Vysoká škola báňská Technická univerzita Ostrava Fakulta stavební katedra konstrukcí

Rozměr: px
Začít zobrazení ze stránky:

Download "Vysoká škola báňská Technická univerzita Ostrava Fakulta stavební katedra konstrukcí"

Transkript

1 Vysoká škola báňská Techická uiverzita Ostrava Fakulta stavebí katedra kostrukcí Ig. Karel Kubečka Využití statistických metod při statickém avrhováí a posuzováí železobetoových kostrukcí. Straa č.

2 Obsah :. Úvod Náhodá proměost vlastostí materiálu a zatížeí Statistika a metoda mezích stavů Statistické vyšetřováí Postup z idividuálích hodot Postup ze skupiového rozděleí četostí Teoretický matematicko statistický model Teorie výpočtu betoových kostrukcí..... Návrh betoové kostrukce a jeho teoretické základy..... Mezí stavy stavebích kostrukcí Stadia působeí a ávrhové situace Náhodá promělivost zatížeí Náhodá promělivost odporu kostrukce Metody avrhováí betoových kostrukcí a jejich vývoj Determiistické metody avrhováí Pravděpodobostí metody avrhováí Ekoometrické metody avrhováí Statistické metody hodoceí betou (ČSN ) Hodoceí izolovaého souboru Velmi malý výběr Testováí odlehlých hodot Posouzeí ormality rozděleí jedotlivých souborů Testováí odlehlých hodot Velký výběr Hodoceí aměřeých hodot jako velkého souboru Statistická iterpretace výsledků hodoceí podle ČSN ISO Praktické určeí pevosti a základě vyhodoceí velmi malého výběru Hodoceí izolovaého souboru postup dle ČSN Testováí odlehlých hodot: Odhad souborového podílu hodot se sížeou jakostí Hodoceí izolovaého souboru postup dle ČSN ISO Literatura Normy... 5 Straa č.

3 . Úvod Na každé stavbě můžeme zjistit, že vlastosti použitých materiálů a rozměry provedeých kostrukci se liší od předpokládaých údajů v projektu a to místo od místa, takže podrobímeli ěkterou sledovaou vlastost zkouškám, ať již přímo a stavbě ebo v laboratoři, obdržíme výsledky vykazující jisté rozptýleí okolo svého průměru. Obdobě jako vlastosti materiálu a rozměry kostrukce měí se i zatížeí. Stálé zatížeí, vyvozeé vlastí tíhou kostrukcí, měí svou velikost v růzých místech ásledkem ahodilých změ objemové hmotosti a rozměrů. Nahodilé zatížeí, jehož účikům je osá kostrukce v provozu vystavea, měí svou velikost v závislosti a čase. Rozdílé výsledky těchto áhodě proměých veliči spočívají buď v povaze materiálů a zatížeí ebo v emožosti dokoalého provedeí stavby a jejich chováí lze postihout pouze rozborem většího počtu zkoušek, prováděým metodami matematické statistiky... Náhodá proměost vlastostí materiálu a zatížeí. Uveďme pro ilustraci co do počtu zkoušek silě zjedodušeý příklad. Náhodě proměou veličiou bude krychelá pevost betou zjištěá a dvou stavbách A a B. Zkoušky daly tyto výsledky : a stavbě A : 5, 0, 5 MPa a stavbě B : 8, 0, MPa Průměrá pevost je tedy R = 0 MPa u obou staveb stejá, je však zřejmé, že a stavbě B je výroba betou kvalitější, výsledky zde mají meší rozptyl. Z uvedeého vyplývá, že průměr eí jediým a rozhodujícím ukazatelem a pro celkové posouzeí chováí áhodě proměé veličiy je uto uvážit ještě další charakteristiky statistického souboru. Objasěme si v dalším důležité pojmy z oboru statistiky : Statistický soubor je defiová jako souhr všech aměřeých hodot vyšetřovaého zaku. Zak Zakem rozumíme měřeou ebo zkouškami zjišťovaou veličiu jako apříklad pevost betou, objemovou hmotost betou, mez kluzu ebo pevost oceli, velikost zatížeí atp. Rozsah souboru tvoří počet všech aměřeých hodot souboru. Co do velikosti rozsahu souboru rozezáváme : základí soubor, který elze obvykle zkouškami celý postihout; áhodý výběr, který tvoří pouze jistý počet vzorků vybraých ze základího souboru. Tak apříklad z celkového počtu paelů a skládce tvořícího základí soubor provádíme kotrolu jakosti pouze a meším počtu áhodě vybraých prvků. Při zjišťováí Straa č. 3

4 krychelé pevosti betou a stavbě odebíráme pouze část betoové směsi pro zhotoveí jistého počtu zkušebích krychlí. Podle velikosti rozsahu áhodého výběru při posuzováí jakosti betou dělíme výběr a : velký áhodý výběr > 00 malý áhodý výběr 7 < < 00 velmi malý áhodý výběr (3 6), Při meším rozsahu souboru ( < 3) již elze provádět statistické hodoceí. U áhodých výběrů je uto postupovat při výběru tak, aby každý vzorek měl stejou šaci být vybrá. Kvatitativí zak. Povaha tohoto zaku je taková, že jeho hodoty jsou udáy čísly, což bude u.převážé většiy případů. Jsouli důležité ejižší hodoty zaku, půjde o tzv. zak prvího druhu (apř.pevost, mez kluzu, ale i objemová hmotost). Naopak, zajímajíli ás ejvyšší hodoty, jde o zak druhého druhu (zatížeí ahodilé, objemová hmotost). Některý zak se může současě vyskytovat v obou druzích. Kvalitativí zak U kvalitativího zaku jde v podstatě o zodpovězeí otázky, zda zkoumaé vzorky z jistého hlediska vyhovují, či e. I zde se pro hodoceí převážě užívá áhodých výběrů. V prai se apř. staovuje tzv. podíl zmetkovitosti, tj. podíl evyhovujících výrobků k celkovému počtu kotrolovaých. Charakteristiky souboru Charakteristikami souboru (u kvatitativího zaku) budeme rozumět důležité číselé údaje, podle ichž můžeme hodotit chováí áhodě proměé veličiy. Jsou to průměr, rozptyl, směrodatá odchylka, variačí součiitel a šikmost. Hodoty těchto charakteristik budeme zjišťovat z umerického souboru eperimetálích výsledků (zpravidla vždy půjde o áhodý výběr) podle vztahů uvedeých dále. Parametry základího souboru Parametry základího souboru jsou opět průměr, rozptyl atd., avšak jejich hodoty jsou zpravidla ezámé. Zvětšujemeli však počet zkoušek u áhodého výběru, blíží se hodoty vypočteých charakteristik hodotám ezámých parametrů základího souboru. Při větším počtu zkoušek se zpravidla předpokládá.jejich rovost, při meším jejich počtu se provádí patřičé korekce... Statistika a metoda mezích stavů Matematická statistika je jedím ze základů teorie mezích stavů, eboť jediě s její pomocí je možo zajistit z teoretického hlediska bezpečou úosost kostrukce. Je možo vysvětlit teto stěžejí problém a jedoduchém příkladu. Byl avrže železobetoový prostý osík z jistého druhu betou a oceli. Výpočtem byly staovey jeho rozměry b, h a potřebé možství tahové výztuže v ebezpečém řezu I I uprostřed rozpětí (viz ásledující obrázek). Při správém ávrhu a výrobě se dá Straa č. 4

