2 Rozhodovací problém

Rozměr: px
Začít zobrazení ze stránky:

Download "2 Rozhodovací problém"

Transkript

1 Rozhodovaí problém Rozhodovaí problém je problém s víe možným řešením. Jde tedy o problémy se kterým se setkáváme v běžném žvotě. Základním krokem každého rozhodování je proes volby, tedy poszování jednotlvýh varant a výběr varanty optmální. Matematká formlae tohoto problém je námětem této kaptoly..1 Obená rozhodovaí úloha V této kaptole se bdeme zabývat rozhodovaí úloho vyjádřeno následjíím formalzmem. Nehť rozhodovatel (sbjekt, který se rozhodje má k dspoz množn rozhodntí D, která moho vést k některém prvk z množny výsledků A (někdy se místo množny rozhodntí važje množna otázek a místo množny výsledků množna alternatv. Jednotlvé alternatvy (prvky množny výsledků můžeme často spořádat s vyžtím preferenční relae». Podle typ krtérí požívanýh př rozhodování mlvíme o rozhodování s jedním krtérem nebo o rozhodování př víe krtéríh. V prvním případě je defnována jedná preferenční relae, ve drhém případě je preferenčníh relaí víe a každá z nh může defnovat jné spořádání. V této sta jso tř základní možné přístpy jak hledat optmální rozhodntí: lexkografký krtéra jso spořádána podle důležtost a optmalzjí se postpně, paralelní važjeme všehna krtéra sočasně, agregační z dílčíh krtérí sestrojíme jedno sohrnné. Preferenční rela je možno nahradt žtkovo fnkí : A R tak, že a 1, a A: (a 1 (a a 1» a Vlastní rozhodování pak můžeme formálně defnovat rozhodovaí fnkí d, která každém prvk r z množny rozhodntí D (resp. z množny odpovědí na otázky přřadí nějaký prvek a z množny A: d(r = a Řešením rozhodovaí úlohy tedy bde nalezení rozhodovaí fnke d, která bde v nějakém smysl optmální Metoda větví a mezí (branh and bond Metoda větví a mezí je obená metoda hledání optmálního řešení nějaké úlohy. Optmální řešení předpokládá exsten výše vedené žtkové fnke. Metoda je založena na myšlene postpného rozkládání množny všeh řešení na podmnožny, ze kterýh poze některé bdo mo obsahovat optmální řešení. Def..1: Rozkladem množny A rozmíme systém {A 1,,A k } jeho dsjnktníh množn, které jí pokrývají: A A, pro všehna = 1,,k A A j =, pro j k =1 A = A

2 Předpokládejme, že pro každý prvek nějakého rozklad R = {A 1,,A k } míme spočítat dolní a horní odhady žtkové (č jné krterální fnke b(a (a pro všehna řešení a A B(A (a pro všehna řešení a A Potom, pokd krterální fnke vyjadřje zsk (nebol hledáme řešení, které tto hodnot maxmalzje, pak hledáme takový rozklad R*, který 1. obsahje jednoprvkovo množn A j. b(a j B(A pro všehna = 1,,k Pokd krterální fnke vyjadřje ztrát (nebol hledáme řešení, které tto hodnot mnmalzje, pak hledáme takový rozklad R*, který 3. obsahje jednoprvkovo množn A j 4. B(A j b(a pro všehna = 1,,k A j pak obsahje (jedné optmální řešení. Metoda větví a mezí je založena na konstrk poslopnost rozkladů R 1, R, takovýh, že rozklad R je zjemněním rozklad R -1. Toto zjemnění vznkne tak, že jedno množn A R rozdělíme na podmnožny (proes větvení. Meze v názv metody jso horní a dolní odhady krterální fnke počítané pro prvky jednotlvýh rozkladů.. Chyba rozhodování Snad nejdůležtější otázko v proes rozhodování je, jaké hyby se moh dopstt. Abyhom mohl hyb rozhodování defnovat, předpokládejme, že známe pravděpodobnostní rozdělení na kartézském sočn množny rozhodntí a množny výsledků Pro jednodhost dále važjme množn výsledků tvořeno dvěma alternatvam: a 1 a a. (tato podkaptola je zpraována dle Chyba! Nenalezen zdroj odkazů.. Pro každo rozhodovaí fnk d: D {a 1, a } můžeme defnovat pravděpodobnost hyb dvo drhů. První odpovídá sta, kdy sktečnost odpovídá a 1 ale rozhodovaí fnke d volí a (označme tto pravděpodobnost p d (a 1 a, drhá odpovídá sta, kdy sktečnost odpovídá a ale rozhodovaí fnke d volí a 1 (označme tto pravděpodobnost p d (a a 1. a kde p d (a 1 a = r D,d(r=a r a 1 = r D r a 1 (1 - δ(d(r,a 1 p d (a a 1 = r D,d(r=a1 r a = r D r a (1 - δ(d(r,a 1 pro a = b δ ( a, b = 0 pro a b

