Hilbertův prostor. Kapitola Základní vlastnosti

Rozměr: px
Začít zobrazení ze stránky:

Download "Hilbertův prostor. Kapitola 5. 5.1 Základní vlastnosti"

Transkript

1 Kpitol 5 Hilbertův prostor 5.1 Zákldní vlstnosti Historická poznámk Prostor X se sklárním součinem je strukturou n lineárnímprostorus nejsilnějšími xiomy.jetonormovnýlineárníprostor,vněmžje norm definován pomocí tzv. sklárního součinu. Proto v něm můžeme využívt všech pozntků, se kterými jsme se v rámci metrických prostorů nebo normovných lineárních prostorů seznámili. Sklární součin umožňuje zvést v prostoru se sklárním součinem nvíc kolmost(ortogonlitu) prvků. Je-li tento prostor nvíc úplný, budeme ho nzývt Hilbertův prostor. D. Hilbert( ) položil zákldy studi této struktury. Vznik teorie bstrktního Hilbertov prostoru se všk klde ž do r je spojovánsejménemj.vonneumnn( ).LátkoHilbertověprostoruptřído tzv. funkcionální nlýzy je vykládán v mnoh učebnicích věnovných této bstrktní části nlýzy. Stručný výkld nejdůležitějších výsledků lze nlézt npř. v[44] nebo[43]. Definice Nechť X je lineární prostor nd tělesem K reálných nebo komplexních čísel s binární opercí(, ), která má následující vlstnosti: Provšechn x,y,z Xvšechn α,β Kpltí (1) (x,x) 0, (2) (x,x)=0právěkdyž x=0, (3) (x,y)=(y,x), (4) (αx+βy,z)=α(x,z)+β(y,z). Pkříkáme,žedvojice Xspolus(, )tvoříprostorsesklárnímsoučinem(někdy téžunitárníprostor).operci(, )nzývámesklárnísoučinn X 1 ). Položíme x := (x,x), x X ukážeme,žetktodefinovnáfunkceje oprvdu norm n X, jk to odpovídá použitému oznčení běžnému v teorii normovných lineárních prostorů. Skutečně, přímo z vlstností sklárního součinu definicenormyplyne,žeprovšechn x X je x 0,přičemž x =0, právěkdyž x=0.provšechn x X α Kjetéž αx = α x.kdůkzu trojúhelníkové nerovnosti pro normu si připrvíme užitečné lemm. Lemm 5.1.3(Schwrzov nerovnost). Je-li X prostor se sklárním součinem,pkprovšechn x,y Xpltí (x,y) x y ; (5.1) rovnostv(5.1)nstává,právěkdyžjsouprvky x,y Xlineárnězávislé. Důkz.Pro x=0nebo y=0pltív(5.1)dokoncerovnostx, yjsoulineárně závislé.nerovnostrovněžtriviálněpltípro(x,y)=0.při y 0, x X α Cje 0 (x αy,x αy)= x 2 α(y,x) α(x,y)+αα y 2. (5.2) 1 ) Jdeodlšílicenci,logičtějšíbybyloříktsklárnísoučinn X X.

2 76 KAPITOLA5. Hilbertůvprostor Volme α=(x,x)/(y,x)dosďmedopředchozírovnosti;tkdostneme 0 x 2 x 2 x 2 + x 4 (y,x) 2 y 2, (5.3) zčehožjižplyne(5.1).jestližepltív(5.1)rovnost,pltípostupněv(5.3)tké v(5.2),tedy x αy=0,neboli x=αyx, yjsoulineárnězávislé.abychom ukázli, že v(5.1) nstává rovnost, právě když jsou x, y lineárně závislé, zbývá vyšetřitpřípdnenulovýchzávislých x, y.pkexistuje β Ctk,že x=βyje (x,y) = (βy,y) = β (y,y) = βy y = x y, tedyv(5.1)pltírovnost.tímjedůkztvrzenídokončen. Lemm 5.1.4(trojúhelníková nerovnost). Je-li X prostor se sklárním součinempoložíme-li x := (x,x), x X,pkprokždédvprvky x,y X pltí x y x ± y x + y (5.4) Důkz. Podle(5.1) pltí x+y 2 = (x+y,x+y) (x,x)+ (x,y) + (y,x) +(y,y) z čehož dostneme odmocněním x 2 +2 x y + y 2 = ( x + y ) 2, x+y x + y. (5.5) Uvžmedále,žepltí x = x+y y x+y + y,tedy x y x+y. Zesymetriedostávámestejnýodhdpro y x spojenímobou x y x+y ; (5.6) nynístčíještěuvážit,že y = y.tímjetrojúhelníkovánerovnost(5.4) dokázán. Důsledek Funkce x x := (x,x), x Xdefinujen Xnormu. Definice Prostor se sklárním součinem, který je vzhledem k normě tímto součinem generovné úplný, nzýváme Hilbertův prostor. Příkld Nejjednodušším příkldem Hilbertov prostoru je konečněrozměrnýprostor l 2 m uspořádných m-ticreálnýchnebokomplexníchčísel,jestliže definujemepro x=(x 1,x 2,...,x m ), y=(y 1,y 2,...,y m )sklárnísoučinvzthem (x,y)= m x k y k. Sndno se ukáže, že součin má potřebné vlstnosti z Definice Proto pltí Cuchyho nerovnost m ( m ) ( m x k y k x k 1/2 ) 2 y k 2 1/2. (5.7) Úplnostprostoru l 2 m jedůsledkemúplnosti RC,protožekonvergencevtomto lineárnímprostorujekonvergencí posouřdnicích.