5 předpokládat, že vyrobíli se celá řada takových osíků, přeesou tyto bezpečě uvažovaé zatížeí. Nejdůležitější otázkou bezpečého ávrhu však bude, s jakými hodotami materiálových kostat a s jakou velikostí zatížeí budeme ve výpočtu počítat. V ebezpečém průřezu jsou totiž vlastosti použitých materiálů, rozměry průřezu i velikost zatížeí veličiy áhodě proměé a bude správé v ávrhu předpokládat, že právě v jedom z osíků se v jeho ebezpečém průřezu vytvoří ty ejepřízivější okolosti, totiž, že pevosti betou a oceli i rozměry průřezu zde budou právě ejmeší, působící zatížei však aopak ejvětší. Bude tedy schopost odporu ebezpečého průřezu, kterou budeme vyjadřovat mezím mometem úososti M u, záviset a statisticky miimálích hodotách vlastostí materiálu (zaky l.druhu). Naopak momet od zatížei M r bude urče ze statisticky maimálích hodot zatížeí (zaky.druhu). Hodoty těchto statistických etrémů lze staovit vyšetřeím statistických souborů uvedeých proměých veliči, přičemž je uto předem zvolit začě vysokou spolehlivost jejich určeí, jiými slovy : pravděpodobost p výskytu ižších (u zaku l.druhu) ebo vyšších (u zaku.druhu) hodot ež uvedeé etrémy musíme staovit mizivě ízkou (v miulosti v zemích RVHP to bylo apř. p=05, v západoevropských zemích p=0). Běžě se hodoty statistických etrémů azývají výpočtové hodoty. Pro materiály jako beto a ocel to budou výpočtová amáháí betou a oceli (R b, R a ), pro zatížeí pak výpočtová zatížeí. Jejich teoretické odvozei je uvedeo v ásledující stati. Z uvedeého vyplývá, že požadavek bezpečé úososti lze formulovat erovostí (v krajím případě rovostí) M u > M r kde veličia M u je fukcí výpočtových amáháí betou a oceli, veličia Mr pak fukcí výpočtového zatížeí. Ve skutečosti je však pravděpodobost, že astae případ M u = M r ještě podstatě meší, eboť jde o tzv. pravděpodobost složeou. Kromě zmíěé teoretické úlohy se uplatňuje statistika při kotrole a staoveí jakosti betou vyráběého a stavbách. Při hodoceí se zde kromě hlediska bezpečosti uplatňují i další, jako hledisko ekoomické ebo hledisko stupě orgaizovaosti výroby betou. Zpravidla se zodpovídá otázka, zda vyrobeý beto odpovídá projektovaé třídě ebo se porovává kvalita výroby betou a dvou i více stavbách, ebo v rámci jedoho i více výrobích podiků. Ze skutečostí uvedeých v předchozím odstavci vyplývá, že kromě statisticky se u metody mezích stavů uplatňuje částečě i počet pravděpodobosti. Proto se tato metoda také řadí mezi t.zv. metody semiprobabilistické (z frac. probabilité pravděpodobost)..3. Statistické vyšetřováí V ásledujícím budeme statisticky vyšetřovat kvatitativí zak, který ozačíme obecě X. Z eperimetů dostaeme řadu umerických výsledků, které tvoří áhodý výběr. Straa č. 5

6 Rozsah tohoto umerického souboru je. Jedotlivé hodoty souboru jsou ozačey i (pro i =,,..., ). Další vyšetřováí se může provádět buď přímo z těchto idividuálích hodot ebo z t. zv. skupiového rozděleí četostí..4. Postup z idividuálích hodot Při meším rozsahu áhodého výběru ( < 00) je ještě možo vycházet při ručím zpracováí výsledků z idividuálích hodot. Základí charakteristiky souboru jsou : průměr rozptyl s směrodatá odchylka s variačí součiítel v šikmost a Výrazy pro jejich výpočet : průměr je středí hodotou souboru a udává jeho polohu rozptyl s je dá průměrem kvadrátů odchylek hodot i od průměru. Udává jejich rozptýleí okolo průměru. Při umerickém výpočtu je možo často výhoději použít upraveého vztahu pro rozptyl směrodatá odchylka s je mírou rozptýleí a vypočte se jako kladě vzatá druhá odmocia rozptylu = s s i = ( i = s = + s i ) variačí součiitel v je relativí mírou rozptýleí a určí se jako podíl směrodaté odchylky a průměru s v = = s ( i ) šikmost a udává esouměrost souboru vůči jeho průměru a = s 3 ( i ) 3 Při umerickém výpočtu je možo často výhoději použít upraveého vztahu a 3 3 i 3 i + 3 s = 3 Straa č. 6