3 Příklad.1: Uvažjme, že množna rozhodntí je dvoprvková (označme 0 a 1. Potom exstjí čtyř rozhodovaí fnke d : {0,1} { a 1, a } d 1 (0 = a 1, d 1 (1 = a 1 d (0 = a 1, d (1 = a d 3 (0 = a, d 3 (1 = a 1 d 4 (0 = a, d 4 (1 = a Z defne pravděpodobnost hyb dostáváme: p d (a 1 a p d (a a 1 d a + 1 a d 1 a 1 0 a d 3 0 a 1 1 a d 4 0 a a 1 0 Je tedy vdět, že hyby rozhodntí sktečně závsí na pravděpodobnostním rozdělení P. Def..1: Rozhodovaí fnke d 1 domnje rozhodovaí fnk d, jestlže bď nebo p d1 (a a 1 p d (a a 1 a zároveň p d1 (a 1 a < p d (a 1 a p d1 (a a 1 < p d (a 1 a a zároveň p d1 (a 1 a p d1 (a 1 a Def..: Rozhodovaí fnke d je přípstná, jestlže neexstje rozhodovaí fnke, která by domnovala fnk d. Obě defne ozřejmí pokračování příklad.1: 1. Bde-l rozdělení a ve tvar P a 1 a Bdo pravděpodobnost hyb pro jednotlvé rozhodovaí fnke

4 p d (a 1 a p d (a a 1 d d 1/3 3/7 d 3 /3 4/7 d a (př výpočt msíme vyjít z toho, že r a = a Z tablky vdíme, že rozhodovaí fnke d 1, d a d 4 jso přípstné, ale rozhodovaí fnke d 3 není přípstná, neboť je domnována fnkí d.. Bde-l rozdělení a ve tvar P a 1 a Bdo pravděpodobnost hyb pro jednotlvé rozhodovaí fnke p d (a 1 a p d (a a 1 d d /3 3/7 d 3 1/3 4/7 d A tedy všehny rozhodovaí fnke bdo přípstné. Věta.1: Jestlže exstjí kladná čísla w(a 1 a w(a taková, že rozhodovaí fnke a1 pro w( a1 r a1 > w( a r a d( r =, a pro w( a1 r a1 < w( a r a potom je rozhodovaí fnke d přípstná. Věta :: Jestlže je rozhodovaí fnke d(r defnována způsobem vedeným ve větě 1, pak tato rozhodovaí fnke mnmalzje hodnot w(a 1 p d (a 1 a + w(a p d (a a 1 a je tedy pro daná w(a 1 a w(a optmální.

5 Vět. můžeme vyžít př hledání optmální rozhodovaí fnke v různýh staíh: 1. Bayesovsky optmální rozhodovaí fnke mnmalzje elkovo střední hyb rozhodování defnovano jako = 1 r D R P (d = a 1 p d (a 1 a + a p d (a a 1 = a r a (1 δ ( d( r, a = a (1 δ ( d( r, a je tedy w(a 1 =a 1 a w(a = a = 1 r D. Rozhodovaí fnke optmální vzhledem ke krtér maxmální věrohodnost dostáváme, pokd mnmalzjeme hyb defnovano jako R P (d = p d (a 1 a + p d (a a 1 Potom w(a 1 =1 a w(a = 1. V některýh staíh můžeme znát tzv. en jednotlvýh hyb. Chyby a 1 a a a a 1 totž nemsí být symetrké. Je jstě větší hybo půjčt peníze nespolehlvé osobě, která je nevrátí (proděláme, než nepůjčt osobě spolehlvé, která by peníze vrátla s úroky (nevyděláme. Podobně je jstě větší hybo nerozpoznat horob nemoného paenta (ož může vést k značným zdravotním komplkaím, než dagnostkovat horob paenta zdravého (a provádět něj další vyšetření. V takovýh staíh se zavádí tzv. hybová (též ztrátová fnke, pomoí které hodnotíme ztrát v sta, kdy správná alternatva je a 1 a my volíme a resp. naopak: e: {a 1, a } {a 1, a } [0, Pak můžeme defnovat elkové rzko č elkovo střední ztrát jako R P ( d = = 1 r D a e( a, d( r = = 1 r D a r a e( a, d( r Za (běžného předpoklad, že e(a,a = 0 je optmální rozhodovaí fnke opět defnována věto 1, přčemž w(a 1 = e(a 1,a w(a = e(a,a 1. Výše vedené úvahy vyházejí z toho, že známe pravděpodobnostní rozložení staí, které moho nastat. Ne vždy je tento předpoklad reálný. Často se msíme spokojt s neúplno znalostí. V takovém případě můžeme požít prnp maxmální entrope nebo prnp mnmax.