3 5.1. ZÁKLADNÍ VLASTNOSTI 77 Historická poznámk Existují tvry nerovnosti (5.1), spojovné s několik jmény;tománásledujícíkořeny:l.a.cuchy( )odvodilr.1821nerovnost(5.7), která je Schwrzovou nerovností(5.1) v konkrétním Hilbertově prostoru. V. J. Bunjkovskij( ) dokázl integrální vrintu nerovnosti r Nezávislenněmknídospělr.1875tkéH.A.Schwrz( ),kterýjipk zobecnil r i pro přípd vícerozměrného integrálu. Cvičení5.1.9(Cuchy1821 ). Nechť x k, y k, k = 1,..., m,jsounezápornáčísl. Dokžte přímo(bez odvolání n Schwrzovu nerovnost), že pk pltí m x k y k m x 2 k 1/2 m 1=1 y 2 k 1/2. (5.8) Návod:Pro y =0tvrzenípltí.Zvoltelibovolně x, α Ry 0.Znerovnosti Èm (x k+ αy k ) 2 0,plyne,žeprodiskriminntkvdrtickérovnicesneznámou α m 1 x 2 k+2α m 1 x k y k + α 2 m 1 y 2 k=0 musí být nekldný. Příkld5.1.10(důležitý). 0znčmesymbolem l 2 systémvšechposloupností x={x k }reálnýchnebokomplexníchčísel x k, k N,proněžpltí x k 2 <. (5.9) Sndnolzenhlédnout,že l 2 jevzhledemkpřirozenýmdefinicímsčítání člen počlenu násobenísklárem členpočlenu lineárníprostor:prokždé x l 2 zřejměpltírovnost αx k 2 = α 2 x k 2,znížplyne αx l 2.Pro libovolnádvěčísl,bvyplývásndnoznerovnosti( b ) 2 0jednoduchý odhd2 b 2 + b 2,tkže +b b + b 2 2( 2 + b 2 ). (5.10) Aplikujeme-linerovnost(5.10)n x k, y k sečtemeprovšechn k N,dostneme ( x k + y k 2 2 x k 2 + y k 2) <, coždokzuje,žeprostor l 2 jeuzvřenývzkledemkesčítání.chceme-liukázt,že (x,y):= x 1 y 1 + x 2 y 2 + = x k y k, definujen l 2 sklárnísoučin,stčídokáztjehokonečnostprokždédvprvky x,y l 2.Ktomustčídokáztnásledujícílemm. Lemm Prokždédvěposloupnosti x,y l 2 pltínerovnost ( x k y k x k 2) ( 1/2 y k 2) 1/2. (5.11) Důkz. Stčí uvážit, že podle(5.7) pltí nerovnost s konečnými součty pro kždé m N.Vnerovnosti(5.7)přejdemeksupremupřesvšechn m Nnejprven prvé strně tk dostneme n prvé strně nekonečné řdy; pk uděláme totéž n levé strně po odmocnění obdržíme(5.11). Omezení(5.9) zručuje, že prcujeme pouze s posloupnostmi, pro které jsou příslušnýsklárnísoučinodpovídjícínormkonečné.protožejižvíme,že l 2 je prostor se sklárním součinem, je přirozené se ptát, zd je tento prostor úplný, tj. zd je Hilbertovým prostorem. To se většinou dokzuje v dleko obecnějším kontextu, není všk obtížné to dokázt přímo z definice.

4 78 KAPITOLA5. Hilbertůvprostor Vět Prostor l 2 jeúplnýjetedyhilbertovýmprostorem. Důkz.Proprácisposloupnostmiprvkůzl 2 zvedemedlšíindex npro celou posloupnost místo x n = {x n1,x n2,...}budemepsátpomocídvojitýchindexů {x nk }.Procuchyovskouposloupnost {x n }prvků(posloupností) x n l 2 pltí: kekždému ε >0existuje p Ntk,žeprovšechn m,n p ( x m x n 2 = x mk x nk 2) 1/2 < ε. (5.12) Protožesčítámenezápornáčísl,pltípki x mk x nk < εprokždé k N tk {x nk } n=1jeprokždé k Ncuchyovskáposloupnost.Tytoposloupnosti indexovnéprmetrem k konvergujístejnoměrněvzhledemke k Nknějké posloupnosti x 0 = {x 0k }.Vzhledemkestejnoměrnostivk Nlzezměnitv(5.12) limitnípřechodpro n sesčítánímřdyvzhledemkesčítcímuindexu k, tk limitovtvzhledemkn zznmenímsumy.dostnemetkpodlevrinty Věty15.3.3z[67]z(5.12)odhd x m x 0 ε.ukžmeještě,žettoposloupnost x 0 ležívprostoru l 2.Pročtverecnormy x 0,pltíodhd coždává x 0 l 2. x 0 2 x 0 x n + x n 2 2 ( x 0 x n 2 + x n 2), Poznámk Čtenář ptrně zná obecnou větu o zúplnění metrických prostorů. Uveďme bez důkzu, že kždý prostor se sklárním součinem lze zúplnit že toto zúplnění je Hilbertovým prostorem: tk lze kždý unitární prostor X vnořit přirozeným způsobem donějkéhohilbertovprostoru H,kterýnení přílišveliký,tkžeproněj pltí X= H. Příkld Nyní máme k dispozici jeden velmi důležitý příkld Hilbertov prostoru, který nemá konečnou dimenzi. Je možné, že je pouze speciálním přípdem obecnější situce, se kterou jste se již setkli. Uvedeme bez důkzů některá dlší důležitá fkt, nvzující n látku z teorie míry integrálu, která později použijeme.týkjíseprostorů L 2.Budemeprcovtsprostorem(tříd)funkcí,pro kteréjepro < < b < f 2 2:= f(t) 2 dt <. (5.13) Oznčíme L 2 ((,b))prostortřídreálných(resp.komplexních)funkcídefinovných λ-skorovšuden(,b),proněžpltí(5.13).zdeprcujemestřídmifunkcípodle rovnosti λ-skoro všude, kde λ je Lebesgueov mír v R, běžně se všk nerozlišuje mezi těmito třídmi funkcemi, které je reprezentují. Tento prostor je vzhledem ke sklárnímu součinu definovnému pomocí (f,g):= f(t) g(t) dt. (5.14) prostorem se sklárním součinem. Tzv. Hölderov nerovnost má pro tento speciální přípd tvr f(t)g(t) ( dt f(t) ) 2 1/2 ( dt g(t) ) 2 1/2 dt. Prodlšívýkldjezejménpodsttné,že L 2 ((,b))jehilbertůvprostor,tj.že je úplný. Toto tvrzení, které je mimořádně důležité, dokzovt nebudeme. Poznmenáváme, že právě v něm hrje prominentní roli Lebesgueův integrál. Shrňme tedy všechny tyto připomenuté pozntky do následujícího tvrzení:

5 5.1. ZÁKLADNÍ VLASTNOSTI 79 Vět Prostor L 2 ((,b))jeúplný,seprbilníjetovzhledemkesklárnímu součinu definovnému pomocí(5.13) Hilbertův prostor. K uvedeným příkldům se ještě vrátíme, nyní dokážeme několik obecných tvrzení o Hilbertových prostorech. Lemm Nechť HjeHilbertůvprostor, y 0 H.Zobrzení x (x,y 0 ), x (y 0,x), x x jsou(připevnězvoleném y 0 )stejnoměrněspojitán H. Zobrzení[x,y] (x,y),kdedvojici[x,y]přiřzujemehodnotusklárníhosoučinu(x,y),jespojitézobrzení H Hdo C(resp. R). Důkz. Zčneme se stejnoměrnou spojitostí všech tří zobrzení z první části tvrzení njednou. Sndno užitím(5.1) dostneme odhdy (x,y 0 ) (x 0,y 0 ) y 0 x x 0, (y 0,x) (y 0,x 0 ) y 0 x x 0 ; z trojúhelníkové nerovnosti dostneme x x0 x x0. Z těchto nerovností vyplývá stejnoměrná spojitost všech tří zkoumných zobrzení (zobrzení jsou dokonce lipschitzovská). Nkonec dokážeme spojitost sklárního součinu. Sndno ověříme přímým výpočtem (x x 0,y y 0 )=(x,y) (x,y 0 ) (x 0,y)+(x 0,y 0 )= =(x,y) (x 0,y 0 ) (x x 0,y 0 ) (x 0,y y 0 ), z čehož dostneme pomocí(5.1) již odvozených nerovností (x,y) (x 0,y 0 ) x x 0 y y 0 + x 0 y y 0 + y 0 x x 0, tedyiprvoučásttvrzení. Tvrzení VHilbertověprostoru Hpltíprokždoudvojiciprvků x,y H Důkz. Stčí sečíst rovnosti x+y 2 + x y 2 =2 ( x 2 + y 2). (5.15) x+y 2 =(x,x)+(x,y)+(y,x)+(y,y), x y 2 =(x,x) (x,y) (y,x)+(y,y), po úprvě dostneme okmžitě(5.15). Poznámk Jezjímvé,žetímtovzthemje hilbertovskánorm plněchrkterizován. Kždou normu s právě popsnými vlstnostmi lze generovt pomocí vhodného sklárního součinu. Npř. jde-li o normovný lineární prostor nd R, stčí položit (předchozí rovnosti nyní odečteme) (x, y):= x+y 2 x y 2 4 V komplexnímpřípdě jetotrochusložitější;tentofktvšknebudemevdlšímkničemu potřebovt, je všk užitečné ho znát. Geometricky je podmínk(5.15) zjímvá bývá nzýván rovnoběžníkové prvidlo. Doporučujeme čtenáři nčrtnout si obrázek uvážit, co víme v rovnoběžníku o vzthu délek jeho strn úhlopříček. Konečně stojí z povšimnutí, že podmínk se ověřuje v(mximálně) dvourozměrném podprostoru generovném prvky x, y. Je-li tedy kždý nejvýše dvourozměrný podprostor úplného normovného lineárního prostoru Hilbertovým prostorem, je tké celý prostor Hilbertovým prostorem. Vět Nechť M je neprázdná, konvexní uzvřená podmnožin Hilbertov prostoru H. Potom pro kždé x H existuje právě jedno y M tk, že x y =dist(x,m)..

6 80 KAPITOLA5. Hilbertůvprostor Důkz.Existujeposloupnost {y n } M tk,že x y n d:=dist(x,m). Potomz(5.15)plynevzhledemk y m y n = (y m x) (y n x) odhd (y n x) (y m x) 2 =2 ( y n x 2 + y m x 2 ) y n + y m 2x 2 = =2 ( y n x 2 + y m x 2 ) 4 y n+ y m x ( y m x 2 + y n x 2 ) 4d 2, zněhožplyne,žeposloupnost {y n }jecuchyovská.oznčmejejílimitu y;je y n y, y M x y =d.pokudbyexistovlydvprvky y, zstouto vlstností, musel by podle předcházející úvhy být též cuchyovská posloupnost {y,z,y,z,...}.muselbytedybýtikonvergentní,zčehožjižplyne y= z. Oznčení Jestližepro x,y H pltí(x,y)=0,říkáme,že x,yjsou ortogonální;píšemepk x y.jestližeprovšechn x A,y Bje x y,píšeme A Bmnožiny A,Bnzývámetéžortogonální.Množinuvšech y H,pro kteréje y A(tkzkrácenězpisujeme {y} A),znčíme A ;podobněpíšeme x místo {x}. Poznámk (důležitá). Z linerity sklárního součinu jeho spojitosti plyne,žeprokždé x Hpltí: (1) x jelineárnípodprostor H (2) x jeuzvřený. Odtud jednoduše plyne následující tvrzení: Důsledek Množin M = x M x jeuzvřenýpodprostor Hprokždoumnožinu M H. Vět Nechť M je uzvřený lineární podprostor v H. Potom existuje dvojice lineárních zobrzení P, Q tkových,žeprovšechn x Hpltí: (1) x=px+qx; (2) x M = Px=x, Qx=0; (3) x M = Px=0, Qx=x; P:H M, Q: H M (5.16) (4) zobrzení P, Q jsou určen jednoznčně; (5) x Px =dist(x,m); (6) x 2 = Px 2 + Qx 2. Důkz.Je-li x H,je x+m := {x+y; y M}konvexníuzvřenámnožin. Položme Qx: = zproto z x+m,projehožnormupltí z = z 0 =dist(0,x+m)=dist(x,m); Vět zručuje existenci jednoznčnost tkového prvku z. Dále definujme Pxrovností Px: = x Qx.Pkzřejměpltírovnost(1).ZQx x+mplyne Px=x Qx Mtedy P:H M. Ukžme,že(Qx,y)=0provšechn y M;tolestčíukáztprot y,pro něž y =1.Zdefinice Qx=zplyneprokždýsklár α z 2 =(z,z) z αy 2, tedy 0 α(y,z) α(z,y)+ α 2.

