3. Rekvizity úřadů a vlastností

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "3. Rekvizity úřadů a vlastností"

Transkript

1 3. Rekvizity úřadů a vlastností S filosofickým pojmem úřadu Pavel Tichý vázal pojem rekvizity. Jeho názory jsou (neformálně) podány v textu Existence and God (Tichý 1979). Po technické stránce i v některých dalších ohledech lépe je pojem rekvizity Tichým dále elaborován v (Tichý 1976, 42. Requisites), odkud byl mj. článek (Tichý 1979) vlastně vyjmut. Nastiňme nyní to nejzákladnější z problematiky. Rekvizitou úřadu je vlastnost těch objektů, které mohou plnit daný úřad. Je to něco, co patří k úřadu jakoby z definice (není to však vlastností toho úřadu). Například vlastnost být běžec je rekvizitou úřadu nejrychlejší běžec. Z hlediska tématu deskripcí je tu tedy zjevná možnost číst věty jako Nejrychlejší běžec je běžec v analytickém smyslu, tedy jakožto vypovídající o něčem, co plyne z definice. Rekvizit úřadu bývá více, takže v analytickém smyslu míněný výrok může mít méně triviální podobu, např. Papež je křesťan. Posléze se v této kapitole budeme věnovat rekvizitám vlastností. Rekvizita vlastnosti není vlastnost objektů, které mohou daný úřad, jímž je vlastnost, plnit. Je to spíše jakási definiční podvlastnost dané vlastnosti ten, kdo má tu vlastnost, má zaručeně i tu její podvlastnost -rekvizitu. Např. rekvizitou vlastnosti být holohlavý král je vlastnost být holohlavý. REKVIZITY ÚŘADŮ Nejnázorněji lze pojem rekvizity úřadu vyložit na případu individuových úřadů, pro příklad uvažme úřad papež. Aby individuum mohlo být držitelem tohoto úřadu, musí splňovat řadu podmínek, musí instanciovat rozmanité vlastnosti. Pro náš příklad např. být živý, být katolík, atd. (pokud bychom diskutovali úřad president USA, podmínkou je být narozen v USA ). Pro individuum je splňování takovýchto podmínek náhodné, dané vlastnosti jsou vnější, externí. 1 Pro úřad papež, který sám má rozmanité externí vlastnosti, např. být zajímavý politický post, jsou však vlastnosti jako být živý vlastnostmi interními. Jsou totiž něčím, co dělají ten úřad právě tím čím je jsou k němu vázány jaksi z definice. Taková definiční vazba mezi úřadem a jeho interními vlastnostmi je zjevná u úřadu Pegas, který je definičně dán jako ten jediný kůň, který je okřídlený (rekvizitami jsou být kůň, být okřídlený ). S ohledem na tradiční obecně metafyzické názvosloví nazval Tichý tyto interní vlastnosti, tedy podmínky, které individuum musí mít, aby plnilo daný úřad, rekvizity. 1 Jak celkově plyne z výkladu rekvizit, žádné individuum nemá rekvizity pouze intenze mají rekvizity.

2 3. Rekvizity úřadů a vlastností 313 Několik doplňujících poznámek. Nedává dobrý smysl uvažovat, že nějaký (individuový) úřad, např. arcibiskup Říma, je rekvizitou nějakého úřadu, řekněme papež. Rekvizitou úřadu je něco, co individuum musí splňovat, aby zastávalo daný úřad; to, co jím má být splněno, je podmínka, čili vlastnost (individuové úřady nejsou podmínkami). Takže je to nikoli arcibiskup Říma, ale vlastnost být tím, kdo je arcibiskupem Říma, co je rekvizitou úřadu papež. Povšimněme si dále, že mnohé úřady jsou benevolentní v tom smyslu, že připouští, aby individuum, které ho vyplní, instanciovalo tu, anebo s touto vlastností neslučující se vlastnost. Např. úřad prezident USA je benevolentní k barvě pleti. Není vyžadováno (není rekvizitou toho úřadu), aby tento úřad plnil běloch. Ještě poznamenejme, že některé vlastnosti jsou rekvizitou všech (individuových) úřadů; příkladem je triviální vlastnost být individuum x, které je totožné s x. Poslední důležitá poznámka: vlastnosti, které jsou rekvizitami nějakého úřadu, nejsou vlastnostmi tohoto úřadu. Například úřad papež nemá, v principu nemůže mít, vlastnost křesťan. Řekli jsme, že vztah rekvizita (úřadu) je vztahem mezi vlastnostmi a úřady. Jistě je to vztah totální, neboť vlastnosti, které se k úřadu pojí, se k němu pojí za všech okolností. S tímto zase souvisí, že tento vztah je triviální (konstantní). Vlastnost individuí f je rekvizitou individuového úřadu u právě tehdy, když pro každý možný svět w, pro každý časový okamžik t, pro každé individuum x platí, že je-li pravdivé, že x je identické s hodnotou u ve w, t, tak je pravdivé, že x je f (ve w, t ), Nuže (Rekvizita / (οφι τω ) τω, tj. vztah mezi vlastnostmi individuí a individuovými úřady; Pravdivá πt / (οπ) τω, tj. vlastnost propozic srov. kapitolu Vybrané základní analytické pojmy; v definiens lze bez újmy všechny proměnné možných světů a časových okamžiků přejmenovat na w, t): [Rekvizita wt f u] [.λw..λt [.λx [ [Pravdivá πt w t λw λt [x = u w t ]] [Pravdivá πt w t λw λt [f w t x]] ]]] // λwλt.λfu S ohledem na kapitolu Vybrané základní analytické pojmy si lehko uvědomíme, že antecedent i konsekvent obsahují ekvivalenty pojmů zastávání úřadu (bytí držitelem úřadu) a instanciace vlastnosti, takže můžeme odvodit, resp. alternativně definovat (BýtDržitel / (οιι τω ) τω, tj. vztah mezi individui a individuovými úřady; Instanciovat / (οιφ) τω, tj. vztah mezi individui a vlastnostmi individuí): [.λw..λt [.λx [ [BýtDržitel w t x u] [Instanciovat w t x f] ]]] // λwλt.λfu To přímočaře odpovídá Tichého slovní formulaci (Tichý 1979, 408): pro každý možný svět w, pro každý časový okamžik t, pro každé individuum x, jestliže x ve w, t je držitelem úřadu u, pak x instanciuje f ve w, t. Pečlivě si uvědomme, že ošetření parciality v obou těchto definiens je zhola nezbytné. Mnoho úřadů jsou totiž parciální intenze, načež případná absence jejich držitele v nějakém w, t vede k tomu, že konstruovaná třída individuí (srov. λx) by nebyla univerzální třídou (třídou všech individuí). V důsledku tohoto by definiens konstruovalo pravdivostní hodnotu F. Takže neobratně definovaný pojem rekvizity by determinoval prázdnou třídu dvojic vlastnost-úřad; čili za rekvizitu úřadu by nemohlo být považováno vůbec nic.