6 1. Podle prnp maxmální entrope vybereme rozdělení s nejvyšší Shannonovsko entropí H ( P H max P = = 1 r D a log a. Podle prnp mnmax bereme v úvah krtérm, které odpovídá maxmální možné hybě, které se můžeme dopstt max R P p ( d = max P = 1 r D a (1 δ ( d( r, a Tto hyb pak heme hledano rozhodovaí fnkí mnmalzovat d opt = arg mn max d P = 1 r D a (1 δ ( d( r, a Příklad.: Opět važjme dvoprvkovo množn rozhodntí (označme 0 a 1 a tedy čtyř rozhodovaí fnke d : {0,1} { a 1, a } d 1 (0 = a 1, d 1 (1 = a 1 d (0 = a 1, d (1 = a d 3 (0 = a, d 3 (1 = a 1 d 4 (0 = a, d 4 (1 = a Mějme ale tentokráte dvě rozdělení P 1 a P defnované na D { a 1, a }: P 1 a 1 a P a 1 a Bayesovsky optmální fnke bde fnke, která přřadí hodnotě r D t alternatv, pro ktero je a větší. Tedy pro rozdělení P 1 je bayesovsky optmální rozhodovaí fnke d 1 a pro rozdělení P je bayesovsky optmální rozhodovaí fnke d 4. Př hledání optmální rozhodovaí fnke dle krtéra maxmální věrohodnost msíme praovat s podmíněným pravděpodobnostm r a, přčemž a r a = a Prajeme tedy s tablkam P 1 (r a a 1 a 0 /6 1/4 1 4/6 3/4 P (r a a 1 a 0 1/ 6/8 1 1/ /8

7 ze kterýh plyne, že pro rozdělení P 1 je optmální rozhodovaí fnke d a pro rozdělení P je optmální rozhodovaí fnke d 3. Opět totž hledáme rozhodovaí fnk, která přřadí hodnotě r D alternatv s větší pravděpodobností (tentokrát ale podmíněno. Prnp maxmální entrope vede k tom, že z rozdělení P 1 a P vybereme rozdělení P 1. Vybíráme totž rozdělení s větší hodnot entrope: H(P 1 = -(-0,14-0,10-0,16-0,16 = 0,5558 H(P = -(-0,10-0,13-0,10-0,14 = 0,479 Pro rozdělení P 1 je, jak jž víme, optmální rozhodovaí fnkí d 1 (v případě požadavk na bayesovsko optmalt, případně d (v případě krtéra maxmální věrohodnost. Podle prnp mnmax msíme spočítat hyb R P (d pro všehny čtyř rozhodovaí fnke a obě rozdělení. Př výpočt požjeme vztah R ( d p = = 1 r D a (1 δ ( d( r, a Tedy např. R P1 (d 1 = P 1 (0, a + P 1 (1, a = = 0.4 Všehny hodnoty této hyby vdíme v následjíí table. Tčně jso vyznačeny maxmální hodnoty hyby pro obě rozdělení. Jako optmální vybereme t rozhodovaí fnk, která má nejmenší hodnot tohoto maxma; vybereme tedy rozhodovaí fnk d 3. d R P1 (d R P (d d d d d Rozhodovaí stratege Předpokládejme, že množna rozhodntí množna výsledků jso konečné. Pak můžeme Krtérm hodnotíí optmalt rozhodntí vzhledem k výsledk vyjádřt pomoí mate (Obr..1. Je-l tímto krtérem žtek, pak optmální rozhodntí žtek maxmalzje, je-l tímto krtérem ena, pak optmální rozhodntí en mnmalzje

8 . rozhodntí 11 1 k1 výsledek 1 k 1t t kl rozhodntí 11 1 k1 výsledek 1 k 1t t kl Obr..1 Krtérm optmalty.3.1 Rozhodování za rčtost (jstoty Rozhodovaí fnke d přřadí každém rozhodntí jedný výsledek..3. Rozhodování za rzka Rozhodovaí fnke d přřadí každém rozhodntí nějaké známé rozložení pravděpodobnost na množně V. Sktečný výsledek je vybírán na základě této pravděpodobnost. Optmální rozhodntí * je to, které maxmalzje střední hodnot žtk resp. mnmalzje střední hodnot eny * * = arg max = arg mn l j= 1 l j= 1 j j p p j j.3.3 Rozhodování za nerčtost Rozhodovaí fnke d přřadí každém rozhodntí nějako podmnožn výsledků, neznáme ale jejh pravděpodobnost (nevíme, který výsledek nastane. Jak ž bylo vedeno výše, exstjí dvě základní stratege jak postpovat: Garanční (mnmaxová stratege vyhází z toho, že očekáváme (z hledska našh preferení nejméně příznvý výsledek Tedy v případě, že krtérem je žtek, hledáme rozhodntí * takové, že * = arg max mn a v případě, že krtérem je ena, hledáme rozhodntí * takové, že * = arg mn max j j j j