7 5.1. ZÁKLADNÍ VLASTNOSTI 81 Dosdíme α=(z,y),zčehožpoúprvěobdržíme0 (z,y) 2.Odtudjižvyplývárovnost(z,y)=(Qx,y)=0.Tímjsmeověřili,žezobrzení P, Qzobrzují Hdle(5.16).Zřejmětéžpltí(2)(3). Rozložme x Hnsoučet x=x 1 + x 2,kde x 1 M, x 2 M.Potomje Px+Qx=x 1 + x 2, resp. Px x 1 = x 2 Qx. Pkle Px x 1 M, x 2 Qx M (Px x 1,x 2 Qx)=(Px,x 2 )+(x 1,Qx) (x 1,x 2 ) (Px,Qx)=0 tedy Px=x 1, Qx=x 2 ;tímjedokázánjednoznčnost.použitímnlogické úvhyorozklduprolineárníkombinci αx+βydostnemelineritu P, Q:Je tedy αx+βy= P(αx+βy)+Q(αx+βy), x=px+qx, y= Py+ Qy, P(αx+βy) αpx βpy= αqx+βqy Q(αx+βy). Odtud již plyne linerit obou zobrzení. Konečně zbývá zdůvodnit poslední rovnost tvrzení, která je opět důsledkem ortogonlity: x 2 = Px+Qx 2 =(Px+Qx,Px+Qx)= = Px 2 +(Px,Qx)+(Qx,Px)+ Qx 2 = Px 2 + Qx 2. Tím je důkz celého tvrzení dokončen. Poznámky (1) Předcházející tvrzení lze zobecnit n konečný počet vzájemně ortogonálních uzvřených podprostorů H. (2)Pokudje M H,pkexistujenenulové z H, z M,neboťpro x H \ M je x=y+ z z 0.Prostor M jetedynetriviálnímpodprostorem H. (3) Lineární zobrzení A lineárního prostoru X do X, pro které pltí A 2 (x)=(a A)(x)=Ax provšechn x X se nzývjí projekce(n A(X)). Zobrzení P, Q jsou zřejmě(speciální) projekce nzývjíseortogonálníprojekceprostoru Hn M M. Definice Řekneme,že {x α ; α A}jeortonormálnísystém(též:ortonormální množin), pokud x α =1provšechn α A vektory x α jsoupodvouortogonální,tj.použijeme-likroneckerovsymbolu δ αβ =1pro α=β δ αβ =0pro α β,pltírovnost (x α,x β )=δ αβ, α,β A. Definice Mximální ortonormální množinu v Hilbertově prostoru H nzýváme ortonormální báze Hilbertov prostoru. Podrobněji: Je to tková ortonormálnímnožin B H,prokteroupltí:je-li B 1 ortonormálnímnožinvh, B B 1,potom B= B 1. Dvouslovný název ortonormální báze, se kterým v Hilbertově prostoru budeme prcovt,je nedělitelný.bázelineárníhoprostoru 2 )ortonormálníbázejsou podsttněrozdílnépojmy.kždýortonormálnísystém {x k }jetvořenlineárně nezávislýmivektory.je-litotiž α 1 x 1 + +α n x n =0,pkpostupnýmnásobením 2 ) NěkdyseužíváprorozlišeníširšíhonázvulineárníbázeneboHmelovbáze.

8 82 KAPITOLA5. Hilbertůvprostor prvky x 1,...,x n dostneme α 1 = =α n =0.Podsttnýrozdílsevškprojeví v nekonečně rozměrném prostoru. Následující látk spdá do lgebry, proto se omezíme jen n její popis. Vzniká přirozená otázk, jk lze ortonormální systém v nějkém Hilbertově prostoru H získt. Kždý konečný lineárně nezávislý systém A prvků unitárního prostoru lze nhrdit ortonormálním systémem B tk, by pro jejich lineární obly pltil rovnostlin[a]=lin[b].toseprktickyprovádípomocítzv.grm-schmidtov ortogonlizčního procesu. Při něm se postupně z báze H sestrojuje ortonormální systém, přičemž kždý krok procesu přímo souvisí s konstrukcí, se kterou jsme se setkli ve Větě se kterou budeme ještě prcovt. Je-linpř. {y k }nekonečnáposloupnostlineárněnezávislýchprvků Hjsou-li jižnlezenyortonormálníprvky x 1,...,x n tk,žepltírovnost Lin[x 1,...,x n ]=Lin[y 1,...,y n ], pksestrojímeky n+1 prvky yzpodlevěty5.1.23,kdeje y= (x,x k )x k, z= x y, položíme x n+1 = z/ z.olineárníbázipltítotodůležitétvrzení:vkždém lineárním prostoru X existuje(lineární) báze, což je podle definice tková množin A lineárně nezávislých prvků, pro kterou lineární obl Lin[ A] je roven X. Kždý lineárně nezávislý systém lze doplnit n bázi. Důkz existence báze A se provádí npř. pomocí Zornov lemmtu či podobného prátu. Poznmenejme, že báze A je mximální množinou lineárně nezávislýchprvkůvnásledujícímsmyslu:pokudexistuje A 1 X, A A 1 A 1 je lineárněnezávislá,pk A=A 1. Tvrzení Kždou ortonormální množinu B H lze doplnit n mximální ortonormální množinu, tj. ortonormální bázi. Tto vět se dokzuje podobně jko vět o existenci báze lineárního prostoru n zákldě Zornov lemmtu nebo některého jiného tvrzení s ním ekvivlentního (jsou to tvrzení ekvivlentní xiomu výběru). Ani tuto větu dokzovt nebudeme. Jevhodnésiuvědomit,žev lgebrickém přípděprcujemeskonečnýmilineárními kombincemi bez jkékoli topologie, ve druhém využíváme i topologické vlstnosti prostoru. Vágně řečeno, prcujeme s nekonečnými lineárními kombincemi. Proto též obecně dimenze prostoru H, tj. mohutnost jeho báze, může být větší než mohutnost jeho ortonormální báze. Uvědomte si rozdíl mezi Lin[A]=H Lin[A]=H. V R m jeortonormálníbázezároveňbází,všknpř.v reálném l 2 tvoří vektorye 1 =(1,0,...),e 2 =(0,1,...),... mximálníortonormálnímnožinu B. Lineární obl Lin[ B] této množiny je všk tvořen pouze tkovými posloupnostmi x=(x 1,x 2,...),proněžje {k N;x k 0}konečnámnožin.Všechnytkové posloupnostitvořílineárnípodprostorprostoru l 2,kterýjevlstnímpodprostorem l 2.Nprotitomuprokždé x l 2 je x=(x 1,x 2,...)= x k e k, x l 2. 1 Vtomtopřípděortonormálníbáze Bnení(lineární)bází l 2. Poznámk Promyslete si následující zobecnění: Je-li A libovolná množin, uvžujtechrkteristickéfunkce ϕ U jejíchpodmnožin U.Potomchrkteristickéfunkce jednobodových množin jsou zřejmě lineárně nezávislé jejich lineární obl tvoří prostor

