĚK ŠIBRAVA Příklad.63. f(x, y) = 3x y, y = x 3 +. Výsledek: Ostré lok. max. f(, ) =, Ostré lok. min. f(, 0) = 3 Příklad.64. f(x, y) = x y, y = e x. Výsledek: Ostré lok. max. f(, e ) = 4 e, Ostré lok. min. f(0, ) = 0 Příklad.65. f(x, y) = +, 4x + y = 6 x 0 y 0. x y Výsledek: Ostré lok. max. f(3, 6) = /6, Ostré lok. min. f(, ) = 3/ Příklad.66. f(x, y) = x y, x + y =. Výsledek: Ostrá lok. max. f(±, 0) =, Ostrá lok. min. f(0, ±) =..3. Globální extrémy funkcí dvou a tří proměnných. Příklad.67. Najděme globální extrémy funkce f(x, y) = x 4x + y y na množině M = {(x, y) R : x y x + y 0}. Řešení: Při hledání globálních (absolutních) extrémů spojité funkce f na uzavřené množině M budeme postupovat následujícím způsobem: (i) Najdeme všechny kritické body na M. (ii) Najdeme všechny kritické body funkce f vázané na hranici h množiny M. (iii) Najdeme všechny body, ve kterých se h láme (ke křivce v tomto bodě nelze sestrojit tečnu). (iv) Ve všech těchto nalezených bodech vypočítáme funkční hodnotu funkce f. Největší, resp. nejmenší z těchto hodnot je globální maximum, resp. globální minimum funkce f na množině M. V našem případě je množina M kruhová výseč o poloměru 0 se středem v počátku, ohraničená přímkami y = x a y = x, přičemž x 0 (Obr. 6). Hledejme stacionární body funkce f. f(x,y) = x 4, x 4 = 0, x f(x,y) = y, y = 0. Odtud A = (, ). Nyní najdeme kritické body na hranici h množiny M. Tato hranice je sjednocením tří křivek C (část kružnice x + y = 0), C (část přímky y = x) a C 3 (část přímky y = x), přičemž tyto křivky se postupně protnou v bodech (0, 0), ( 0, 0), ( 0, 0). Body podezřelé z extrémů vazaných na podmínku x + y = 0 najdeme metodou Lagrangeových multiplikátorů. Hledáme takový bod A = (x, y) (splňující podmínku g(x, y) = 0) a takový skalár λ, pro který platí f(a) = λ g(a). Protože f(x, y) = (x 4, y ) a g(x, y) = (x, y), je A řešením soustavy x 4 λx = 0, y λy = 0, x + y 0 = 0.

17 PŘÍKLADY K MATEMATICE x - -4 Obr. 6 Vyjádříme-li z první rovnice x = /( λ), z druhé y = /( λ) a dosadíme-li do třetí, dostaneme dva body (4, ) a ( 4, ). Druhý bod však nepatří do množiny M a proto jej z dalších úvah vyřadíme. Dostáváme tedy další bod A = (4, ), ve kterém může mít funkce f na množině M extrém. Dále najdeme body, ve kterých může mít funkce f extrém vázaný na podmínku y = x. Označme x = t. Potom y = t a dosazením do z = x 4x + y y dostaneme z = t 6t. Funkce h(t) = t 6t, t 0, 0 má jeden bod podezřelý z extrému t = 3/. Dalším bodem, ve kterém může mít funkce f na množině M extrém, je tedy bod A 3 = (3/, 3/). Stejným způsobem najdeme bod podezřelý z extrému funkce f na vazbu y = x. Dostaneme bod A 4 = (/, /). Posledními podezřelými jsou body, ve kterých se hranice množiny M láme. To jsou již dříve zmíněné průsečíky jednotlivých křivek, tj. body A 5 = (0, 0), A 6 = ( 0, 0), A 7 = ( 0, 0). Nyní vypočítáme funkční hodnoty funkce f v bodech A až A 7. f(, ) = 5, f(4, ) = 0, f ( 3, ) 3 = 9, f (, ) =, f(0, 0) = 0, f( 0, 0) =.0633, f( 0, 0) = Funkce f má maximum v bodě A 7 = ( 0, 0) a minimum 5 v bodě A = (, ).