9 Prnp maxmální entrope je založen na předpoklad rovnoměrného rozdělení pravděpodobností jednotlvýh výsledků, tedy že p = p j. V případě, že krtérem žtek, hledáme rozhodntí * takové, že * = arg max a v případě, že krtérem je ena, hledáme rozhodntí * takové, že l j= 1 j * = arg mn l j= 1 j.3.4 Rzko vs. Nerčtost Prnp rozhodování za rzka a nerčtost osvětlí následjíí příklad převzatý ze [Šteha]. Pan Novák stojí před úkolem objednat hlí na zm. Ze zkšenost ví, že pokd bde zma mírná, stačí m 10q hlí, pokd bde normální, bde potřebovat 15q a pokd bde thá, bde potřebovat 0q. V létě je ena 1q hlí 100,- Kč. Pokd bde nakpovat změ, bde ena závset na průběh zmy. Př mírné změ bde ena za 1q hlí rovněž 100,- Kč, př normální změ bde ena za 1q hlí 150,- Kč a př thé změ bde ena za 1q hlí 00,- Kč. Rozhodovaím problémem pana Nováka je tedy kolk hlí má kopt v létě. Daná úloha má tř možná rozhodntí (odpověd na otázk kolk hlí kopt v létě a tř možné výsledky (alternatvní průběhy zmy. Krtérem hodnoení jednotlvýh varant je ena, ktero pan Novák ve výsledk zaplatí (pokd v létě kopí méně hlí, než bde potřebovat, msí něo dokopt v změ. Hodnot krtéra pro jednotlvé varanty kazje následjíí tablka. mírná zma normální zma thá zma v létě v létě v létě Př rozhodování př rzk msí pan Novák znát pravděpodobnost jednotlvýh podob zmy. Řekněme, že mírná = 0.4 normální = 0.5 thá = 0.1 Pan Novák vybere rozhodntí (řádek, které bde mnmalzovat hodnot j p j a j pro =1 je j p j a j = = 1575 pro = je j p j a j = = 1600 pro =3 je j p j a j = = 000 Pan Novák tedy v létě kopí 10q hlí.

10 Př rozhodování za nerčtost pan Novák pravděpodobnost jednotlvýh podob zmy nezná: př požtí mnmaxové stratege pan Novák vybere to rozhodntí, pro které max j (a j bde mnmální. Pan Novák tedy v létě kopí 0q hlí, neboť ve třetím řádk je maxmální hodnota mnmální ze všeh řádkovýh maxm. př požtí prnp maxmální entrope pan Novák vybere to rozhodntí, pro které j a j bde mnmální. (Přesně vzato, bdeme opět mnmalzovat výraz j p j a j, ale protože p j je př rovnoměrném rozdělení konstanta, můžeme j zanedbat. pro =1 je j a j = = 5750 pro = je j a j = = 5500 pro =3 je j a j = = 6000 Pan Novák tedy v létě kopí 15q hlí. Cvčení: 1 Banka. Bankéř se rozhodje, zda poskytne půjčk klentov. Pokd půjčí klentov, který půjčk splatí, získá 10. Pokd půjčí klentov, který nesplatí, ztratí 5. Pokd nepůjčí klentov, který by půjčk splatl, ztratí 1 a pokd nepůjčí klentov, který by nesplatl, zůstane na 0. Přtom ví, že pravděpodobnost, že klent je bontní, je 0.9. Jak se má bankéř rozhodnot dle pravdla mnmax, dle bayesova krtéra a dle prnp maxmální entrope? Lteratra: 1. Jrošek R.: Metody reprezentae a zpraován.ní znalostí v mělé ntelgen. Skrpta VŠE, Šteha J.: Optmální rozhodování a řízení. FEL ČVUT, 1999.

MĚŘENÍ INDUKČNOSTI A KAPACITY

MĚŘENÍ INDUKČNOSTI A KAPACITY Úloha č. MĚŘENÍ NDKČNOST A KAPATY ÚKO MĚŘENÍ:. Změřte ndkčnost cívky bez jádra z její mpedance a stanovte nejstot měření.. Změřte na Maxwellově můstk ndkčnost cívky a rčete nejstot měření. Porovnejte výsledky

Více

Proces řízení rizik projektu

Proces řízení rizik projektu Proces řízení rzk projektu Rzka jevy a podmínky, které nejsou pod naší přímou kontrolou a ovlvňují cíl projektu odcylky, předvídatelná rzka, nepředvídatelná rzka, caotcké vlvy Proces řízení rzk sled aktvt,

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

Matematické metody rozhodování

Matematické metody rozhodování Mateatcké etody rozhodování Lteratra: [] J. Fotr, M. Píšek: Eaktní etody ekonockého rozhodování. Acadea, Praha 986. [2] J. Fotr, J. Dědna: Manažerské rozhodování. Skrpta VŠE, Praha 993. [3] R. Hšek, M.