7 .5. Postup ze skupiového rozděleí četostí Při větším rozsahu souboru ( > 00) je výpočet jeho charakteristik z idividuálích hodot pracý. Pokud zpracováváme výsledky ručě, je lépe uspořádat hodoty souboru do k tříd eboli itervalů stejé velikosti (délky) h. Počet tříd k se volí v počtu 7 < k < 0, ejlépe však k = 8 až. Rozpětí souboru je rozdíl mezi maimálí a miimálí hodotou souboru r = ma mi Doporučuje se, aby délka itervalu byla volea h = 8 r a uto ji zaokrouhlit a celé číslo. Střed ité třídy je t. zv. hodota třídího zaku z i ; ( i =,,..., k ). Třídí zak pak zastupuje všechy hodoty zaku v ité třídě. Počet hodot zaku v určité třídě se azývá četost třídy i. Tím dostaeme ový, pro zpracováí podstatě meší soubor s umerickými hodotami z i, jejichž počet je k. Při výpočtu charakteristik je uto respektovat četosti jedotlivých tříd. Vycházíli se ze skupiového rozděleí četostí, pak další výrazy pro charakteristiky umerického souboru jsou : Průměr = k i z i Rozptyl rozptyl (alterativě) s s = = k k i z ( z ) i i i Pro směrodatou odchylku s a variačí součiitel v zůstávají beze změy v platosti vztahy uvedeé výše. s = + s s v = Šikmost a = s k 3 i ( zi ) 3 šikmost (alterativě) a k k 3 i zi 3 i zi + 3 s = 3 Rozděleím hodot souboru do tříd a jejich ahrazeím třídími zaky se dopouštíme jisté chyby, která je však malá a výpočty prakticky eovlivňuje. Početí zpracováí výrazů pro průměr, rozptyl a šikmost se provádí ejlépe tabelárě a při případém ručím způsobu zpracováí lze dosáhout dalšího zjedodušeí zavedeím vhodě zvoleé ové proměé. Straa č. 7

8 Často používaým grafickým zázorěím skupiového rozděleí četostí je t. zv. histogram četostí. Je to sloupcový diagram (viz obr.), jehož sloupce mají stejou délku h a výšku i. Zpravidla se do histogramu vyzačí také průměr, směrodatá odchylka s a šikmost a..6. Teoretický matematicko statistický model Doposud jsme dovedli staovit charakteristiky souboru, který byl áhodým výběrem a výsledky jsme zázorili histogramem četosti.mámeli však zjistit chováí zaku ezámého základího souboru, budeme k tomu potřebovat teoretický matematickostatistický model vyjádřeý spojitou áhodě proměou veličiou,defiovaou ěkterou z těchto dvou fukcí : hustotou pravděpodobosti f() distribučí fukcí F() Souvislost mezi umerickým souborem a jeho teoretickým modelem si můžeme představit pomoct souboru velkého rozsahu, který je uspořádá do k tříd s četostmi i. Relativí četost je pak poměr f i = i který současě udává t.zv. eperimetálí pravděpodobost výskytu hodoty v i té třídě. Pro součet všech relativích četostí platí k k i fi = = Pravděpodobost (eperimetálí) výskytu hodoty v celém souboru je tedy rova,0. Tvar histogramu relativích četostí je podobý tím více grafickému vyjádřeí fukce hustoty pravděpodobosti f(), čím větší bude rozsah umerického souboru a počet tříd k. Fukce hustoty pravděpodobosti je tedy teoretickým modelem relativích četostí zaku. Straa č. 8

9 Určeme dále tzv. kumulativí relativí četost F i daou výrazem : F i = f + f + K + f i = i j = f j V grafickém vyjádřeí tvoří kumulativí relativí četost jistou část plochy histogramu (a předcházejícím obrázku se jedá o vyšrafovaou část), jíž odpovídá teoretická plocha pod křivkou f() (a předcházejícím obrázku je obrys této plochy silě vytaže), která určuje distribučí fukci F(). Distribučí fukce je tedy teoretickým modelem kumulativích relativích četostí F(i). Uvedeé fukce vystihující modelovou křivku se vztahují k teoretickému základímu souboru, jehož charakteristiky azýváme parametry. Jsou to : Průměr µ směrodatá odchylka σ šikmost α Přesé hodoty těchto parametrů ezáme, můžeme je však při dostatečém počtu zkoušek odhadovat pomocí vypočteých charakteristik umerického souboru tak, že předpokládáme jejich vzájemou rovost. S ohledem a vztah k k i fi = = bude dále platit, že obsah plochy vymezeé modelovou křivkou a vodorovou osou, bude rove jedé. Současě to zameá, že pravděpodobost p výskytu hodoty v itervalu až + je rova jedé. Zaveďme ještě ěkteré důležité pojmy : Kvatil p je hodota áhodé proměé, pro kterou je pravděpodobost výskytu meších, resp.větších hodot souboru rova číslu p. U zaku l. druhu je hodota pravděpodobosti p dáa velikostí vyšrafovaé poohy v ásledujícím obrázku s ideem a) u zaku. druhu v obrázku b). Pravděpodobost q, se kterou se vyskytou hodoty zaku X aopak větší, resp. meší ež p se azývá spolehlivost. Platí vždy p + q = Straa č. 9