3 314 IV. Přílohy (Doplňme, že v (Tichý 1976, 42) Tichý definuje pojem rekvizity úřadů poněkud jinak. Využívá totiž zobecněný kvantifikátor všichni, který definoval s pomocí obecného kvantifikátoru (týkajícího se individuí) a implikace (jejíž oba členy mají ošetřenu parcialitu); srov. kapitolu Vybrané základní analytické pojmy (Všichni ι / ((ο(οι))(οι)). Dále Tichý využil pojem nutnosti ( / (οπ) τω, tj. vlastnost propozic srov. kapitolu Vybrané základní analytické pojmy). Tichého definiens je téměř shodné s následujícím: [ wt λwλt [ [Všichni ι λx [Instanciovat wt x u]] f wt ]] // λwλt.λfu Slovně parafrázováno, je nutné, že všechna individua, co instanciují u, jsou f.) Každodenní jazyk postrádá běžně používaný explicitní výraz denotující vztah rekvizita. Zdá se však, že příležitostně za tímto účelem slouží výraz z definice (někdy snad zastoupený slovem přece ; srov. Tichý 1976, by the very definition ). Pro příklad: Papež je, z definice, křesťan. Absence explicitní indikace však ještě neznamená, že v takovémto rekvizitním smyslu nejsou míněny mnohé jiné věty, které takovéto slovo explicitně neobsahují. Ilustrujme si to ve zkratce touto dvojicí promluv: Co papež, to muslim, replika: Ne, ne - papež je křesťan. Reagující mluvčí jistě poukazuje na to, že ať už je papežem kterékoli individuum (je-li nějaké), za všech okolností má vlastnost být křesťan. Navrhovanou logickou analýzou je (Křesťan / φ, tj. vlastnost individuí, Papež / ι τω, tj. individuový úřad): λwλt [Rekvizita wt Křesťan Papež] S pomocí pojmu rekvizity můžeme dát smysl i intenzionálnímu čtení ( intensional reading ) věty: Papež je papežem. Nejprve ale podejme analýzu při extenzionálním čtení ( extensional reading ). Při něm je subjektem predikace to individuum, které je (aktuálně) držitelem úřadu papež : λwλt [ λwλt.λx [x = Papež wt ]] wt Papež wt ] Toto čtení zavazuje k existenci někoho, kdo je papežem. K tomu však intenzionální čtení nezavazuje, neboť při něm subjektem predikace není individuum, ale úřad papež. Tomu úřadu se připisuje vlastnost být takovým úřadem u, jehož rekvizitou je vlastnost být papežem. Zde je příslušná konstrukce: λwλt [ [λwλt.λu [Rekvizita wt λwλt.λx [x = Papež wt ] u]] wt Papež] která je vhodnou logickou analýzou věty: Papež (tj. úřad papež ) je takový, že jeho rekvizitou je vlastnost být papež.

4 3. Rekvizity úřadů a vlastností 315 Provedením dvou β-redukcí dospějeme ke konstrukci: λwλt [Rekvizita wt λwλt.λx [x = Papež wt ] Papež] která je vhodná jakožto analýza věty: Být papež je rekvizitou papeže. Od Tichého nyní přejmeme dvě schematické věty a k nim přiléhající analýzy, které ukazují jistý druh obecných tvrzení o úřadech a jejich rekvizitách (Tichý 1976, 42.13, 42.14): Všechny úřady mající jako svou rekvizitu vlastnost F mají jako svou rekvizitu (také) vlastnost G. Některé úřady mající jako svou rekvizitu vlastnost F mají jako svou rekvizitu (také) vlastnost G. Zde jsou ony logické analýzy (zde Všechny (ιτ)ω, Některé (ιτ)ω / ((ο(οι τω )) (οι τω )), tj. funkce přiřazující třídám úřadů třídy tříd úřadů; F, G / φ, tj. vlastnost individuí; srov. kapitolu Vybrané základní analytické pojmy): λwλt [ [Všechny (ιτ)ω λu [Rekvizita wt F u] ] λu [Rekvizita wt G u] ] λwλt [ [Některé (ιτ)ω λu [Rekvizita wt F u] ] λu [Rekvizita wt G u] ] Jistě není problém pojem rekvizity úřadu zobecnit tak, aby i třeba vztah byl rekvizitou nějakého individuového úřadu. Je však těžké najít intuitivně přijatelný příklad, kvůli němuž by bylo nezbytné připustit, že nikoli vlastnost, ale vztah je rekvizitou úřadu. Uvažme pro ilustraci milovat bližního svého. Ač by při prvním pohledu šlo o vztah, spíše je to vlastnost být x, které miluje všechny ty, kteří jsou bližní x, co je rekvizitou úřadu papež. Tichý se k této problematice nijak nevyslovuje (při obecnosti jeho podání je samozřejmě dovoleno, že úřad zastávatelný n-ticemi objektů má jako rekvizitu vlastnost takovýchto n-objektů, ale toto není diskutovaný problém). Zauvažujme nad možnostmi zobecnění výše podaných definic. Rekvizita je vztahem mezi vlastnostmi ξ-objektů a úřady ξ-objektů. Například mohou být těmito ξ-objekty třídy individuí. Vztah rekvizity v tomto případě váže vlastnosti tříd individuí (tyto vlastnosti tříd jsou tedy (ο(οι)) τω -objekty) s úřady tříd, tj. vlastnostmi (čili (οι) τω -objekty). V přespříští sekci bude ovšem učiněna odchylka od tohoto pojmu rekvizity k takovému pojmu rekvizity, který vztahuje vlastnosti ξ-objektů s vlastnostmi ξ-objektů. Podobně jako Tichý žádné jiné druhy (resp. typy) vztahů rekvizity neuvažujeme (takové jiné druhy se totiž zdají pochybné otázkou totiž je, v jakém smyslu je intuitivně přijatelné třeba říci, že jistý úřad je rekvizitou nějaké vlastnosti).