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

Metody operačního výzkumu přednášky

Metody operačního výzkumu přednášky PEF - KOSA - Předměty - MOV4 MOV5syl - všehno předmětu pef.zu.z/osa see Předměty u zoušy - zajímá jí postup, numeré hyby nevadí 2 evdenčníh testů - na záladní vě 2 bodů za dobrovolné domáí úoly (poud bude

Více

Metody volby financování investičních projektů

Metody volby financování investičních projektů 7. meznárodní konference Fnanční řízení podnků a fnančních nsttucí Ostrava VŠB-T Ostrava konomcká fakulta katedra Fnancí 8. 9. září 00 Metody volby fnancování nvestčních projektů Dana Dluhošová Dagmar

Více

12 HRY S NEÚPLNOU INFORMACÍ

12 HRY S NEÚPLNOU INFORMACÍ 12 HRY S NEÚPLNOU INFORMACÍ 543 Ne v každé hře mají všichni hráči úplné informace o výplatních funkcích ostatních. Ve skutečnosti je většina situací s informací neúplnou. Například: V aukcích zpravidla

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření Časová hodnota peněz ve fnančním rozhodování podnku 1.1. Význam faktoru času a základní metody jeho vyjádření Fnanční rozhodování podnku je ovlvněno časem. Peněžní prostředky získané dnes mají větší hodnotu

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

MATEMATIKA. O paradoxech spojených s losováním koulí

MATEMATIKA. O paradoxech spojených s losováním koulí MATEMATIKA O paradoxeh spojenýh s losováním koulí PAVEL TLUSTÝ IRENEUSZ KRECH Ekonomiká fakulta JU, České Budějovie Uniwersytet Pedagogizny, Kraków Matematika popisuje a zkoumá různé situae reálného světa.

Více

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU AALÝZA RIZIKA A JEHO CITLIVOSTI V IVESTIČÍM PROCESU Jří Marek ) ABSTRAKT Príspevek nformuje o uplatnene manažmentu rzka v nvestčnom procese. Uvádza príklad kalkulace rzka a analýzu jeho ctlvost. Kľúčové

Více

Masarykova univerzita Ekonomicko správní fakulta

Masarykova univerzita Ekonomicko správní fakulta Masarykova unverzta Ekonomcko správní fakulta Fnanční matematka dstanční studjní opora Frantšek Čámský Brno 2005 Tento projekt byl realzován za fnanční podpory Evropské une v rámc programu SOCRATES Grundtvg.

Více

EKONOMETRIE 2. přednáška Modely chování výrobce I.

EKONOMETRIE 2. přednáška Modely chování výrobce I. EKONOMETRIE. přednáška Modely hování výrobe I. analýza raionálního hování firmy při rozhodování o objemu výroby, vstupů a nákladů při maimalizai zisku základní prinip při rozhodování výrobů Produkční funke

Více

ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ

ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ THE ANALYSIS OF CONSUMER BEHAVIOR WITH TÖRNQUIST FUNCTIONS USING FOR CHOICE FOOD PRODUCTS Pavlína Hálová

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

plán 25 % Marketingový 20 % 1 bod = 1 17 % 9 % 28 % Stříbrný národní manager s měsíčním kvalifikačním obdobím II. záchytná

plán 25 % Marketingový 20 % 1 bod = 1 17 % 9 % 28 % Stříbrný národní manager s měsíčním kvalifikačním obdobím II. záchytná Marketingový plán Marketingový plán s měsíčním kvalifikačním obdobím The Great ESSENS 3rd Anniversary in Gatsby Style 28 % Stříbrný národní manager Marže distribtora činí 40 % z distribtorské ceny. Na

Více

2.9.13 Logaritmická funkce II

2.9.13 Logaritmická funkce II .9. Logaritmiká funke II Předpoklady: 9 Logaritmus se základem nazýváme dekadiký logaritmus a místo log píšeme pouze log pokud v zápisu logaritmu hybí základ, předpokládáme, že základem je číslo (logaritmus