18 8 ZDENĚK ŠIBRAVA Příklad.68. Na elipse, která je průnikem válcové plochy x + y = a roviny x + y + z =, najděme body, jejichž druhá mocnina jejich vzdálenosti od počátku je největší, resp. nejmenší. Řešení: Pro vzdálenost bodu (x, y, z) od počátku platí x + y + z, přičemž ze všech bodů R 3 nás zajímají pouze takové body, které leží na válcové ploše x +y = a současně v rovině x+y+z =. Naším úkolem je tedy nalézt absolutní extrémy funkce f(x, y, z) = x + y + z vázané na dvě podmínky x + y = 0 (g (x, y, z) = 0) a x + y + z = 0 (g (x, y, z) = 0). Hledáme tedy takový bod (x, y, z), pro který je (6) (7) (8) (9) (0) f(p ) = λ g (P ) + µ g (P ) a současně g (x, y, z) = 0, g (x, y, z) = 0. Protože f = (x, y, z), g = (x, y, 0) a g = (,, ) dostáváme x λx µ = 0, y λy µ = 0, z µ = 0, x + y = 0, x + y + z = 0, což je soustava pěti nelineární rovnic o pěti neznámých. Za předpokladu, že λ z rovnic (6), (7), (8) dostaneme µ () x = ( λ), y = µ ( λ), z = µ. Dosazením do (9) a (0) a úpravou pak Odtud pak µ = ( λ), µ = ( λ) 3 λ. λ = 3 ±, µ = ( ± ). Odtud pak dosazením do () ( P =,, + ), P = (,, ). Pro λ = dostaneme z (6) a (7) µ = 0, z (8) z = 0 a z (9) a (0) pak x = 0 y = a x = y = 0. Dalšími kritickými body jsou tedy P 3 = (, 0, 0), P 4 = (0,, 0). V takovýchto úlohách bývá právě řešení těchto soustav největším problémem. Proto doporučujeme pro jejich řešení použít některý z vhodných programů (Mathematica, Maple, Matlab). Protože f(p ) = + ( + ) = , f(p ) = + ( ) =.757 f(p 3 ) = f(p 4 ) =

19 PŘÍKLADY K MATEMATICE 9 je P = ( /, /, + ) bod elipsy, jehož vzdálenost od počátku je největší a P 3 = (, 0, 0) a P 4 = (0,, 0) body elipsy, jejiž vzdálenost od počátku je nejmenší. Příklad.69. Najděme absolutní extrémy funkce f(x, y, z) = x+y+z na množině M = {(x, y, z) R 3 : x y + z }. Řešení: Protože hledáme extrémy spojité funkce na uzavřené množině, máme zaručeno, že tyto extrémy budou existovat. Při hledání kritických bodů budeme postupovat následovně: (i) Funkce f nemá žádné stacionární body v R 3, tedy ani v M. (ii) Najdeme stacionární body funkce f vázané na podmínku y + z x = 0. (iii) Najdeme stacionární body funkce f vázané na podmínku x = 0. (iv) Najdeme stacionární body funkce f vázané na podmínky x = 0 a y + z x = 0, tj. vyšetříme množinu bodů, ve kterých se hranice h množiny M láme. V případě (ii) použijeme metodu Lagrangeových multiplikátorů, tj. hledáme bod P a skalár λ, aby f(p ) = λ g (P ) a současně g (P ) = 0, kde g (x, y, z) = y + z x. Protože f = (,, ), g = (, y, z), dostáváme + λ = 0, λy = 0, λz = 0, y + z x = 0. Odtud dostáváme první kritický bod P = (,, ). V případě (iii) postupujeme analogicky (podmínka vazby je dána vztahem x = 0). Zde nenajdeme žádný kritický bod. V posledním případě opět použijeme metodu Lagrangeových multiplikátorů, tentokrát však pro dvě vazby, tj. hledáme bod P a skaláry λ a µ takové, aby f(p ) = λ g (P ) + µ g (P ) a současně g (P ) = 0 a g (P ) = 0 (g (x, y, z) = x ). Budeme tedy řešit soustavu + λ µ = 0, λy = 0, λz = 0, y + z x = 0, x = 0. Jejím řešením získáme tentokrát dva kritické body P = ( ) P 3 =,, ( ),, a Protože f(p ) =, f(p ) = + a f(p 3 ) = je zřejmé, že funkce f nabývá na množině M svého maxima f (, /, / ) = + a minima f (/, /, /) =. V příkladech.70 až.93 najděte extrémy (absolutní) daných funkcí na daných množinách.