10 Pro velmi malé pravděpodobosti (p = 5 až 0) se kvatil p azývá kritická hodota, která je pro zvoleou pravděpodobost statistickým miimem zaku. druhu. Podobě bychom mohli defiovat statistické maimum kvatilem p (zde je p > µ p ). Nejčastěji užívaým teoretickým modelem je Gaussovo ormálí rozděleí. Teto model je vhodý pro symetrická rozděleí hodot zaku. Obsahuje dva parametry: průměr µ směrodatou odchylku σ Fukce hustoty pravděpodobosti f() tvoří v grafickém zázorěí zvoovitou symetrickou křivku, jejíž osa symetrie prochází průměrem. Šikmost α je tedy rova ule. Aalytický výraz pro Gaussovo ormálí rozdělei má tvar : f ( ) = σ ( µ ) σ e π kde e je základ přirozeých logaritmů. Gaussova rozděleí lze použít pro vyhodocováí zkoušek pevosti betou i v případě esouměrého rozděleí výsledku (a > < 0) pokud vykazují malý variačí součiitel (v R < 0,). U esymetricky rozděleých hodot souboru (a > < 0) je vhodé volit obecější rozděleí hustoty pravděpodobosti. Zde se ejčastěji používá Pearsoovy křivky typu III. Parametry této fukce obsahují kromě průměru µ. a směrodaté odchylky σ ještě avíc šikmost α, jejíž hodota se uvažuje v mezích až +. Grafickým zázorěím hustoty pravděpodobosti je esouměrá zvoovitá křivka s šikmostí α > < 0. Nesouměrost se zvětšuje s rostoucí absolutí hodotou α.. Pro α = 0 přechází Pearsoova křivka typu III v Gaussovo ormálí rozděleí. Aalytický výraz pro Pearsoovu křivku typu III je dosti složitý a zpravidla jsou hodoty fukce tabelováy v podobě tzv. ormovaého rozděleí. Pro praktické použití je výhodé zavedeí tzv. ormovaé proměé t, která má ulový průměr a směrodatou odchylku rovou jedé. Nemá tedy žádý parametr a její rozděleí se jedoduše tabeluje. Nová proměá t vzike trasformací µ t = σ Dosazeím do výrazu f ( ) = σ ( µ ) σ e π Straa č. 0

11 obdržíme symetrické rozděleí ormovaé proměé : f ( t) = t e π Distribučí fukci pak dostaeme itegrací předchozího vztahu. f ( t) = t t π e dt. Teorie výpočtu betoových kostrukcí Nosé kostrukce stavebích objektů je třeba avrhovat, popř. posuzovat takovým způsobem, aby byly spolehlivé během realizace a obvyklého užíváí objektů. Úkolem teorie betoových kostrukcí je proto jedak staoveí postupů, jakými lze určovat silové a přetváré účiky zatížeí s uvážeím všech důležitých vlastostí betoové kostrukce a dále určeí vztahu mezi účiky zatížeí a odporem betoové kostrukce proti jejímu porušeí... Návrh betoové kostrukce a jeho teoretické základy Potřebou spolehlivost betoové a vlastě jakékoli stavebí kostrukce však elze zabezpečit pouze pečlivým ávrhem kostrukce v duchu uvedeých zásad. Při ávrhu je třeba předpokládat, že: kostrukci realizují osoby s potřebou odborostí a zkušeostmi, je zajištěa ezbytá kotrola ve výrobách a a stavbě, použité stavebí materiály mají vlastosti podle příslušých předpisů, kostrukce se bude užívat v souladu s předpoklady uvažovaými při ávrhu kostrukce, kostrukce bude áležitě udržováa. Uvedeé důležité výchozí předpoklady společě s požadavky a kvalifikačí předpoklady projektata statika podmiňují eje spolehlivé avrhovái betoových kostrukcí podle ČSN 73 0, ale jsou výslově uvedey též v ovější ormě Evropské orgaizace pro stadardizaci (CEN) pro avrhováí betoových kostrukcí Eurokód. Část Eurokódu již byla v překladu vydáa v České republice jako ČSN P ENV 99 Navrhováí betoových kostrukcí. Oba ormativí dokumety jsou založey a moderí metodě avrhováí podle mezích stavů. Straa č.

12 .. Mezí stavy stavebích kostrukcí V průběhu zatěžováí prochází kostrukce spojitě stavy apjatosti a přetvořeí, které můžeme matematicky popsat tzv. stavovou charakteristikou kostrukce, zázorěou pro zvoleý případ a obrázku. Ze spojitých stavů lze vybrat takové, které jsou pro chováí zatěžovaé kostrukce typické a které dokážeme popsat ejlépe. Na obr. je to apříklad stav vziku trhli při zatížeí F r, stav výzačého průhybu, charakterizovaý zatížeím F def, stav kolapsu při zatížeí F col apod. Protože tyto stavy začí určité meze a stavové charakteristice, azýváme je mezími stavy. Během předpokládaé doby životosti má kostrukce splňovat tyto dva základí požadavky: údržba, opravy, rekostrukce, evakuace, kolaps; I mezí stavy úososti, II mezí stavy použitelosti Obr. Stavová charakteristika daé kostrukce esmí se zřítit ebo jiak porušit, což začí, že musí zůstat úosá, esmí přestat (ai dočasě) plit fukce, pro které byla avržea, tj. musí zůstat použitelá. Obecě je třeba uplatit při ávrhu kostrukce oba požadavky, které ejsou avzájem zaměitelé. Přitom odpovídají požadavkům a úosost mezí stavy úososti a požadavkům a použitelost mezí stavy použitelosti. ČSN 73 0 používá pro mezí stavy úososti též ozačeí mezí stavy prví skupiy a pro mezí stavy použitelosti ozačeí mezí stavy druhé skupiy. Základí rozdíl mezi oběma skupiami mezích stavů lze vidět v povaze ásledků, které přiáší jejich překročeí. Při překročeí mezího stavu prví skupiy dojde k úplé a evraté ztrátě způsobilosti kostrukce, zatímco překročeí mezích stavů druhé skupiy ztěžuje obvyklé užíváí objektu, popřípadě zkracuje dobu životosti objektu. Proto se spolehlivost proti dosažeí mezích stavů úososti předepisuje podstatě vyšší ež proti dosažeí mezích stavů použitelosti. Mezím stavem lze tedy obecě ozačit stav, kdy stavebí kostrukce, základ ebo základová půda (jako edílá součást osého systému základová půda základ adzákladová kostrukce) přestae vyhovovat předepsaým provozím požadavkům ebo požadavkům a její prováděí. Jakým způsobem vyjadřujeme matematicky podmíky spolehlivosti jako vztah mezi silovým účikem zatížeí S d (setkáme se i s pojmem odezvy kostrukce a účiky zatížeí) a mezi přípustou hodotou odporu kostrukce R lim staoveou s přihlédutím k rozměrům prvku, použitému materiálu a způsobu vyztužeí. Podmíka spolehlivosti pro prví skupiu mezích stavů má tvar: S d R lim Straa č.