5 316 IV. Přílohy ESENCE ÚŘADŮ Uvědomme si, že právě jedna z rekvizit (každého jednotlivého) úřadu je zcela výlučná. Při exponování své teorie v (Tichý 1979, 408) Tichý tuto vlastnost nazval esence úřadu. Je to spojení ( konjunkce ) všech vlastností, které je nezbytné mít k zastávání daného úřadu. Je to souhrn všech rekvizit daného úřadu v jednu jedinou vlastnost. Takže zatímco rekvizita je částí toho, co dělá jistý úřad úřadem, esence je vším, co dělá jistý úřad úřadem. To má pochopitelně dopad i pro případné držitele když se individuu poštěstí instanciovat jednu z mnoha rekvizit (která není rovnou esencí), má tak část toho, co je potřeba k tomu, aby dané individuum zastávalo daný úřad. Esence úřadu je ovšem taková vlastnost, že to, že ji individuum má, je nejen nezbytné, ale zároveň i dostačují k tomu, aby zastávalo úřad. Jedním ze způsobů, jak pojem esence úřadu definovat, je tento (Esence / (οφι τω ) τω, tj. vztah mezi vlastnostmi individuí a individuovými úřady): [Esence wt f u] [f = λwλt.λx [x = u wt ]] // λwλt.λfu Napravo v definiens se nachází konstrukce vlastnosti být individuum, které je u. Konstrukce λwλt.λx [x = u wt ] konstruuje vlastnost být držitelem u (zde je být držitelem v parciálním, nikoli totálním smyslu). Což je vlastnost taková, že mít ji obnáší nic více a také nic méně než je zapotřebí k tomu být držitelem daného úřadu. Než se podíváme na konjunktivní spojení rekvizit v příslušnou esenci, rozeberme výraz esence něčeho. Ten slouží k referenci na tu vlastnost, která je tou jedinou vlastností, která je esencí určitého úřadu (EsenceČeho / (φι τω ) τω, tj. modálně a temporálně podmíněná funkce, která individuovým úřadům přiřazuje vlastnosti individuí): [EsenceČeho wt u] [Sng.λf [Esence wt f u]] // λwλt.λu Jak už víme, úřad Pegas můžeme definovat následujícím způsobem (Pegas / ι τω, tj. individuový úřad, Kůň, Okřídlený/ φ, tj. vlastnost individuí): Pegas ((ιτ)ω) λwλt [Sng.λx [[Kůň wt x] [Okřídlený wt x]] // (bez λ) Z tohoto definiens snadno získáme konstrukci esence úřadu Pegas (to jest určité vlastnosti), totiž: λwλt.λx [[Kůň wt x] [Okřídlený wt x]] S pomocí této konstrukce a konstrukce přiléhající pojmu esence něčeho můžeme předvést i tuto alternativní definici úřadu Pegas : Pegas ((ιτ)ω) [Sng.λu [ [EsenceČeho wt u] = λwλt.λx [[Kůň wt x] [Okřídlený wt x]] ]] // (bez λ)

6 3. Rekvizity úřadů a vlastností 317 Někoho by mohlo znepokojit, proč jsme do esence úřadu Pegas nezapočítali vlastnost být Pegasem, vždyť ta je přece také rekvizitou úřadu Pegas ; neméně bychom měli do onoho seznamu připsat i třeba vlastnost být savec. Je však zřejmé, že konjunktivně spojené vlastnosti jsou v jakési vnitřní souhře. K určení esence úřadu není třeba přidávat vlastnost být savec, protože ta sama už je rekvizitou vlastnosti kůň, takže už je vlastně skrytě zahrnuta. V případě vlastnosti být Pegasem jde však o něco jiného. Do konstrukce určující esenci úřadu Pegas, říkejme ji konstrukce K, bychom konstrukci λwλt.λx [x = Pegas wt ], zkráceně konstrukce P, přidávali zbytečně. Protože jak tato P, tak i K konstruuje vlastnost být Pegasem (týž úřad konstruuje ovšem i K obohacená o P). 2 REKVIZITY VLASTNOSTÍ Kategorické výroky jsou obvykle čteny v dobře známém smyslu (např. x (F(x) G(x))). Při takovémto výkladu kategorické výroky typicky nejsou analytické. Shodná syntaktická struktura se ale příležitostně k analytickým tvrzením používá. Uvažme třeba: Všechny velryby jsou (z definice) savci. Známou oblastí pro analyticky míněná kategorická tvrzení jsou rozmanité taxonomické systémy. V taxonomickém systému zoologie se živočichové dělí např. na obratlovce a bezobratlé, obratlovci pak na savce a..., savci na velryby a..., atp. Takže pojem velryby můžeme definovat právě s pomocí těchto určení jako savec, který..., přičemž pojem savce zas můžeme definovat jako obratlovec, který.... Takto chápané tvrzení, že velryba je savec (že velryba je obratlovec, atd.), je analytické, nikoli kontingentní. Pro analýzu tohoto analytického výkladu kategorických výroků přirozeně využijeme jak učinil už Tichý v (Tichý 1976, 42) jistý pojem rekvizity. Takže třeba být savec je rekvizitou být velryba. To je však rozdíl ve srovnání s výše diskutovaným pojetím rekvizity. Výše jsme rozebírali, že určité vlastnosti ξ-objektů jsou rekvizitami úřadů ξ-objektů. Takovými úřady ξ-objektů mohou být třeba individuové vlastnosti, což jsou úřady, jejímiž držiteli, a tedy ξ-objekty, jsou třídy individuí. Dobře si uvědomme, že vlastnostmi takovýchto ξ-objektů jsou vlastnosti tříd individuí. V této sekci ale budeme diskutovat vztah mezi vlastnostmi ξ-objektů a vlastnostmi ξ-objektů. Neboli učiníme posun k tomu, že rekvizitou (οι)-úřadů (tj. vlastností individuí) jsou jiné (οι)-úřady (tj. opět vlastnosti individuí). V názvu této sekce jsme se onen rozdíl proti předchozí sekci pokusili vystihnout názvem Rekvizity vlastností. 3 2 Konstrukce K obohacená o P by měla jen tu pochybnou výhodu, že definice esence úřadu Pegas by byla kruhová. Přesněji, eliminovatelně kruhová. Neeliminovatelně kruhová by byla definice úřadu Pegas pomocí esence, která by byla zadána pomocí (konstrukce) být Pegasem. 3 Uvědomme si, že tímto pojetím rekvizity nenavrhujeme, aby úřady, jejichž hodnotami nejsou třídy objektů, byly rekvizitami úřadů, jejichž hodnotami nejsou třídy objektů. Tj. nenavrhujeme, aby např. individuové úřady byly rekvizitami individuových úřadů.