9 5.1. ZÁKLADNÍ VLASTNOSTI 83 chrkteristických funkcí konečných podmnožin A. V lineárním prostoru X všech chrkteristických funkcí podmnožin A umíme prcovt bez obtíží(nemáme potíže s opercemi), ty nstnou při snze o definici sklárního součinu. Zmyslete se nd problémy, kterébychommuseliřešit,pokudbychomdefinovli přirozeně prochrkteristické funkce množin U, V A sklární součin (ϕ U, χ V ): = t A ϕ U(t)ϕ V(t). Tento problém vyřešíme tím, že se omezíme n speciální přípd seprbilních Hilbertových prostorů, dříve všk dokážeme ještě jedno důležité tvrzení, které pltí obecně. Vět (Rieszov vět o reprezentci). Je-li f je spojitý lineární funkcionálnhilbertověprostoru H,pkexistujeprávějedenprvek y f Htk,že provšechn x Hpltí f(x)=(x,y f ). Důkz.Je-li f 0,položíme y f =0.Vopčnémpřípděje M= {x H; f(x)=0} uzvřenýpodprostor H,přičemž M (neboť M H).Zvolme z M, z =1položme u=f(x)z f(z)x. Protožeje f(u)=f(x)f(z) f(z)f(x)=0,je u M(u,z)=0.Odtudvyplývá (u,z)=f(x)(z,z) f(z)(x,z)=0,zčehoždostneme f(x)=f(x)(z,z)=f(z)(x,z)=(x,f(z)z). Stčítedypoložit y f = f(z)z.jednoznčnostsedokážejednoduše:pokudexistují dvprvky y, y spopsnouvlstností,pkprovšechn x Hpltí 0=(x,y) (x,y )=(x,y y ), tedyi(y y,y y )=0.Odtudplyne y= y,čímžjedůkzdokončen. Lemm Nechť je prostor H seprbilní nechť A je ortonormální systém v H.Potomjesystém Aspočetný 3 ). Důkz.Jestliže x = y =1x y,pk (x y,x y)=(x,x) (x,y) (y,x)+(y,y)=2, tedy δ:= x y = 2.Protožeexistujespočetná Stková,že S= H,lze prokždé x Azvolittkové z x S,že x z x < δ/3.prorůzná x,y Aje δ= x y x z x + z x z y + z y y <2δ/3+ z x z y, tedy z x z y > δ/3zobrzení x z x jeprosté.jelikožexistujeprosté zobrzení množiny A do S, je množin A spočetná. Úmluv Budeme prcovt s ortonormálními systémy vektorů v Hilbertově prostoru H; všude v dlším výkldu budeme bez upozornění předpokládt, že tento prostor H je seprbilní. Hilbertův prostor nemusí být seprbilní, tím se všk, jk jsme již viděli, některé úvhy zkomplikují. I když jde o komplikci pouze technického rázu, vyhneme se jí. 3 ) Tedykonečnýnebonekonečnýspočetný,lzehotedyindexovtprvky N,přípdně Z.

10 84 KAPITOLA5. Hilbertůvprostor Lemm Nechť {x k ;,...,n}jeortonormálnísystémvhilbertově prostoru H.Potomprolibovolnéskláry α 1,...,α n zpolepříslušnéhokhpltí x Důkz. Dokážeme, že pltí x Spočteme nejprve n. (x,x k )x k x α k x k 2 n (x,x k )x k + α k (x,x k ) 2 = x αk (x,x k ) 2 = = = (α k (x,x k ))(α k (x,x k ))= 2 α k x k. ( αk 2 α k (x,x k ) α k (x,x k )+ (x,x k ) 2 ) = ( αk 2 α k (x k,x) α k (x,x k )+ (x,x k ) 2 ). Nyní již sndno dostneme rovnost x 2 α k x k = (x = x 2 = x 2 + α k x k, x α k x k )= α k (x k,x) α k (x,x k )+ αk (x,x k ) 2 α k 2 = (x,x k ) 2. Druhýčlenvevýrzunprvéstrněrovnostijenezápornýnbýváhodnoty0, právě když pltí Zbytek je zřejmý. α k =(x,x k ),,...,n. (5.17) Definice Je-li {x k ; k N}={x k }ortonormálnísystémvhilbertově prostoru H,pkčíslům(x,x k )říkámefourierovykoeficientyvzhledemksystému {x k ; k N}.Budemejeznčit x(k)=(x,x k ), k N. Důsledek5.1.34(Besselovnerovnost). Nechť {x k }jeortonormálnísystém v(seprbilním)hilbertověprostoru Hnechť x H x(k)=(x,x k ).Potom pltí x(k) 2 x 2. (5.18) Důkz.K(5.18)dospějemetkto:je-li HHilbertůvprostor{x k ;,...,n} jeortonormálnísystémvh,odvodilijsmeprokždé x H x α k x k 2 = x 2 + α k (x,x k ) 2 (x,x k ) 2.