13 a podmíka spolehlivosti pro druhou skupiu mezích stavů, tj. matematický vztah mezi přetvárým účikem zatížeí ω s a jeho přípustou hodotou ω lim : ω s ω lim.3. Stadia působeí a ávrhové situace Při ověřováí spolehlivosti prvků, částí ebo celých kostrukcí je třeba uvážit všecha stadia působeí, která se mohou avzájem lišit: uspořádáím a vlastostmi osého systému (změy podepřeí, rozpětí, vzpěré délky při dopravě, maipulaci, osazováí ebo v provozím stadiu), zatížeím, kdy se měí druh, sestavy i kombiace zatížeí (uvažuje se podle požadavků ČSN ) stářím kostrukce, kdy se mohou měit apř. vlastosti materiálu, délkou trváí jedotlivých stadií působeí. Například mostí kostrukce z dílců z dodatečě předpjatého betou prochází postupě stadiem výroby a dopravy epředpjatých dílců, jejich předpíáím ve výrobě ebo a staveišti, stadiem osazováí, popř. dalšího předpíáí, zatěžovacími zkouškami, provozím stadiem, stadii oprav ebo dopíáí a koečě stadiem demotáže a demolice. U betoových kostrukcí pozemího stavitelství avrhovaých podle ČSN 73 0 z praktických důvodů rozlišujeme obvykle je dvě stadia: výrobí stadium, které trvá pouze zlomek doby životosti díla a zahruje výrobu, motáž, zatěžovací zkoušky, opravy, popř. demotáž, provozí stadium, které trvá převážou část doby životosti. Se stadii působeí úzce souvisí ávrhové situace, které je třeba rozlišovat při výpočtu kostrukcí podle mezích stavů. Návrhová situace může být: trvalá, která odpovídá obvyklému užíváí objektu v provozím stadiu, trvá po převážou část doby životosti a pravděpodobost jejího výskytu je rova jedé (astae s určitostí); dočasá, odpovídající výrobímu stadiu (výroba, přeprava, motáž, oprava aj.), trvá krátkou dobu, ale pravděpodobost jejího výskytu je rova také jedé (výskyt s určitostí); ehodová s velmi malou pravděpodobostí výskytu i s krátkou dobou trváí, která však může být výzamá z hlediska možých ásledků (apř. výbuch, áraz, požár, havárie, pád břemee, selháí ěkteré části kostrukce). Návrhové situace se charakterizují jedak výpočetím modelem, dále výčtem mezích stavů, podle kterých se musí kostrukce dimezovat a hodotami parametrů dimezováí (viz dále odd..4). Návrhové situace, pro které je třeba kostrukce dimezovat, předepisují ormy pro avrhováí (v ašem případě ČSN 73 0). Je samozřejmé, že z hlediska spolehlivosti klademe ižší požadavky a ávrhové situace, které se vyskytou krátkodobě ebo které se emusí během doby životosti kostrukce vyskytout vůbec. Straa č. 3

14 .4. Náhodá promělivost zatížeí Spolehlivost avrhovaé kostrukce je ovlivěa řadou čiitelů, většiou ezávislých a projektatovi. Jde o áhodé a eáhodé čiitele. Náhodý charakter má apř. kolísáí fyzikálě mechaických vlastostí materiálu, rozměrů průřezu, ahodilé zatížeí ve skladu apod. Neáhodý charakter mají aopak chyby při ávrhu a výrobě kostrukcí, přetížeí kostrukce způsobeé edbalostí apod. Ke vlivu hrubých chyb se při avrhováí epřihlíží. Vliv eáhodých systematických odchylek a chyb, zapříčiěých edostatkem iformací, edokoalostmi teoretických ástrojů, kotroly při realizaci aj. dovedeme většiou předvídat a v metodě avrhováí podle mezích stavů vyjádřit ve formě růzých korekčích součiitelů, které ajdeme v ormách pro avrhováí. Patří sem i stupeň společeského a ekoomického výzamu objektu, který se podle ČSN vystihuje součiitelem účelu γ, uvedeým v tab.. Tab. Třídy výzamu objektu a součiitel účelu γ Třída objektu výzamu Výzam objektu Součiitel účelu γ U Objekty s mimořádým ekoomickým aebo společeským výzamem >,00 I Objekty s velkým ekoomickým aebo společeským výzamem,00 II Objekty se středím ekoomickým aebo společeským výzamem 0,95 III Objekty s omezeým ekoomickým aebo společeským výzamem 0,90 Podle ČSN patří do třídy U podle tab. výzamé objekty dopravích a vodohospodářských celků (mimořádě výzamé mosty, přehradí hráze a objekty). Do třídy I řadíme ižeýrské stavby pro dopravu a vodohospodářské objekty, které jsme ezařadili ve třídě U, těží věže a strojovy těžích strojů, budovy hlavích vetilátorů plyujících dolů, budovy divadel, ki, emocic, škol a předškolích zařízeí, obchodích domů, rozhledy, ádraží haly, čekáry, tribuy a kryté sportoví objekty, muzea a státí archivy, hlaví objekty elektráre a distribučí soustavy velmi vysokého apětí, vysoké pece, komíy a atéí stožáry, věžové zásobíky, zásobíky a ádrže a ropu a ropé produkty ebo chemikálie a objekty ozbrojeých složek zvláští důležitosti. Ve třídě II budou objekty obyté a občaské výstavby, objekty pro průmyslovou, rostliou a živočišou výrobu a spoje (ezařazeé do tříd I ebo III), objekty ústředích skladů pro zásobováí obyvatelstva, třídíre a balíre, skladů ceých techických zařízeí a přístrojů, výzbroje a výstroje ozbrojeých složek, dočasé ebo přeosé sportoví objekty a objekty místích komuikací III. a IV.tř. a účelových komuikací, vleček a drah zvláštího určeí (kromě laových drah). Koečě do třídy III podle tab. zatřídíme objekty skladů ezařazeých ve třídě II a skladů zemědělských výrobků a hojiv (epatříli do třídy I), zásobíky (kromě věžových), skleíky, pařeiště, stožáry sítě vysokého a ízkého apětí, osvětlovací stožáry apod. Straa č. 4