7 318 IV. Přílohy Vymezit tento totální, a taktéž triviální, vztah mezi vlastnostmi není nijak obtížné. Je však vhodné si hlídat pořadí vlastností f a g. Vlastnost g je rekvizitou vlastnosti f právě tehdy, když pro každý možný svět w, pro každý časový okamžik t, pro každé individuum x, jestliže je pravdivé, že x je f ve w, t, tak je pravdivé, že x je g ve w, t (Rekvizita φ / (οφφ) τω, tj. vztah mezi vlastnostmi individuí): [Rekvizita φ wt g f] [.λw..λt [.λx [ [Pravdivá πt w t λw λt [f w t x]] [Pravdivá πt w t λw λt [g w t x]] ]]] // λwλt.λgf Volně řečeno, mít vlastnost f implikuje mít vlastnost g (a to za všech okolností). To souvisí s tím, že aby individuum mohlo mít vlastnost f, musí mít vlastnost g. Na konkrétním příkladu: aby individuum bylo muž, tak musí být člověk; z druhé strany pak, pro každé individuum (nutně) platí, že pokud má vlastnost muž, tak má vlastnost člověk. 4 Alternativy podané definice jsou zjevné. Na jedné straně tedy: [.λw..λt [.λx [ [Instanciovat w t x f] [Instanciovat w t x g] ]]] // λwλt.λgf Na druhé straně zas: [.λw..λt [[Všichni ι f w t ] g w t ]] // λwλt.λgf (Povšimněme si, že podobně jako výše nejsou v definiens proměnné možných světů a časových okamžiků volné. Z toho plyne absence modální a temporální podmíněnosti, tj. analytičnost.) Z právě podaného definiens (a uplatněním nutně ) si lehko odvodíme konstrukci pro analýzu věty: Je nutné, že všechna F jsou G. Přirozeně, že není nevhodné přijmout i pojem esence vlastnosti. Definici snadno získáme adekvátní úpravou již výše podané definice esence úřadu (Esence φ / (οφφ) τω, tj. vztah mezi vlastnostmi individuí, vztah, který je totální a triviální): [Esence φ wt g f] [g = f] // λwλt.λgf Z toho zjevně plyne, že esencí vlastnosti f je právě a pouze ona sama. Čili (EsenceČeho φ / (φφ) τω, tj. modálně a temporálně podmíněná, avšak triviální, funkce z vlastností do vlastností; tato funkce je totální): [EsenceČeho φ wt f] φ f // λwλt.λf 4 Neošetření parciality je jednou ze závad definice rekvizity v (Jespersen, Materna 2002), tedy ve stati, která se snaží popularizovat základní Tichého myšlenku rekvizit (a esence). Zvláštní je, že ačkoli Jespersen s Maternou odkazují na Tichého text (Tichý 1979), nakonec se pojmu rekvizity úřadů (v námi uvažovaném smyslu) vyhnou; jejich definice (a to, co o ní říkají) vlastně zahrnuje pouze rekvizity vlastností. Každopádně lze souhlasit s jejich rozborem věty Dřevěné stoly jsou nutně dřevěné. Vlastnost být stůl a být dřevěný má jako rekvizitu vlastnost být dřevěný, takže si lze snadno deduktivně odvodit, že instanciuje-li individuum vlastnost být stůl a být dřevěný, tak je nutné, že instanciuje vlastnost být dřevěný.

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Primární a sekundární výskyt označující fráze. Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5.

Primární a sekundární výskyt označující fráze. Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5. Primární a sekundární výskyt označující fráze Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5. 2012 Russellovo rozlišení jména a popisu Označující fráze Primární a sekundární

Více

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz) Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Deskripce a existence: uctívali Řekové olympské bohy?

Deskripce a existence: uctívali Řekové olympské bohy? Kapitola 4 Deskripce a existence: uctívali Řekové olympské bohy? Přestože jsme se v minulé kapitole zabývali subjekty a predikáty, existuje ještě jeden typ výrazů, který může vystupovat jako podmět oznamovací

Více

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

R O Z S U D E K J M É N E M R E P U B L I K Y

R O Z S U D E K J M É N E M R E P U B L I K Y č. j. 6 Afs 4/2003-64 ČESKÁ REPUBLIKA R O Z S U D E K J M É N E M R E P U B L I K Y Nejvyšší správní soud rozhodl v senátě složeném z předsedkyně JUDr. Milady Tomkové a soudců JUDr. Bohuslava Hnízdila

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

4.9.70. Logika a studijní předpoklady

4.9.70. Logika a studijní předpoklady 4.9.70. Logika a studijní předpoklady Seminář je jednoletý, je určen pro studenty posledního ročníku čtyřletého studia, osmiletého studia a sportovní přípravy. Cílem přípravy je orientace ve formální logice,

Více

ETIKA A FILOSOFIE Zkoumání zdroje a povahy mravního vědomí. METAETIKA etika o etice

ETIKA A FILOSOFIE Zkoumání zdroje a povahy mravního vědomí. METAETIKA etika o etice ETIKA A FILOSOFIE Zkoumání zdroje a povahy mravního vědomí METAETIKA etika o etice 1 Zdroje mravního vědění Hledáme, jakou povahu má naše mluvení a uvažování o etice. Co je etika ve své podstatě. Jaký

Více

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá.

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. Výroková logika I Výroková logika se zabývá výroky. (Kdo by to byl řekl. :-)) Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. U výroku

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 10 ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 Matematicko-fyzikální fakulta Univerzita Karlova v Praze 1 ROZHODOVÁNÍ TEORIÍ POMOCÍ SAT ŘEŠIČE (SMT)

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

A7B36SI2 Tematický okruh SI11 Revidoval: Martin Kvetko

A7B36SI2 Tematický okruh SI11 Revidoval: Martin Kvetko Obsah Kvalita SW, jak zajistit kvalitu SW a jak ji ověřit Zabezpečení kvality, techniky řízení kvality SW. Potřeba kultivovat kvalitu, Cena za jakost Procesy pro řízení kvality, harmonogram řízení kvality

Více

Analytické myšlení TSP MU výroková logika II.