20 0 ZDENĚK ŠIBRAVA Příklad.70. f(x, y) = x 4 + y 4, M = {(x, y) R : x + y }. Výsledek: max. f(±, 0) = f(0, ±) =, min. f(0, 0) = 0 Příklad.7. f(x, y) = x 3 + y 3, M = {(x, y) R : x + y }. Výsledek: max. f(, 0) = f(0, ) =, min. f(, 0) = f(0, ) = Příklad.7. f(x, y) = x + 4x + y y 3 M = {(x, y) R : x + y 0}. Výsledek: max. f(4, ) = 37, min. f(, ) = 8 Příklad.73. f(x, y) = x 4x + y y + 3 M = {(x, y) R : x + y 5}. Výsledek: max. f(, ) = 8, min. f(, ) = Příklad.74. f(x, y) = x + y + 4x 4y, M = {(x, y) R : 0 x 0 y 3}. Výsledek: max. f(, 0) = 4, min. f(0, ) = 6 Příklad.75. f(x, y) = x + y x + 6y, M = {(x, y) R : 0 x 7 4 y 4}. Výsledek: max. f(0, 4) = 80, min. f(6, 4) = 84 Příklad.76. f(x, y) = x xy + y, M = {(x, y) R : x 0 y 0 x y x}. Výsledek: max. f(, 0) = f(0, ) = 4, min. f(/, /) = /4 Příklad.77. f(x, y) = x + y xy + x 4y +, M = {(x, y) R : 0 x 0 y x}. Výsledek: max. f(, 0) = 7, min. f(3/4, 3/4) = /8 Příklad.78. f(x, y) = x + y xy x + 4y, M = {(x, y) R : x 0 x y 0}. Výsledek: max. f(, 0) = 5, min. f( 3/4, 3/4) = 7/8 Příklad.79. f(x, y) = x + xy 4x + 8y, kde M je ohraničená přímkami x = 0, y = 0, x =, y =. Výsledek: max. f(, ) = 7, min. f(, 0) = 3 Příklad.80. f(x, y) = x 3 +4x +y xy, M = {(x, y) R : y x y 4}. Výsledek: max. f(±, 4) = 3, min. f(0, 0) = 0 Příklad.8. f(x, y) = x + y + 4x 6y 4, M = {(x, y) R ; x y x + y 5}. Výsledek: max. f( 6, 6) = 48 6, min. f(, 3) = 7 Příklad.8. f(x, y) = x +y +6x 0y, kde M je trojúhelník s vrcholy v bodech (0, 0), (0, 6), (, ). Výsledek: max. f(0, 0) = 0, min. f(, 4) = 9 Příklad.83. f(x, y) = x +y +0x 6y, kde M je trojúhelník s vrcholy v bodech (0, 0), ( 6, 0), (, ). Výsledek: max. f(0, 0) = 0, min. f( 4, ) = 9