15 Součiitel účelu podle tab. se použije při výpočtu etrémích výpočtových hodot zatížeí (viz dále) tak, že se jím ásobí hodoty součiitele zatížeí γ f > ebo dělí hodoty součiitele zatížeí γ f <. Při výpočtu kostrukcí podle.skupiy mezích stavů a při výpočtu podle mezího stavu porušeí úavou (viz dále) má součiitel účelu hodotu γ =. U dočasých objektů s předpokládaou dobou životosti pět let a kratší se použije hodota γ = 0,8. Spolehlivost kostrukce je však ovlivňováa i áhodými čiiteli, které vyžadují odlišý přístup. Zatížeí je vliv, způsobující změy apjatosti, přetvořeí, tvaru ebo i polohy kostrukce. Zatížeím jsou jak vější síly (tíha kostrukce, sěhu, skladovaý materiál), tak fyzikálí vlivy (účiek teploty, dotvarováí a smršťováí betou). Zatížeí lze dále třídit a přírodí (gravitace, hmota, tlak vzduchu ebo vody, klimatické teploty aj.) a techologická (statické ebo dyamické účiky techologických procesů, dopravy apod.) Pro popis zatížeí musíme zát jeho itezitu, trváí a opakováí (tz. jeho průběh v čase). Tyto vlastosti mají áhodé chováí. Ze statistického hlediska jsou ejjedodušší zatížeí stálá, která působí a kostrukci trvale. Sem patří apř. vlastí tíha kostrukce, zatížeí úpravami podlah, stálý zemí tlak, výplňové zdivo, obvodový a střeší plášť aj. Jejich statistické rozděleí má ejčastěji tvar podle obr.a. V závislosti a čase se buď eměí vůbec ebo jeom málo (viz obr. 3a). Zatížeí ahodilá jsou dlouhodobá, krátkodobá ebo mimořádá. K dlouhodobým ahodilým zatížeím řadíme trvale osazeá techologická zařízeí, dále tlak plyů, kapali ebo sypkých hmot v ádržích a zásobících, dlouhodobé teplotí účiky, účiky erovoměrého přetvořeí základové půdy a plyulých přetvořeí teréu a poddolovaém území, účiky smršťováí a dotvarováí betou ebo zdiva, dyamická zatížeí periodického charakteru aj. Mezi Obr. Příklady statistického rozděleí zatížeí F krátkodobá ahodilá zatížeí počítáme užitá zatížeí stropů a střech, zatížeí sěhem, větrem, ámrazou, krátkodobé klimatické teplotí změy, zatížeí jeřáby, zatížeí vzikající při přepravě a výstavbě kostrukce, eperiodická dyamická zatížeí aj. Obr.3 Časový průběh stálého a ahodilého zatížeí K mimořádým zatížeím patří seismická zatížeí, účiky výbuchů a tlakových vl, zatížeí při poruchách a haváriích, zatížeí požárem, od mimořádých přetvořeí základové půdy Straa č. 5

16 (apř. prosedutí spraše), espojitých přetvořeí poddolovaého území aj. Případy statistického rozděleí těchto zatížeí ukazuje obr.. Rozděleí podle obr. c by patřilo zatížeí s vyrovaou pravděpodobostí výskytu všech hodot. Podle obr.d by se vyskytovalo zatížeí stěy ádrže s áhodou, ale shora omezeou výškou hladiy. Časový průběh zatížeí podle obr.3b odpovídá apř. průběžě měřeému zatížeí větrem ebo sěhem. Základími parametry zatížeí jsou jeho ormové hodoty F, které se staoví takto: pro zatížeí od vlastí tíhy kostrukcí a základě projektovaých rozměrů a průměré objemové hmotosti; pro klimatická zatížeí a základě ejvětších hodot zjištěých v pozorovacím období při daé středí době ávratu jejich překročeí, pro statická užitá zatížeí a základě očekávaých ejvětších hodot při předpokládaých podmíkách užíváí, pro dyamická užitá zatížeí a základě parametrů dyamických zatížeí ebo hmot a geometrických rozměrů pohybujících se mechaizmů v souladu s jejich kiematickým schématem a pracovím režimem, pro zatížeí od vyuceých přetvořeí, seismická ebo havarijí zatížeí a základě rozborů ejepřízivějších projevů daého jevu. Možé epřízivé odchylky zatížeí (kladé i záporé) od jeho ormových hodot způsobeé promělivostí zatížeí, popřípadě áhodým edodržeím podmíek obvyklého užíváí objektu se vyjadřují v metodě podle mezích stavů pomocí součiitelů spolehlivosti zatížeí γ f (kratčeji též součiitelů zatížeí). Vyásobeím ormových hodot zatížeí součiiteli zatížeí obdržíme výpočtové hodoty zatížeí, které mohou být: etrémí, vystihující ejepřízivější možé přetížeí ebo odlehčeí kostrukce; součiitele γ f abývají hodot γ fu > při epřízivém působeí zatížeí ebo γ fu < při přízivém působeí zatížeí a použijí se při výpočtech podle mezích stavů prvé skupiy. provozí, odpovídající běžému, trvalému ebo opakovaému zatížeí a součiitele γ f se zavádějí ejčastěji hodotou γ fs = při výpočtech podle mezích stavů druhé skupiy ebo při vyšetřováí mezích stavů porušeí úavou. Zatížeí se zavádějí do výpočtu v takových hodotách a uspořádáích, která vyvolají ve vyšetřovaé kostrukci ebo její části ejepřízivější možý účiek. Zmešeí pravděpodobosti současého překročeí výpočtových hodot u ěkolika zatížeí se vyjádří součiitelem kombiace zatížeí ψ c. Normové hodoty zatížeí, součiitele zatížeí i součiitele kombiace zatížeí uvádí pro většiu případů ČSN Straa č. 6