Analytické myšlení TSP MU výroková logika II. Analytické myšlení TSP MU výroková logika II. Lehký úvod do výrokové logiky pro všechny, kdo se hlásí na Masarykovu univerzitu Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

STANOVISKO VĚDECKÉ RADY PRO SOCIÁLNÍ PRÁCI

STANOVISKO VĚDECKÉ RADY PRO SOCIÁLNÍ PRÁCI Příloha č. 1 k zápisu z 10. jednání Vědecké rady pro sociální práci konaného dne 19. května 2014 STANOVISKO VĚDECKÉ RADY PRO SOCIÁLNÍ PRÁCI K PRACOVNÍM DOKUMENTŮM PRO TVORBU VĚCNÉHO ZÁMĚRU ZÁKONA O SOCIÁLNÍCH

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Tematická oblast: Zoologie 2 (VY_32_INOVACE_02_2)

Tematická oblast: Zoologie 2 (VY_32_INOVACE_02_2) Tematická oblast: Zoologie 2 (VY_32_INOVACE_02_2) Autor: Mgr. Šárka Vopěnková Vytvořeno: leden až duben 2013 Anotace: Digitální učební materiály charakterizují hlavní taxonomické jednotky živočichů a jejich

Více

Možné světy v logice. Jaroslav Peregrin. Carnap

Možné světy v logice. Jaroslav Peregrin. Carnap Možné světy v logice Jaroslav Peregrin Carnap S pojmem možného světa se můžeme setkat již ve scholastice. Na úsvitu novověké filosofie ho G. Leibniz použil, když se pokoušel odpovědět na otázku, proč Bůh

Více

Klauzulární logika. Znalostní báze. Šárka Vavrečková

Klauzulární logika. Znalostní báze. Šárka Vavrečková Klauzulární logika Znalostní báze Šárka Vavrečková Ústav informatiky, Filozoficko-přírodovědecká fakulta Slezské univerzity v Opavě sarka.vavreckova@fpf.slu.cz 26. listopadu 2007 (Znalostní báze) Klauzulární

Více

POZORUHODNÉ LOGICKÉ SYSTÉMY (III) DYNAMICKÁ LOGIKA

POZORUHODNÉ LOGICKÉ SYSTÉMY (III) DYNAMICKÁ LOGIKA 338 POZORUHODNÉ LOGICKÉ SYSTÉMY (III) DYNAMICKÁ LOGIKA Jaroslav PEREGRIN" Uvažme výroky (1) Možná prší (2) Neprší Teorie tvořená tčmito dvěma výroky je, mčfeno běžnými logickými standardy, zjevně konzistentní.

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

PROJEDNÁVÁNÍ SOUBORU STAVEB V REŽIMU STAVBY HLAVNÍ - Pracovní pomůcka

PROJEDNÁVÁNÍ SOUBORU STAVEB V REŽIMU STAVBY HLAVNÍ - Pracovní pomůcka PROJEDNÁVÁNÍ SOUBORU STAVEB V REŽIMU STAVBY HLAVNÍ - Pracovní pomůcka Metodické doporučení odboru stavebního řádu Ministerstva pro místní rozvoj 1/ ÚVOD Dne 3. června 2008 nabyl účinnosti zákon č. 191/2008

Více

Hierarchický databázový model

Hierarchický databázový model 12. Základy relačních databází Když před desítkami let doktor E. F. Codd zavedl pojem relační databáze, pohlíželo se na tabulky jako na relace, se kterými se daly provádět různé operace. Z matematického

Více

Výbor textů k moderní logice

Výbor textů k moderní logice Mezi filosofií a matematikou 5 Logika 20. století: mezi filosofií a matematikou Výbor textů k moderní logice K vydání připravil a úvodními slovy opatřil Jaroslav Peregrin 2006 Mezi filosofií a matematikou

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti Stanovení měr opakovatelnosti a reprodukovatelnosti při kontrole měřením a srovnáváním Ing. Jan Král Úvodní teze Zásah do procesu se děje na základě měření.

Více

POZORUHODNÉ LOGICKÉ SYSTÉMY Jaroslav Peregrin * www.cuni.cz/~peregrin [ORGANON F 8, 2000, 90-96, 210-217, 342-348, 460-466]

POZORUHODNÉ LOGICKÉ SYSTÉMY Jaroslav Peregrin * www.cuni.cz/~peregrin [ORGANON F 8, 2000, 90-96, 210-217, 342-348, 460-466] POZORUHODNÉ LOGICKÉ SYSTÉMY Jaroslav Peregrin * www.cuni.cz/~peregrin [ORGANON F 8, 2000, 90-96, 210-217, 342-348, 460-466] I Hintikkova logika podporující nezávislost V úvodním ročníku ORGANONu Pavel

Více

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce

Více

NAUČTE SE MALOVAT SI INSTANCE!

NAUČTE SE MALOVAT SI INSTANCE! NAUČTE SE MALOVAT SI INSTANCE! část 2. RNDr. Ilja Kraval, září 2009 http://www.objects.cz ÚVOD V předešlém článku jsme otevřeli jeden ze základních problémů, který musí analytik řešit: Jak vypadá skladba

Více

3. Je defenzivní programování technikou skrývání implementace? Vyberte jednu z nabízených možností: Pravda Nepravda

3. Je defenzivní programování technikou skrývání implementace? Vyberte jednu z nabízených možností: Pravda Nepravda 1. Lze vždy z tzv. instanční třídy vytvořit objekt? 2. Co je nejčastější příčinou vzniku chyb? A. Specifikace B. Testování C. Návrh D. Analýza E. Kódování 3. Je defenzivní programování technikou skrývání

Více

Metodický návod. pro tvůrce didaktických podpor k cizojazyčným odborným filmům

Metodický návod. pro tvůrce didaktických podpor k cizojazyčným odborným filmům Metodický návod pro tvůrce didaktických podpor k cizojazyčným odborným filmům Tento metodický návod je určen pro tvůrce didaktických podpor pro cizojazyčné odborné filmy (dále jen Tvůrce ). Didaktické

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

ale třeba i výroky, kde se za modifikátorem nachází složený výrok jako

ale třeba i výroky, kde se za modifikátorem nachází složený výrok jako Modální logika Nejběžnějším výrokovým modifikátorem, se kterým se setkáváme v přirozeném jazyce je negace. Operátor negace je jedním z klíčových spojek klasické logiky. Běžně se ovšem v přirozeném jazyce

Více

Lehký úvod do výrokové logiky (nejen pro ty, kteří se připravují na TSP MU) část první

Lehký úvod do výrokové logiky (nejen pro ty, kteří se připravují na TSP MU) část první Lehký úvod do výrokové logiky (nejen pro ty, kteří se připravují na TSP MU) část první PRACOVNÍ VERZE TEXTU, KTERÁ BUDE DÁLE UPRAVOVÁNA TEXT SLOUŽÍ PRO POTŘEBY ÚČASTNÍKŮ EMAILOVÉHO SEMINÁŘE RESENI-TSP.CZ