Více

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

BAYESŮV PRINCIP ZDENĚK PŮLPÁN

BAYESŮV PRINCIP ZDENĚK PŮLPÁN ROBUST 000, 7 4 c JČMF 00 BAYESŮV PRINCIP ZDENĚK PŮLPÁN Abstrakt. Poukážeme na možnost rozhodování pomocí Bayesova prncpu. Ten vychází z odhadu podmíněné pravděpodobnosta z předpokladu dsjunktního rozkladu

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

IV. NEJISTOTY MENÍ A ZPRACOVÁNÍ VÝSLEDK

IV. NEJISTOTY MENÍ A ZPRACOVÁNÍ VÝSLEDK IV. NEJISTOTY MENÍ A ZPRACOVÁNÍ VÝSLEDK Meí patí mez základí zpsoby získáváí kvattatvích formací o stav sledovaé vely. 4. Chyby meí Nedokoalost metod meí, ašch smysl, omezeá pesost mcích pístroj, promé

Více

2.1.6 Relativní atomová a relativní molekulová hmotnost

2.1.6 Relativní atomová a relativní molekulová hmotnost .1. Relativní atoová a elativní oleklová hotnost Předpoklady: Pedagogická poznáka: Tato a následjící dvě hodiny jso pokse a toch jiné podání pobleatiky. Standadní přístp znaená několik ne zcela půhledných

Více

- 1 - Obvodová síla působící na element lopatky větrné turbíny

- 1 - Obvodová síla působící na element lopatky větrné turbíny - - Tato Příloha 898 je sočástí článk č.. Větrné trbíny a ventlátory, http://www.transformacntechnologe.cz/vetrne-trbny-a-ventlatory.html. Odvození základních rovnc aerodynamckého výpočt větrné trbíny

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

Chyby a nejistoty měření

Chyby a nejistoty měření Moderní technologie ve stdi aplikované fyziky CZ..07/..00/07.008 Chyby a nejistoty měření (doplňjící tet k laboratorním cvičení) Připravili: Petr Schovánek, Vítězslav Havránek Obsah Obsah... Seznam ilstrací...

Více

Attitudes and criterias of the financial decisionmaking under uncertainty

Attitudes and criterias of the financial decisionmaking under uncertainty 8 th Internatonal scentfc conference Fnancal management of frms and fnancal nsttutons Ostrava VŠB-TU Ostrava, faculty of economcs,fnance department 6 th 7 th September 2011 Atttudes and crteras of the

Více

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt

Více

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA 5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA Střadatel se používá pro výpočet úroku na konc období, kdy jste pravdelně ukládal stejnou částku, ve stejný okamžk, po určté

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Ing. Barbora Chmelíková 1

Ing. Barbora Chmelíková 1 Numercká gramotnost 1 Obsah BUDOUCÍ A SOUČASNÁ HODNOTA TYPY ÚROČENÍ JEDNODUCHÉ vs SLOŽENÉ ÚROČENÍ JEDNODUCHÉ ÚROČENÍ SLOŽENÉ ÚROČENÍ FREKVENCE ÚROČENÍ KOMBINOVANÉ ÚROČENÍ EFEKTIVNÍ ÚROKOVÁ MÍRA SPOJITÉ

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce . meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu

Více

Vykazování solventnosti pojišťoven

Vykazování solventnosti pojišťoven Vykazování solventnost pojšťoven Ing. Markéta Paulasová, Techncká unverzta v Lberc, Hospodářská fakulta marketa.paulasova@centrum.cz Abstrakt Pojšťovnctví je fnanční službou zabývající se přenosem rzk

Více

Statické modely zásob Nazývají se také modely s jedním cyklem. Pořízení potřebných zásob se realizuje jedinou dodávkou.

Statické modely zásob Nazývají se také modely s jedním cyklem. Pořízení potřebných zásob se realizuje jedinou dodávkou. Statiké modely zásob Nazývají se také modely s jedním yklem. Pořízení potřebnýh zásob se realizuje jedinou dodávkou. Náklady na pořízení zásob jsou finí a nemohou ovlivňovat rozhodovaí strategii. Statiký

Více

Finanční matematika. Téma: Důchody. Současná hodnota anuity

Finanční matematika. Téma: Důchody. Současná hodnota anuity Fnanční matematka Téma: Důchody Současná hodnota anuty Důchody Defnce: Důchodem se rozumí pravdelné platby ve stejné výš, tzv. anuty Pozor na nejednotnost termnologe Různé možnost rozdělení důchodů Členění

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem

1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem Kvaternon 2/204, 79 98 79 MATICOVÉ HRY V INŽENÝRSTVÍ JAROSLAV HRDINA a PETR VAŠÍK Abstrakt. Následuící text pokrývá eden z cyklů přednášek předmětu Aplkovaná algebra pro nženýry (0AA) na FSI VUT. Text