17 .5. Náhodá promělivost odporu kostrukce Na pravé straě podmíky spolehlivosti (S d R lim ) musíme vyjádřit odpor kostrukce proti dosažeí meze porušeí, která závisí a mechaických vlastostech materiálu osých kostrukcí, jejích geometrických rozměrech a ěkdy též a umělých stavech apjatosti, záměrě veseých do kostrukce (apř. předpětí). Mechaické vlastosti stavebích materiálů jsou áhodě proměé veličiy, které lze popsat vhodými frekvečími fukcemi statistického rozděleí, jak ukazuje apř. obr.4. Statistická rozděleí vlastostí materiálu jsou všecha přibližě stejého typu, mají ale rozdílé statistické parametry, apř. promělivost meze kluzu oceli je meší (tj. a obr.4 má meší šířku) ež pevost betou. Obr.4 a Statistické rozděleí hodot pevosti R; b staoveí hodoty R p jako /p.00% kvatilu Na základě zámého statistického rozdělei vlastosti materiálu můžeme staovit jedak průměrou hodotu této vlastosti R (obr.4a) a dále apř. též hodotu R p, jejíž pravděpodobost výskytu je /p.00%, kde R p je /p.00% kvatil (obr.4b). Základími parametry materiálu osých kostrukcí jsou jejich ormové pevosti R. Pravděpodobostí záruka dosažeí ormové pevosti zabudovaého materiálu musí být rova ejméě 0,95. Hodoty ormových pevostí se obvykle považují za kotrolí charakteristiky (podle kterých se provádí kotrola) ebo také za zamítací charakteristiky, tj. za hodoty, které se esmí v dodávce vyskytout. Kromě uvedeých ormových pevostí se a základě statisticky vyhodoceého rozděleí četostí určují i ormové hodoty dalších techicky důležitých vlastostí materiálu, pro avrhováí kostrukcí apř. modulu pružosti, objemové hmotosti, součiitelů dotvarováí, smršťováí aj. Tyto veličiy se ejčastěji kladou rové středí hodotě vyšetřovaé veličiy, poěvadž se v kostrukci uplatí globálě, tj. buď v celé kostrukci ebo v její rozhodující části. Možé epřízivé odchylky pevosti ebo jié charakteristiky materiálu od její ormové hodoty se vystihou pomocí součiitele spolehlivosti materiálu γ m (krátce též Straa č. 7

18 součiitele materiálu). Velikost součiitele materiálu se liší podle šíře rozděleí četosti aměřeých pevostí (viz obr.4). Např. výztuž s přísou výrobí a výstupí kotrolou má hodoty součiitele materiálu malé (okolo γ m =,), a rozdíl od pevosti betou v tlaku s γ m =,3 a zejméa začě promělivé pevosti betou v tahu, kde bylo třeba zavést ještě podstatě opatrější hodotu γ m =,5. Hodoty součiitele materiálu γ m > použijeme pouze při avrhováí podle prví skupiy mezích stavů. U druhé skupiy mezích stavů se obvykle zavádí hodota γ m =. V ormách pro avrhováí se uvádí kromě ormových pevostí materiálu i jeho výpočtová pevost R d = R /γ m. Vlivy a pevost materiálu, které mají systematickou povahu (apř. vliv stupě vyztužeí, teploty, mohokrát opakovaého amáháí) se v metodě podle mezích stavů vyjadřují pomocí součiitelů podmíek působeí γ r (pro beto se použije začky γ b, pro betoářskou výztuž γ s a pro předpíací výztuž γ p ). Těmito součiiteli ásobíme a pravých straách podmíek spolehlivosti () pevost materiálu (podroběji viz dále). Podobým statistickým rozděleím lze popisovat i odchylky skutečých od projektovaých rozměrů osých kostrukcí (viz dále součiitel geometrie) ebo odchylky výpočtového modelu kostrukce od skutečých podmíek působeí kostrukce..6. Metody avrhováí betoových kostrukcí a jejich vývoj Podle způsobu vyjadřováí podmíek spolehlivosti lze rozdělit metody avrhováí takto: Metody determiistické, zámé pod ázvy metoda dovoleých amáháí a metoda stupě bezpečosti, Metody pravděpodobostí (probabilistické) jako metoda etrémích hodot polopravděpodobostí čili semiprobabilistická dále metoda fukčích etrémů a metoda eaktí. Metody ekoometrické..6.. Determiistické metody avrhováí V determiistických metodách avrhováí se vyjadřuje spolehlivost osé kostrukce pomocí hodot zatížeí a pevostí, které se většiou získaly empiricky. Tyto metody zpravidla edovolují použít výzamějším způsobem hospodárost jako výchozí kriterium avrhováí. Metoda dovoleých amáháí jako ejstarší metoda avrhováí předepisovala podmíku spolehlivosti ve tvaru: σ σ dov, kde σ je apětí vzikající v kostrukci účikem provozího (ormového) zatížeí, σ dov dovoleé amáháí materiálu získaé z jeho průměré pevosti R viz obr.5: σ dov = κ. R, κ míra bezpečosti pro určeí dovoleého amáháí (κ < ). Straa č. 8