Více

Počítačové zpracování přirozeného jazyka a Transparentní intenzionální logika

Počítačové zpracování přirozeného jazyka a Transparentní intenzionální logika Počítačové zpracování přirozeného jazyka a Transparentní intenzionální logika Jiří Raclavský V této stati bych chtěl stručně pojednat o tématu zmíněném v názvu. Nejprve bude charakterizována Transparentní

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE. 2009 Tomáš Michek

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE. 2009 Tomáš Michek UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE 2009 Tomáš Michek Univerzita Pardubice Fakulta elektrotechniky a informatiky Program pro výuku a testování základů výrokové a

Více

Strategický management a strategické řízení

Strategický management a strategické řízení Přednáška č. 2 Strategický management a strategické řízení vymezení principů paradigmatu strategického managementu pojetí a obsah strategického managementu, strategie a strategické analýzy vymezení strategického

Více

Informace GFŘ k uplatnění daně z přidané hodnoty ve zdravotnictví od 1.4.2012

Informace GFŘ k uplatnění daně z přidané hodnoty ve zdravotnictví od 1.4.2012 Generální finanční ředitelství Lazarská 15/7, 117 22 Praha 1 Sekce 3, Odbor Nepřímých daní V Praze dne: 29.3.2012 čj. 11964 /12-3210-011695 vyřizuje/linka: Ing. Hušáková/4142 Informace GFŘ k uplatnění

Více

Matematická logika cvi ení 47

Matematická logika cvi ení 47 Matematická logika cvi ení 47 Libor B hounek www.cs.cas.cz/behounek/teaching/malog12 LS 2012/13, P F OU, 4.25. 3. 2013 Cvi ení 1. Posu te následující výroky z hlediska adekvátnosti dvojhodnotové sémantiky

Více

R O Z S U D E K J M É N E M R E P U B L I K Y

R O Z S U D E K J M É N E M R E P U B L I K Y 1 As 106/2008-100 ČESKÁ REPUBLIKA R O Z S U D E K J M É N E M R E P U B L I K Y Nejvyšší správní soud rozhodl v senátě složeném z předsedkyně JUDr. Lenky Kaniové a soudců JUDr. Josefa Baxy a JUDr. Zdeňka

Více

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost Teoretická informatika průběh výuky v semestru 1 Týden 14 Přednáška PSPACE, NPSPACE, PSPACE-úplnost Uvědomili jsme si nejprve, že např. pro zjištění toho, zda Bílý má nějakou strategii ve hře ŠACHY, která

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

1. Průběh funkce. 1. Nejjednodušší řešení

1. Průběh funkce. 1. Nejjednodušší řešení 1. Průběh funkce K zobrazení průběhu analytické funkce jedné proměnné potřebujeme sloupec dat nezávisle proměnné x (argumentu) a sloupec dat s funkcí argumentu y = f(x) vytvořený obvykle pomocí vzorce.

Více

Zánik nájmu bytu (domu)

Zánik nájmu bytu (domu) ČÁST TŘETÍ Zánik nájmu bytu (domu) I. Obecně Nájem bytu a domu zaniká nejčastěji tradičním způsobem jako každý jiný závazek, a to řádným splněním dluhu (srov. 1908 odst. 1 obč. zák.). V případě nájmu však

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Dodatečná informace č. 6

Dodatečná informace č. 6 Dotaz uchazeče 1a) ze dne 22.1.2015: Dodatečná informace č. 6 Součástí zadávací dokumentace je Soupis prací ve formátu PDF (ve svazku 3 ZD), dále pak elektronická podoba výkazu výměr (svazek 5 ZD), kde

Více

Německý jazyk (rozšířená výuka cizích jazyků)

Německý jazyk (rozšířená výuka cizích jazyků) Oblast Předmět Období Časová dotace Místo realizace Charakteristika předmětu Průřezová témata Další cizí jazyk Německý jazyk (rozšířená výuka cizích jazyků) 6. 9. ročník 3 hodiny týdně třídy, jazykové

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 1 Cílem tohoto semináře je efektivní uvedení

Více

OCHRANA OSOBNÍCH ÚDAJŮ VE ZDRAVOTNICTVÍ PODLE ČLÁNKU 8 EVROPSKÉ ÚMLUVY O OCHRANĚ LIDSKÝCH PRÁV A ZÁKLADNÍCH SVOBOD. Praha, 29.

OCHRANA OSOBNÍCH ÚDAJŮ VE ZDRAVOTNICTVÍ PODLE ČLÁNKU 8 EVROPSKÉ ÚMLUVY O OCHRANĚ LIDSKÝCH PRÁV A ZÁKLADNÍCH SVOBOD. Praha, 29. OCHRANA OSOBNÍCH ÚDAJŮ VE ZDRAVOTNICTVÍ PODLE ČLÁNKU 8 EVROPSKÉ ÚMLUVY O OCHRANĚ LIDSKÝCH PRÁV A ZÁKLADNÍCH SVOBOD Praha, 29. listopadu 2012 1 OCHRANA OSOBNÍCH ÚDAJŮ V PRÁVU EÚLP: VÝVOJ BEZ VÝSLOVNÉHO

Více

Obchodní podmínky systému e-aukce.eu

Obchodní podmínky systému e-aukce.eu Obchodní podmínky systému e-aukce.eu I. Výklad pojmů Níže uvedené pojmy se vztahují na Smlouvu a všechny ostatní smluvní dokumenty a mají následující význam: E-aukce: on-line výběrové řízení, tj. elektronická

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

PEDAGOGICKÉ DOVEDNOSTI

PEDAGOGICKÉ DOVEDNOSTI Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné PEDAGOGICKÉ DOVEDNOSTI Distanční studijní opora Helena Kolibová Karviná 2012 Projekt OP VK 2.2 (CZ.1.07/2.2.00/15.0176) Rozvoj kompetencí

Více

Stanislav Sousedík KOSMOLOGICKÝ DŮKAZ BOŽÍ EXISTENCE V ŽIVOTĚ A MYŠLENÍ

Stanislav Sousedík KOSMOLOGICKÝ DŮKAZ BOŽÍ EXISTENCE V ŽIVOTĚ A MYŠLENÍ 161 Stanislav Sousedík KOSMOLOGICKÝ DŮKAZ BOŽÍ EXISTENCE V ŽIVOTĚ A MYŠLENÍ Praha (Vyšehrad) 2014, 175 str. Kniha Stanislava Sousedíka Kosmologický důkaz Boží existence v životě a myšlení obsahuje nejen