21 PŘÍKLADY K MATEMATICE Příklad.84. f(x, y) = x + y + 4x + 8y + 4, M = {(x, y) R : 0 y 4x x }. Výsledek: max. f(, 4) = 64, min. f(, 0) = 0 Příklad.85. f(x, y) = x + y 4x + y +, M = {(x, y) R : x + y x 0}. Výsledek: max. f(, ) = 6, min. f(0, ) = Příklad.86. f(x, y) = x + y x 4y +, M = {(x, y) R : 0 x 4y y }. Výsledek: max. f(0, 0) = f(0, 4) =, min. f(4, ) = 34 Příklad.87. f(x, y) = x + 3y 4x + y + 3, M = {(x, y) R : x 4x + 3 y 0}. Výsledek: max. f(, 0) = f(3, 0) = 0, min. f(, ) = 0 Příklad.88. f(x, y) = x + y + x 8y + 3, M = {(x, y) R : x + y 9 x 0}. Výsledek: max. f(, ) = 30, min. f(0, ) = 5 Příklad.89. f(x, y) = y x + 4y 6x +, M = {(x, y) R : x y 0 0 x 6}. Výsledek: max. f(6, 4) = 38, min. f(6, ) = 74 Příklad.90. f(x, y) = cos x cos y cos (x + y), M = {(x, y) R : 0 x π 0 y π}. Výsledek: max. f(0, 0) = f(π, 0) = f(π, π) = f(0, π) =, min. f(π/3, π/3) = f(π/3, π/3) = /8 Příklad.9. f(x, y, z) = xyz, kde M je polokoule x + y + z 3, z 0. Výsledek: max. f(,, ) = f(,, ) =, min. f(,, ) = f(,, ) = Příklad.9. f(x, y, z) = x + y + z, kde M je elipsoid x + y + z. Výsledek: max. f(/, /, 0) =, min. f( /, /, 0) = Příklad.93. f(x, y, z) = x y + z, kde M je čtyřstěn x + y + z, x 0, y 0, z 0. Výsledek: max. f(, 0, 0) = f(0, 0, ) =, min. f(0,, 0) = Příklad.94. Na elipse x + y = najděte bod, který je nejblíže, resp. nejdále 4 9 od přímky 3x y 9 = 0. Výsledek: (4/ 5, 3/ 5), ( 4/ 5, 3/ 5) Příklad.95. Na hyperbole x y = 4 najděte bod, který je nejblíže, bodu (0, ). Výsledek: ( 5, ), ( 5, ) Příklad.96. Mezi všemi pravoúhlými trojúhelníky daného obsahu najděte ten, který má nejmenší obvod. Výsledek: Rovnoram. trojúh. Příklad.97. V rovině R najděte takový bod, aby součet čtverců jeho vzdáleností od přímek x = 0, y = 0, x y + = 0 byl co nejmenší. Výsledek: ( /4, /4)

22 ZDENĚK ŠIBRAVA Příklad.98. V rovině x + z 3 = 0 najděte takový bod, aby součet čtverců jeho vzdáleností od bodů (,, ) a (,, ) byl co nejmenší. Výsledek: ( 3/4,, 9/4) Příklad.99. V rovině x + y z = 0 najděte takový bod, aby součet čtverců jeho vzdáleností od rovin x + 3z = 6 a y + 3z = byl co nejmenší. Výsledek: (3,, ) Příklad.00. Mezi všemi kvádry vepsanými do elipsoidu s poloosami a, b, c najděte ten, který má maximální objem. Vypočítejte tento objem. Výsledek: 8abc/(3 3) Příklad.0. Mezi všemi hrnci o stejném povrchu S najděte ten, který má největší objem. Výsledek: R = S/(3π), v = S/(3π), V = S 3 /(7π) Příklad.0. Do polokoule o poloměru R vepište kvádr největšího objemu. Výsledek: Kvádr o hranách R/ 3, R/ 3, R/ 3

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Diferenciální a integrální počet funkcí více proměnných

Diferenciální a integrální počet funkcí více proměnných Fakulta strojního inženýrství VUT v Brně 5. června 9 Diferenciální a integrální počet funkcí více proměnných RNDr. Jiří Klaška, Dr. Sbírka řešených příkladů k předmětu Matematika II pro profesní a kombinovanou

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Derivace a průběh funkce příklady z písemných prací

Derivace a průběh funkce příklady z písemných prací Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ±

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13

Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 01/13-1- Obsah Posloupnosti... 4 Aritmetická posloupnost... 5 Geometrická posloupnost... 6 Geometrické řady... 7 Finanční matematika... 8 Vektor, operace s vektory... 9 Vzdálenosti

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 9. srpna 05 Materiál je v aktuální

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: Obor Obchodní akademie 63-41-M/004 1. Praktická maturitní zkouška Praktická maturitní zkouška z odborných předmětů ekonomických se skládá z obsahu

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14 Funkce Definiční obor funkce, obor hodnot funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah 1 Definiční obor funkce příklady na určení oboru hodnot funkce

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Analytická

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: I. Obor Ekonomické lyceum 78-42-M/002 1. Práce s obhajobou z ekonomiky nebo společenských věd: Témata pro práci s obhajobou budou žáci zpracovávat

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Deskriptivní geometrie II.

Deskriptivní geometrie II. Střední průmyslová škola elektrotechnická a Vyšší odborná škola Pardubice, Karla IV. 13 Deskriptivní geometrie II. Ing. Rudolf Rožec Pardubice 2001 Skripta jsou určena pro předmět deskriptivní geometrie

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN: 978-80-87035-94-8

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více