11 OdtuddostávámevolbouFourierovýchkoeficientůnmístě α k 5.1. ZÁKLADNÍ VLASTNOSTI 85 (x,x k ) 2 = x 2 x (x,x k )x k 2, tedy (x,x k ) 2 x 2. Přechodem k supremu n levé strně plyne odtud(5.18). Poznámk (důležitá). Vzhledem k tomu, že máme k dispozici pojem konvergence v Hilbertově prostoru, lze sndno definovt součet řdy prvků H. Vímetotiž,jkdefinovt y m : = m x kkdy y n y.můžemetedyzcházet s řdmi v H, niž budeme budovt rozsáhlejší teorii. Budou nás zjímt řdy speciálníhotvru.je-li B= {x k }ortonormálnímnožinvhkonverguje-liřd α k x k, k y H,pkpro y m = m α kx k jezřejmě α k =(y m,x k ) m m y m 2 = (y m,x k ) 2 = α k 2. Odtudplyne,žepokudřdkonvergujeky,musípltit α k 2 = y 2, nebolivbesselověnerovnostinstávárovnostposloupnost {α k }jeprvkem l 2. Sndno též nhlédneme, že při dném ortonormálním systému {x k } je prvek (x,x k)x k jednoznčněurčenpomocí x:k (x,x k ), k N. Rovnost x(k)=(x,x k )definujespojitýlineárnífunkcionálprotojezobrzení F: H l 2,přiřzující x x,lineární.znerovnosti x(k) ŷ(k) 2 x y 2 plyne, že toto zobrzení F je spojité. Důležitou otázkou je zkoumt, zd kdy je v předchozím kontextu F zobrzenímn l 2 izometrií.důkznásledujícívětysezdálehkýjenproto,žeprcujeme s úplným prostorem. Vět5.1.36(F.Riesz,Fischer1907). Nechť {x k } Hjeortonormálnísystémnechť ϕ(k) l 2.Potomexistuje y Htk,žeje ϕ=ŷ,řd ϕ(k)x k konvergujevhpltí ( y = ϕ(k) 2) 1/2. Důkz.Oznčme y n := n ϕ(k)x k.potompro m,n N, m > n,pltí ( m y m y n 2 = k=n+1 ϕ(k)x k, m k=n+1 ϕ(k)x k )= m k=n+1 ϕ(k) 2. Protoževškřd ϕ(k) 2 konverguje,jeposlednísoučetvpředchozím vzthulibovolněmlýprovšechn m > n,jkmileje n Ndosttečněvelké. Jetedy {y n }cuchyovskáposloupnost,kterávúplnémprostoru l 2 konverguje knějkému y l 2,čímžjedůkzdokončen;zdejdeprktickyoodhdzbytkem konvergentní řdy po n-tém členu.

12 86 KAPITOLA5. Hilbertůvprostor Dokázlijsmetedy,žesohledemnúplnost H jezobrzení F : H l 2 vždyn.nássmozřejměnejvícezjímá,kdylzekždé x H vseprbilním (nekonečněrozměrném) Hilbertově prostoru vyjádřit pomocí určité ortonormální množiny D={x k },tovetvru x= (x,x k )x k, což je Fourierov řd v H vzhledem k ortonormální množině D. Nzávěrnšepozntkyshrnemedojedinévětyuvedemejedovzájemné souvislosti. Pk si již jen uvědomíme, co odtud z vybudovné bstrktní teorie dostnemepro klsické Fourierovyřdy. Vět Nechť B:= {w k } HjeortonormálnívH.Následujícípodmínky jsou ekvivlentní. () B je ortonormální báze Hilbertov prostoru H; (b) všechny konečné lineární kombince prvků z B tvoří hustou podmnožinu H, tj.lin[b]=h; (c) jestližeprovšechn w k, k N,pltí(x,w k )=0,pk x=0; (d)provšechn x Hje x= (x,w k)w k ; (e) provšechn x,y Hje (x,y)= x(k)ŷ(k). (f)provšechn x Hpltítzv.Prsevlovrovnost x 2 = x(k) 2 (5.19) Důkz.Dokážemepostupněsériiimplikcí()... (f) (). () (b): ZřejmějeLin[B]lineárnípodprostor HprotojeLin[B]uzvřený lineární podprostor H, neboť sndno ověříme, že x n x, y n y x n + y n x+y,...; operce sčítání násobení sklárem ve zřejmém smyslu spojité n H. Při Lin[B] H jelin[b] netriviálnítedy B nenímximální,coždává ekvivlentní výrok non(b) non(). (b) (c): Jestližepltí(x,w k )=0provšechn k N,jei(x,y)=0prokždé y Lin[B]zespojitostisklárníhosoučinuiprokždé y Lin[B]=H, tedyjei(x,x)=0x=0. (c) (d): Prokždé w l Bkždé x Hdostáváme ( x (x,w k )w k, w l )=(x,w l ) (x,w k )(w k,w l )= což dává potřebné tvrzení. =(x,w l ) (x,w l )=0,