Více

Informace GFŘ k uplatnění DPH u zdravotnických prostředků od 1. 1. 2013

Informace GFŘ k uplatnění DPH u zdravotnických prostředků od 1. 1. 2013 Generální finanční ředitelství Lazarská 15/7, 117 22 Praha 1 Sekce metodiky a výkonu daní Odbor Nepřímých daní V Praze čj. 4818/13/70001-21000-011695 Informace GFŘ k uplatnění DPH u zdravotnických prostředků

Více

Analýza a návrh webových aplikací I N G. M A R T I N M O L H A N E C, C S C. Y 1 3 A N W

Analýza a návrh webových aplikací I N G. M A R T I N M O L H A N E C, C S C. Y 1 3 A N W Analýza a návrh webových aplikací I N G. M A R T I N M O L H A N E C, C S C. Y 1 3 A N W Osnova dnešní přednášky Proč tento předmět vlastně existuje? Proč nestačí standardní metodiky SI? Co standardním

Více

NOVÁ KONCEPCE ŘÍZENÍ VÝKONU SLUŽBY PŘÍSLUŠNÍKŮ POLICIE ČESKÉ REPUBLIKY INFORMACE O KONCEPCI ŘÍZENÍ VÝKONU SLUŽBY

NOVÁ KONCEPCE ŘÍZENÍ VÝKONU SLUŽBY PŘÍSLUŠNÍKŮ POLICIE ČESKÉ REPUBLIKY INFORMACE O KONCEPCI ŘÍZENÍ VÝKONU SLUŽBY NOVÁ KONCEPCE ŘÍZENÍ VÝKONU SLUŽBY PŘÍSLUŠNÍKŮ POLICIE ČESKÉ REPUBLIKY INFORMACE O KONCEPCI ŘÍZENÍ VÝKONU SLUŽBY PhDr. Petr Jedinák, Ph.D. katedra managementu a informatiky, Fakulta bezpečnostně právní,

Více

S t a n o vi s k o. odboru dozoru a kontroly veřejné správy Ministerstva vnitra č. 1/2012

S t a n o vi s k o. odboru dozoru a kontroly veřejné správy Ministerstva vnitra č. 1/2012 S t a n o vi s k o odboru dozoru a kontroly veřejné správy Ministerstva vnitra č. 1/2012 Označení stanoviska: Zveřejňování poskytnuté informace podle zákona o svobodném přístupu k informacím Právní předpis:

Více

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14 Funkce Definiční obor funkce, obor hodnot funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah 1 Definiční obor funkce příklady na určení oboru hodnot funkce

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Je paradox holiče paradoxem?

Je paradox holiče paradoxem? Je paradox holiče paradoxem? Jiří Raclavský Abstrakt: V první části textu ukazuji, že paradox holiče není analogický Russellově paradoxu, ba že to vůbec není paradox. Poté odhaluji jeho pravděpodobný historický

Více

odpovídáme tímto na Váš dopis č. j. č.j.: BUR/3077/2013 ze dne 11. 7. 2013.

odpovídáme tímto na Váš dopis č. j. č.j.: BUR/3077/2013 ze dne 11. 7. 2013. pro rozhlasové a televizní vysílání JUDr. Kateřina Kalistová, předsedkyně RRTV Skřetova 44/6 120 00 Praha 2 DOŠLO DNE: 8 "07" 2013 Číslo jednací _ Počet listů: A Počet příloh: Počet listů příloh: Druh

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

SOFT SKILLS A FORMY VZDĚLÁVÁNÍ

SOFT SKILLS A FORMY VZDĚLÁVÁNÍ Projekt vznikl za přispění Nadace ČEZ A FORMY VZDĚLÁVÁNÍ Společnost: VÍTKOVICE POWER ENGINEERING Zástupce: Mgr. Pavel Řehánek Soft Skills (nebo-li měkké dovednosti ) Co jsou to Soft Skills??? Pojem "osobnost"

Více

Žaloba proti rozhodnutí správního orgánu podle soudního řádu správního. doručovat do datové schránky 4memzkm. doručovat do datové schránky 4bxtaaw4

Žaloba proti rozhodnutí správního orgánu podle soudního řádu správního. doručovat do datové schránky 4memzkm. doručovat do datové schránky 4bxtaaw4 Městský soud v Praze Hybernská 1006/18 110 00 Praha-Nové Město do datové schránky snkabbm Odpověď na Váš dopis ze dne Naše značka JM 1/2013 Praha 6. 1. 2014 Žaloba proti rozhodnutí správního orgánu podle

Více

Aplikační úrovně GRI 2000-2006 GRI. Verze 3.0

Aplikační úrovně GRI 2000-2006 GRI. Verze 3.0 Verze 3.0 Stručný přehled Tvůrci zprávy o udržitelném rozvoji by měli uvést, do jaké míry se při své práci řídili principy Reportingového rámce GRI. Tento údaj je vyjádřen systémem tzv. Aplikačních úrovní.

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Český jazyk a literatura 8. ročník Zpracovala: Mgr. Marie Čámská Jazyková výchova spisovně vyslovuje běžně užívaná cizí slova umí spisovně vyslovit běžná cizí slova

Více

Zástupkyně veřejného ochránce práv RNDr. Jitka Seitlová

Zástupkyně veřejného ochránce práv RNDr. Jitka Seitlová I. Dle zákona o regulaci reklamy je zakázána nejen reklama, jejíž zákaz je upraven v samotném zákoně o regulaci reklamy, ale také veškerá reklama, jejíž protizákonnost vyplývá z jiných právních předpisů.