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve

Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve Faktorizace čísel pomocí řetězových zlomků Tento text se zabývá algoritmem CFRAC (continued fractions algorithm) pro rozkládání velkých čísel (typicky součinů dvou velkých prvočísel). Nebudeme se zde zabývat

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Pravděpodobnostní (Markovské) metody plánování, MDP - obsah

Pravděpodobnostní (Markovské) metody plánování, MDP - obsah Pravděpodobnostní (Markovské) metody plánování, MDP - obsah Pravděpodobnostní plánování - motivace. Nejistota ve výběr akce Markovské rozhodovací procesy Strategie plán (control policy) Částečně pozorovatelné

Více

1. Nejkratší cesta v grafu

1. Nejkratší cesta v grafu 08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost

Více

2. Posouzení efektivnosti investice do malé vtrné elektrárny

2. Posouzení efektivnosti investice do malé vtrné elektrárny 2. Posouzení efektvnost nvestce do malé vtrné elektrárny Cíle úlohy: Posoudt ekonomckou výhodnost proektu malé vtrné elektrárny pomocí základních metod hodnocení efektvnost nvestních proekt ako sou metoda

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

( ) = H zásobitel = 1. H i = 1+ +...

( ) = H zásobitel = 1. H i = 1+ +... sou fnance důležté? nanční management Základní pojmy e NPV důležté? Základy úrokového počtu reálná aktva fnanční aktva hmotná aktva nehmotná aktva sou fnance důležté? Kolk a do jakých aktv má frma nvestovat?

Více

Nejistoty v mìøení III: nejistoty nepøímých mìøení

Nejistoty v mìøení III: nejistoty nepøímých mìøení Nestoty v ìøeí III: estoty epøíých ìøeí MÌØIÍ TEHNIK V èácích [] a [] by podá pøehed soèasých ázorù a probeatk estot v ìøeí obecì a pøedstave zpùsob výpoèt estot pø éì ároèých pøíých ìøeích. Teto tøetí

Více

MATEMATIKA VYŠŠÍ ÚROVEŇ

MATEMATIKA VYŠŠÍ ÚROVEŇ NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 008 Vyšší úroveň obtížnosti MAVCZMZ08DT MATEMATIKA VYŠŠÍ ÚROVEŇ DIDAKTICKÝ TEST Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém

Více

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 006 MAACZMZ06DT MATEMATIKA didaktický test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 0 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

Jednokriteriální rozhodování za rizika a nejistoty

Jednokriteriální rozhodování za rizika a nejistoty Jeokrterálí rozoováí za rzka a estoty U eokrterálíc úlo e vžy pouze eo krtérum optmalty, a to buď maxmalzačí ebo mmalzačí. araty rozoováí sou zaáy mplctě - pomíkam, které musí být splěy (vz úloy leárío

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

1. Okrajové podmínky pro tepeln technické výpo ty

1. Okrajové podmínky pro tepeln technické výpo ty 1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Hydrometrické vrtule a měření s nimi

Hydrometrické vrtule a měření s nimi Ing. Danel Mattas, CSc. Hydrometrcké vrtle a měření s nm (ČSN EN ISO 748 aj.) Danel Mattas 013 ČKSVV 013 Hydrometrcké vrtle a měření s nm Obsah Hydrometrcká měřdla a jejch údržba ČSN ISO 537, zejména čl.

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

Teoretická rozdělení

Teoretická rozdělení Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické

Více

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Základní zapojení operačních zesilovačů

Základní zapojení operačních zesilovačů ákladní zapojení operačních zesilovačů ) Navrhněte a zapojte stejnosměrný zesilovač s operačním zesilovačem v invertjícím zapojení se zadanými parametry. ) Navrhněte a zapojte stejnosměrný zesilovač s

Více

Klasifikace a predikce. Roman LUKÁŠ

Klasifikace a predikce. Roman LUKÁŠ 1/28 Klasfkace a predkce Roman LUKÁŠ 2/28 Základní pomy Klasfkace = zařazení daného obektu do sté skupny na základě eho vlastností Dvě fáze klasfkace: I. Na základě trénovacích vzorů (u nchž víme, do aké

Více

ZÁKLADY POLOVODIČOVÉ TECHNIKY

ZÁKLADY POLOVODIČOVÉ TECHNIKY ZÁKLDY POLOVODIČOVÉ TECHNIKY Obsah 1. Úvod 2. Polovodičové prvky 2.1. Polovodičové diody 2.2. Tyristory 2.3. Triaky 2.4. Tranzistory Určeno pro bakalářské stdijní programy na FBI 3. Polovodičové měniče

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-3

MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-3 MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-3 Výkový materiál Číslo projekt: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výky prostřednictvím

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

Plánování a rozvrhování

Plánování a rozvrhování Úprava p ednášky byla podpo ena projektem CZ.2.17/3.1.00/33274, který je fnancován Evropským socálním fondem a rozpo tem hlavního m sta Prahy. Evropský socální fond Praha & EU: Investujeme do vaší budoucnost

Více

VSTUPNÍ DOTAZNÍK. Datum vyplnění dotazníku: Povolání: Telefon: E-mail: Výška: cm. Váha: kg. Míra v pase: cm. Míra přes boky: cm.