13 (d) (e): Prokždédvprvky x,y Hdostáváme ( (x,y)= (w k,x)w k, 5.1. ZÁKLADNÍ VLASTNOSTI 87 (w l,y)w l )= l=1 = [k,l](x,w k,)(w k,w l )(y,w l )= (e) (f): Nynístčídotvruz(e)dosdit x=y. (x,w m )(y,w m ). (f) (): Budeme postupovt sporem: Předpokládejme, že existuje nenulové z H \B, z =1.Uvžujmeortonormálnímnožinu B 1 = B {z}.pomocí (f) Besselovy nerovnosti dostneme m=1 z 2 = (z,w k ) 2 < (z,w k ) 2 + (z,z) 2 = z 2 Nlezený spor ukzuje, že B je mximální. Tímjedůkz kolečkimplikcí tedyitvrzenívětydokončen. Příkld Teorii, se kterou jsme se seznámili, lze plikovt n klsický přípd Fourierových řd. Je všk nutná jistá optrnost související s tím, že jsme používli některá oznčení ve dvojím význmu(npř. Fourierovy koeficienty pod.). Vdlšímbudemeužívtoznčení L p (2π)pro2π-perodickéfunkcezprostoru (tříd)funkcí L p,tj.funkcískonvergentnímlebesgueovýmintegrálemnintervlu( π, π). Systémfunkcí {1,cos kx,sin kx} jetvořenfunkcemivl 2(2π),kteréjsou ortogonální; tyto funkce všk nejsou ortonormální. Odpovídjící ortonormální systémje(prcujemesnormouzl 2 (2π)!) { 1 2π, cos kx π, sin kx π }. Protožetrigonometricképolynomytvoříhustoupodmnožinu L 2 (2π),jesplněn podmínk(b)zvěty5.1.37,tedyikterákolizpodmínektéževěty. Pro Fourierovy koeficienty ve smyslu teorie Hilbertových prostorů pltí npř. ( cos kx ) f, = 1 π f(t)cosktdt, π π π tkžeodpovídjícíkoeficient k v klsickéteorii jeroventomutočíslužn fktor1/ π.obdobnývzthpltíiproosttníkoeficienty;připomeňmeještě,že bsolutníčlen jsmevklsickéteoriipslivetvru 0 /2. ProfunkcizL 2 (2π)tkdostnemerovnost(jereálnéčíslo) +2π ( f(t) dt= π 2 + ) ( k 2 + b k 2 ), (5.20) která je pouze přepisem Prsevlovy rovnosti(5.19) z podmínky(f) z Věty Tutorovnostlzevyužítnpříkldkvýpočtunormyfunkce fv L 2 (2π),známe-li její Fourierovy koeficienty umíme sečíst řdu n prvé strně rovnosti(5.20), nebo k sečtení hodnoty téže řdy v přípdě, že nopk známe hodnotu integrálu v(5.20) vlevo. Oznčíme-li k, b k, k N 0Fourierovykoeficientyfunkce g L 2 (2π)budeme-li předpokládt, že obě funkce f, g jsou reálné, můžeme pro ně odvodit vzorec +2π ( 0 ) 0 f(t)g(t)dt=π + ( k 2 k+ b k b k).

14 88 KAPITOLA5. Hilbertůvprostor Čtenářsijižvcelkusndno přeloží dlšívýsledky. ProfunkcezL 2 (2π)vycházítedyceláteorievelmielegntnějejichFourierovy řdy konvergují bodově skoro všude ve smyslu Lebesgueovy míry. Výše popsnými prostředky všk přesnější informci o množině bodů, v níž řd konverguje, nemáme. Tu při výlučném použití teorie Hilbertových prostorů získt nemůžeme. Příkld (Legendreovy polynomy). Výše probrná teorie všk dává jistou informci npř. pro různé systémy ortogonálních polynomů. V obecné poloze jde o vyšetřování systémů funkcí, jejichž sklární součin je definován vzorcem (f,g)= V(t)f(t)g(t)dt, kde(,b) RjejistýintervlV jekldná(konečná)funkcen(,b);tse nzývá váh. Pro přiblížení těchto speciálních tříd si blíže všimneme ortogonálních polynomů. které se nzývjí Legendreovy polynomy. V tom přípdě je(, b) omezený intervl v R váh V je identicky rovn 1. Podrobnější informci nlezne zvídvý čtenář v[34]. OznčímehlednéLegendreovypolynomysymbolem P n,kde njestupeňpolynomu P n.zřejmělze P n zpstjko n-touderivcipolynomu Q n,kterýje stupně2n.potomprokždýpolynom Rstupněnižšíhonež npltí(užíváme metodu per-prtes) = [ Q (n 1) n P n (t)r(t)dt= Q (n) n (t)r(t) dt = (t)r(t) Q n (n 2) (t)r (t)+ ± Q n (t)r (n 1) (t) ] b t= Zpodmínkyortogonlityplyne,žebytentovýrzmělbýtroven0.Tonstnenpříkldtehdy,jestližebudemítpolynom Q n z n-násobnékořenykrjníbody,b. Definujemetedy Q n (t)=a n (t ) n (t b) n,kdedlezvykukldeme A n =1/(2 n n!), tkže Pltí = [ Q (n) n Q (n 1) n d n P n (t)= 1 2 n n! dt n ((t )(t b)) n. P 2 n(t)dt= Q (n+1) n Q n (n 2) Q (n) n (t)q (n) n (t)dt= + ± Q (2n 1) n Q n ] b ± Q (2n) n (t)q n (t)dt. Závork je rovn 0, tkže vprvo zbude poslední integrál, který je roven (2n)! 2 2n (n!) 2 (t ) n (t b) n dt. Dlší n-násobná plikce metody per-prtes dá P 2 n(t)dt= (b )2n+1 2 2n (2n+1). Položíme-li(, b) =( 1, 1) ponecháme-li všechno osttní oznčení, dostneme P n (t)= 1 2 n n! d n dx n ( (x 2 1) n), 1 1 P 2 n(t)dt= 2 2n+1. Pro tyto polynomy lze odvodit různé rekurentní formule; srv. npř.[34], Věty : (n+1)p n+1 (t) (2n+1)tP n (t)+np n 1 (t)=0,

15 5.1. ZÁKLADNÍ VLASTNOSTI 89 odkud vyplývá P 0 (t)=1, P 1 (t)=t, P 2 (t)= 3t , P 3(t)= 5t t,. Legendreovypolynomysplňujíprovšechn n N 0 diferenciálnírovnici (1 t 2 )P n(t) 2tP n(t)+n(n+1)p n (t)=0. Příkld (Čebyševovy polynomy). Tyto polynomy tvoří rovněž ortogonálnísystémv( 1,1)vzhledemkváze V(t)=(1 t 2 ) 1/2.Přístupknim jerůzný.jsoutonpříkldpolynomyskoeficientem1u nejvyššímocniny x n, které nejlépe proximují v suprémové normě identicky nulovou funkci n intervlu [ 1,1].Lzejevyjádřitvzorcem T 0 (t)=1, T n (t)= 1 2n 1cos(nrccos t). Jiný přístup k ortogonálním polynomům je možný přes tzv. vytvořující funkce.