Více

Právní aspekty využití městských kamerových dohlížecích systémů Mgr. Adam BORGULA, Odbor prevence kriminality MV ČR, Praha

Právní aspekty využití městských kamerových dohlížecích systémů Mgr. Adam BORGULA, Odbor prevence kriminality MV ČR, Praha Právní aspekty využití městských kamerových dohlížecích systémů Mgr. Adam BORGULA, Odbor prevence kriminality MV ČR, Praha Úvodem je třeba poznamenat, že si občané České republiky po převratu v roce 1989

Více

Charakteristika nástrojů použitých v metodice

Charakteristika nástrojů použitých v metodice Charakteristika nástrojů použitých v metodice Pro metodický popis datových souborů a pro definování kontrol a vykazovacích povinností se v metodice pro sestavování výkazů 1) (dále jen metodika ) používají

Více

Kdy se narodil... Vypracovali: Mrkývka Vojtěch, Mrázek Ondřej, Novotná Marie. Předmět: PLIN08 Projekty II. Semestr: Jaro 2015

Kdy se narodil... Vypracovali: Mrkývka Vojtěch, Mrázek Ondřej, Novotná Marie. Předmět: PLIN08 Projekty II. Semestr: Jaro 2015 Kdy se narodil... Vypracovali: Mrkývka Vojtěch, Mrázek Ondřej, Novotná Marie Předmět: PLIN08 Projekty II Semestr: Jaro 2015 Vedoucí projektu: Mgr. Marek Grác, Ph.D. Úkolem tohoto projektu bylo vytvořit

Více

VŠEOBECNÉ NÁKUPNÍ PODMÍNKY

VŠEOBECNÉ NÁKUPNÍ PODMÍNKY strana: 1 z 6 VŠEOBECNÉ NÁKUPNÍ PODMÍNKY společnosti PLASTIKA a.s. se sídlem Kaplanova 2830, 767 01 Kroměříž, IČ: 27448550, zapsána do obchodního rejstříku, vedeného Krajským soudem v Brně, oddíl B, vložka

Více

Zápis z jednání Koordinačního výboru s Komorou daňových poradců ČR ze dne 27.3.2013

Zápis z jednání Koordinačního výboru s Komorou daňových poradců ČR ze dne 27.3.2013 GENERÁLNÍ FINANČNÍ ŘEDITELSTVÍ Lazarská 15/7, 117 22 Praha 1 Zápis z jednání Koordinačního výboru s Komorou daňových poradců ČR ze dne 27.3.2013 UZAVŘENÉ PŘÍSPĚVKY ke dni 27.3.2013 - seznam - Daň z příjmů

Více

EO_03. Specifikační jazyk světa ontologie

EO_03. Specifikační jazyk světa ontologie EO_03 Specifikační jazyk světa ontologie Obsah přednášky Faktická znalost. Významový trojúhelník. Ontologický rovnoběžník. Stata& fakta. Ontologie světa. Gramatika specifického jazyka světa ontologie (1/2)

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

ČÁST D ZRUŠENÍ A/NEBO PROHLÁŠENÍ NEPLATNOSTI ODDÍL 2 HMOTNĚPRÁVNÍ USTANOVENÍ

ČÁST D ZRUŠENÍ A/NEBO PROHLÁŠENÍ NEPLATNOSTI ODDÍL 2 HMOTNĚPRÁVNÍ USTANOVENÍ METODICKÉ POKYNY TÝKAJÍCÍ SE PRŮZKUMU PROVÁDĚNÉHO ÚŘADEM PRO HARMONIZACI NA VNITŘNÍM TRHU (OCHRANNÉ ZNÁMKY A PRŮMYSLOVÉ VZORY) V OBLASTI OCHRANNÝCH ZNÁMEK SPOLEČENSTVÍ ČÁST D ZRUŠENÍ A/NEBO PROHLÁŠENÍ

Více

Řešení úloh TSP MU prezentace k výkladům na prezenčních kurzech ZKRÁCENÁ UKÁZKA PRO WEB Analytické myšlení ročník 2011, var. 07

Řešení úloh TSP MU prezentace k výkladům na prezenčních kurzech ZKRÁCENÁ UKÁZKA PRO WEB Analytické myšlení ročník 2011, var. 07 Řešení úloh TSP MU prezentace k výkladům na prezenčních kurzech ZKRÁCENÁ UKÁZKA PRO WEB Analytické myšlení ročník 2011, var. 07 var. 07, úloha č. 51 Úloha č. 51 Víme, že polovina trasy z A do B měří na

Více

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete!

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete! Tento seminář pro Vás připravuje vzdělávací agentura Kurzy-Fido.cz...s námi TSP zvládnete! Řešení páté série (27.4.2009) 13. Hlavní myšlenka: efektivní porovnávání zlomků a desetinných čísel Postup: V

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Zápis z 37. schůze Výboru a Kontrolní komise Společenství pro dům č. p. 1472, Praha 10 Uhříněves konané dne 1. srpna 2012 od 20.45 hod.

Zápis z 37. schůze Výboru a Kontrolní komise Společenství pro dům č. p. 1472, Praha 10 Uhříněves konané dne 1. srpna 2012 od 20.45 hod. Zápis z 37. schůze Výboru a Kontrolní komise Společenství pro dům č. p. 1472, Praha 10 Uhříněves konané dne 1. srpna 2012 od 20.45 hod. Přítomni za Výbor SVJ (VSVJ): M. Bašta (příchod 21:09 hod), V. Blažek,

Více

Kapitola 3: Relační model. Základní struktura. Relační schéma. Instance relace

Kapitola 3: Relační model. Základní struktura. Relační schéma. Instance relace - 3.1 - Struktura relačních databází Relační algebra n-ticový relační kalkul Doménový relační kalkul Rozšířené operace relační algebry Modifikace databáze Pohledy Kapitola 3: Relační model Základní struktura

Více

kancelář ministra vnitra Nad Štolou 3 Praha 7 17034 Č. j. MV-25719-2/KM-2014 Praha 3. března 2014 Počet listů: 11 R O Z H O D N U T Í

kancelář ministra vnitra Nad Štolou 3 Praha 7 17034 Č. j. MV-25719-2/KM-2014 Praha 3. března 2014 Počet listů: 11 R O Z H O D N U T Í kancelář ministra vnitra Nad Štolou 3 Praha 7 17034 Č. j. MV-25719-2/KM-2014 Praha 3. března 2014 Počet listů: 11 R O Z H O D N U T Í Ministerstvo vnitra, jako nadřízený věcně příslušný odvolací orgán

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Metody přírodních věd aplikované na vědy sociální: předpoklad, že lidské chování můžeme do jisté míry měřit a předpovídat.

Metody přírodních věd aplikované na vědy sociální: předpoklad, že lidské chování můžeme do jisté míry měřit a předpovídat. 3. Kvalitativní vs kvantitativní výzkum Kvantitativní výzkum Metody přírodních věd aplikované na vědy sociální: předpoklad, že lidské chování můžeme do jisté míry měřit a předpovídat. Kvantitativní výzkum

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Německý jazyk 7. ročník POSLECH S POROZUMĚNÍM Rozumí jednoduchým pokynům a otázkám učitele, které jsou pronášeny pomalu a s pečlivou výslovností a reaguje na ně Rozumí jednoduchým pokynům při práci ve

Více