VSTUPNÍ DOTAZNÍK. Datum vyplnění dotazníku: Povolání: Telefon: E-mail: Výška: cm. Váha: kg. Míra v pase: cm. Míra přes boky: cm. VSTUPNÍ DOTAZNÍK Osobní údaje: Jméno a příjmení: Datm vyplnění dotazník: Rodné číslo: Věk: Povolání: Telefon: E-mail: Výška: cm. Váha: kg. Míra v pase: cm. Míra přes boky: cm. Cíl: 1. snížit hmotnost o

Více

PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO

PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO MAPOVÁNÍ WEBOVÝCH STRÁNEK ŘIMNÁČ MARTIN 1, ŠUSTA RICHARD 2, ŽIVNŮSTKA JIŘÍ 3 Katedra řídcí technky, ČVUT-FEL, Techncká 2, Praha 6, tel. +42 224 357 359, fax. +

Více

Lomené výrazy (sčítání, odčítání, násobení, dělení, rozšiřování, krácení,.)

Lomené výrazy (sčítání, odčítání, násobení, dělení, rozšiřování, krácení,.) Lomené výrz (čítání, odčítání, náoení, dělení, rozšiřování, kráení, ) Lomené výrz jo výrz ve tvr zlomk, v jehož jmenovteli je proměnná, npříkld r ( ) ( ) 9 Počítání lomenými výrz má podoné vltnoti jko

Více

Hodnocení účinnosti údržby

Hodnocení účinnosti údržby Hodnocení účnnost ekonomka, pojmy, základní nástroje a hodnocení Náklady na údržbu jsou nutné k obnovení funkce výrobního zařízení Je potřeba se zabývat ekonomckou efektvností a hodnocením Je třeba řešt

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

http://www.utia.cas.cz/vomlel 6. prosince 2011 J. Vomlel (ÚTIA AV ČR) Aplikace bayesovských sítí 6. prosince 2011 1 / 3

http://www.utia.cas.cz/vomlel 6. prosince 2011 J. Vomlel (ÚTIA AV ČR) Aplikace bayesovských sítí 6. prosince 2011 1 / 3 Příklady aplikací bayesovských sítí Jiří Vomlel ÚTIA, Akademie věd ČR http://www.utia.cas.cz/vomlel 6. prosince 2011 J. Vomlel (ÚTIA AV ČR) Aplikace bayesovských sítí 6. prosince 2011 1 / 3 Jednoduchý

Více

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová 2. část Solventnost II Standardní vzorec pro výpočet solventnostního kaptálového požadavku Iva Justová Osnova Úvod Standardní vzorec Rzko selhání protstrany Závěr Vstupní údaje Vašíčkovo portfolo Alternatvní

Více

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku?

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku? Orgnizční záležitosti Atomty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cni.cz http://ktiml.mff.cni.cz/~rtk Přednášk: n we (http://ktiml.mff.cni.cz/~rtk/tomty) Proč chodit n přednášk? dozvíte se více než

Více

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa Teorie informace II: obtížnější řešené příklady 204 Tomáš Kroupa. Máme n mincí, z nichž nejvýše jedna je falešná. Pozná se podle toho, že má jinou hmotnost než ostatní mince (ty váží všechny stejně). Mince

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

Teorie her a ekonomické rozhodování. 11. Aukce

Teorie her a ekonomické rozhodování. 11. Aukce Teorie her a ekonomické rozhodování 11. Aukce 11. Aukce Příklady tržních mechanismů prodej s pevnou cenou cenové vyjednávání aukce Využití aukcí prodej uměleckých předmětů, nemovitostí, prodej květin,

Více

1. Mezinárodní trh peněz

1. Mezinárodní trh peněz 1. Meznárodní trh peněz Na počátku 21. století je vývoj světového hospodářství slně ovlvněn procesem globalzace 1, v důsledku čehož dochází k dost výraznému otevírání národních ekonomk, které tak jž nemůžeme

Více

Softwarová podpora matematických metod v ekonomice a řízení

Softwarová podpora matematických metod v ekonomice a řízení Softwarová podpora matematckých metod v ekonomce a řízení Petr Sed a Opava 2013 Hrazeno z prostředků proektu OPVK CZ.1.07/2.2.00/15.0174 Inovace bakalářských studních oborů se zaměřením na spoluprác s

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více