16

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu:

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu: vz je lgebr ( M ; ) vzy = se dvěm binárními opercemi tková že pro libovolné prvky b c M pltí následující podmínky xiomy svzu: ( b) c = ( b c) ( b) c = ( b c) b = b b = b ( ) ( ) b = b =. Operce se nzývá

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

m n. Matice typu m n má

m n. Matice typu m n má MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

f dx S(f, E) M(b a), kde D a E jsou

f dx S(f, E) M(b a), kde D a E jsou Přehled probrné látky z MAII, LS 2004/05 1. přednášk 21.2.2005. Opkování látky o primitivních funkcích ze závěru zimního semestru (23.-25. přednášk). Rozkld rcionální funkce n prciální zlomky. Popis hledání

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Úvod do numerické matematiky. Přednáška pro posluchače informatiky. Zimní resp. Letní semestr 2/2

Úvod do numerické matematiky. Přednáška pro posluchače informatiky. Zimní resp. Letní semestr 2/2 Úvod do numerické mtemtiky Přednášk pro posluchče informtiky Zimní resp Letní semestr 2/2 Ivo Mrek, Petr Myer Bohuslv Sekerk 1 Úvodní poznámky Vymezení problemtiky vystihuje následující chrkteristik Numerická

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

DIPLOMOVÁ PRÁCE. Teorie nekonečných her

DIPLOMOVÁ PRÁCE. Teorie nekonečných her UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Teorie nekonečných her Vedoucí diplomové práce: doc. Mgr. Krel Pstor, Ph.D Rok odevzdání:

Více

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log Řešme n množině reálných čísel rovnice: ) 6 b) 8 d) e) c) f) ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC Co budeme potřebovt? Chápt definici ritmu. Znát průběh ritmické funkce. Znát jednoduché vět o počítání

Více

II. 5. Aplikace integrálního počtu

II. 5. Aplikace integrálního počtu 494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

3.2. LOGARITMICKÁ FUNKCE

3.2. LOGARITMICKÁ FUNKCE .. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov

Více

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti: Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více

Teorie jazyků a automatů

Teorie jazyků a automatů Slezská univerzit v Opvě Filozoficko-přírodovědecká fkult v Opvě Šárk Vvrečková Teorie jzyků utomtů Skript do předmětů II Zákldy teoretické informtiky Ústv informtiky Filozoficko-přírodovědecká fkult v

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

8 Mongeovo promítání

8 Mongeovo promítání 8 Mongeovo promítání Pomocí metod uvedených v kpitolách 3. 4., 3. 6. bychom mohli promítnout do roviny 3 libovolný útvr U E. V prxi všk většinou nestčí sestrojit jeden průmět. Z průmětu útvru U je většinou

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Obsah. 1 Základy matematické logiky Typy důkazů Matematická indukce Množiny Zobrazení množin... 12

Obsah. 1 Základy matematické logiky Typy důkazů Matematická indukce Množiny Zobrazení množin... 12 Mtemtická nlýz Obsh Zákldy mtemtické logiky 6. Typy důkzů.................... 7. Mtemtická indukce................ 9 Množiny. Zobrzení množin.................. 3 Reálná čísl 4 3. Mohutnost množin.................

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

f k nazýváme funkční řadou v M.

f k nazýváme funkční řadou v M. 6. Funční řdy posloupnosti. Bodová stejnoměrná onvergence. Nechť pro N jsou f omplení či reálné funce omplení či reálné proměnné, teré mjí společný definiční obor M. Posloupnost {f ; N} nzýváme funční

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Matematika 3. Úloha 1. Úloha 2. Úloha 3

Matematika 3. Úloha 1. Úloha 2. Úloha 3 Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra.

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra. Báze a dimense Odpřednesenou látku naleznete v kapitolách 3.1 3.3 a 3.6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 15.10.2015: Báze a dimense 1/19 Minulé přednášky 1 Lineární

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}? 1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

Kapitola Křivkový integrál 1. druhu Délka oblouku

Kapitola Křivkový integrál 1. druhu Délka oblouku x 5 x 6 x 7 x 8 pitol 3 řivkové integrály 3. řivkový integrál. druhu líčová slov: délk oblouku, délk křivky, křivkový integrál. druhu po oblouku, křivkový integrál. druhu po křivce, neorientovný křivkový

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Gaussovská prvočísla

Gaussovská prvočísla Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, 658 70 Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

Datamining a AA (Above Average) kvantifikátor

Datamining a AA (Above Average) kvantifikátor Dtmining AA (Above Averge) kvntifikátor Jn Burin Lbortory of Intelligent Systems, Fculty of Informtics nd Sttistics, University of Economics, W. Churchill Sq. 4, 13067 Prgue, Czech Republic, burinj@vse.cz

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon). Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE DIFERENCIÁLNÍ ROVNICE 1.ŘÁDU

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE DIFERENCIÁLNÍ ROVNICE 1.ŘÁDU OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice patří mezi nejužívanější nástroje matematiky v aplikacích. Jsou to rovnice, kde neznámou je funkce a rovnice obsahuje i derivace této funkce. Lze očekávat,

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Úvod základy teorie zobrazení

Úvod základy teorie zobrazení Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE. 1. Úvod

MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE. 1. Úvod Kvaternion 1/2013, 7 14 7 MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE LADISLAV SKULA Abstrakt V článku je uvedena definice pseudoinverzní matice, ukázána její existence a jednoznačnost a zmíněny dvě

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná čísl C komplení čísl: { + jy :, y R}, j R \ Q ircionální čísl, π, e, ) Tvrzení Mezi kždými dvěm

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky. 2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální

Více

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více