19 Podmíky σ σ dov, byly předepisováy pro všechy typy materiálu, které se mohly v kostrukci vyskytovat a pro všechy způsoby amáháí. Dovoleá amáháí tedy evycházejí z fukce kostrukce (evyjadřují proto odpor kostrukce), ale vztahují se je k jejím materiálovým vlastostem. Proto muselo dovoleé amáháí σ dov vyjadřovat vliv možého sížeí pevosti proti průměré pevosti, vliv možého zvýšeí zatížeí proti jeho provozím (tj. ormovým viz odd..4) hodotám i vliv možých odchylek od předepsaých rozměrů průřezu. Podmíka použitelosti srov. se vztahem ω s ω lim v odd.. se zapisovala ve tvaru: f f dov, kde f je přetvárý účiek zatížeí (apř. průhyb, pootočeí ebo šířka trhliy), f dov dovoleá hodota tohoto účiku. Řada podmíek použitelosti byla ahrazováa dodržeím předepsaých kostrukčích ustaoveí v tehdy platých ormách. Metoda stupě bezpečosti byla zavedea po.světové válce a a rozdíl od metody dovoleých amáháí (apětí) již začala s vyjadřováím odporu proti porušeí pomocí souhrých charakteristik průřezu (mometů, ormálových a posouvajících sil). Přitom se vycházelo z průměrých pevostí betou a výztuže R a začalo se přihlížet i k jejich plastickým vlastostem. Tím bylo dosažeo objektivě výstižějšího vyjádřeí úososti. Odpor R se porovával s účikem provozího zatížeí S a kotrolovala se podmíka bezpečosti (viz obr.5): s. S R, kde s je stupeň bezpečosti předepisovaý odlišými hodotami pro růzé způsoby amáháí. Podmíky použitelosti se formulovaly v této metodě obvykle tak, aby teoreticky staoveé hodoty (přetvořeí, šířky trhli aj.) byly meší ež jejich přípustá hodota. To podle obr.5 začilo stupeň bezpečosti ejméě rový jedé. Při porováí s moderější metodou podle mezích stavů musel stupeň bezpečosti γ vystihovat podle obr.5 eje vliv možého zvýšeí velikosti zatížeí, ale též z hlediska odporu proti porušeí možé epřízivé odchylky rozměrů průřezu a další podmíky působeí osého prvku. Přes začý pokrok proti metodě dovoleých amáháí eobsahovaly ještě ormy pro avrhováí betoových kostrukcí podle stupě bezpečosti ěkteré důležité ovější pozatky, týkající se apříklad dotvarováí (dlouhodobého přetvořeí) betou..6.. Pravděpodobostí metody avrhováí Výše bylo vysvětleo áhodé chováí zatížeí i odporu kostrukce proti porušeí. To ám dovoluje předpokládat, že účiky zatížeí působící a kostrukci lze popsat výrazem: S (,,... m, C ), kde i (i =,,... m) jsou áhodě proměé veličiy vyjadřující jedotlivá zatížeí působící a kostrukci a C začí soubor kostat ebo áhodých fukcí vystihujících idealizaci zatížeí, edostatek iformací o zatížeí apod. Straa č. 9

20 Obdobě předpokládejme, že se ám podaří popsat áhodé chováí odporu kostrukce výrazem: R (z, z,... z m, C z ), kde z j (j =,,... ) jsou áhodě proměé veličiy popisující mechaické ebo jié vlastosti materiálu osých kostrukcí, rozměry průřezu, předpětí apod. a C z představuje soubor kostat ebo áhodých fukcí popisujících rozděleí apětí po průřezu a jié podmíky působeí prvku. Metoda etrémích hodot (polopravděpodobostí metoda), kterou jsme uvedli v odd.. až.5 pod u ás zavedeým ázvem metoda mezích stavů. Obr.5 Vyjádřeí spolehlivosti kostrukce ve vývoji metod avrhováí Pokud záme statistické rozděleí zatížeí i (viz obr.) a určité vlastosti materiálu, popř. rozměru kostrukce z j (viz obr.4), dokážeme staovit jejich výpočtové hodoty i,etr, popř. z j,etr, které smějí být u posuzovaé kostrukce překročey v ejhorším případě s pravděpodobostí p. Na obr.4 je tato výpočtová hodota ozačea R p. Z obr., 4 a 5 je zřejmé, že výpočtová hodota zatížeí může být ěkdy při levém a jidy zase při pravém okraji rozděleí pravděpodobosti. To záleží a tom, zda defiovaé maimum, popř. miimum veličiy má a posuzovaou spolehlivost přízivý, popř. epřízivý vliv. Proto ás zajímají u vlastostí materiálů většiou miimálí hodoty (pevost, rozměry) a u zatížeí mohou být epřízivé hodoty vysoké i ízké (viz obr.). Např. u zatížeí zajišťujícího stabilitu kostrukce budou rozhodovat miimálí etrémy výhradě stálého (zaručeého) zatížeí. Tvar podmíky spolehlivosti veliči podle obr.5 jsme již vyjádřili pro prvou skupiu mezích stavů pomocí vztahu S d R lim, kde přípustá hodota odporu R lim má yí ozačeí R d. Nedostatkem metody etrémích hodot je, že pravděpodobost dosažeí mezího stavu eí ve všech případech shodá. Proti uvedeým determiistickým metodám však dovoluje rozlišovat možý rozptyl základích parametrů zatížeí i stejoměrosti výroby prvků osých kostrukcí. Zásady současě platé metody avrhováí podle mezích stavů obsahuje ČSN Straa č. 0

21 Metoda fukčích etrémů je výstižější ež zjedodušeá metoda etrémích hodot. Protože jsou veličiy i a z j ve výrazech (7) a (8) áhodě proměé, musí být áhodě proměými také výrazy (7) a (8). Zámeli statistické rozděleí obou těchto výrazů, musí eistovat při zvoleé pravděpodobosti p hodoty S ma a R mi, pro které by měla podmíka spolehlivosti tvar podmíky fukčích etrémů: S ma R mi Tato metoda eí doposud atolik propracovaá, aby se výzaměji uplatila v projekčí prai. Metoda eaktí pracuje s poměrem R/S ebo s rozdílem (RS) jako s jediou výsledou, áhodě proměou veličiou ebo fukcí. Podmíka spolehlivosti pak abývá tvaru buď: R mi S ebo mi [R S] 0. V uvedeých vztazích je třeba považovat jedičku ebo ulu a pravých straách za symboly, koformě s levými straami výše uvedeých podmíek. Statistická rozděleí pro vystižeí podílu R/S ebo rozdílu RS se mohou případ od případu měit. V oblasti praktického avrhováí se eaktí metoda a své uplatěí začala připravovat viz apř. Prof. P.Marek, (FAST VŠB TU Ostrava) aj Ekoometrické metody avrhováí Spojeím matematickostatistických metod s ekoomickým pojetím obdržíme ekoometrické metody avrhováí. Při ávrhu se obvykle vychází z miimalizace celkových ákladů a objekt, jak již bylo uvedeo v odd.. viz požadavek hospodárosti. Des se esprávě považují za ekoometrické apř. optimalizačí metody, u kterých se optimalizuje ávrh je z hlediska vybraých čiitelů (vlastí tíha, úosost, pořizovací cea, pracost aj.) Propracováí ekoometrických metod v širším pojetí si zřejmě ještě vyžádá delší čas. 3. Statistické metody hodoceí betou (ČSN ) Uplatěí statistických metod v oblasti betoových kostrukcí je ejčetější u hodoceí betou a to u určeí jeho pevostí, zejméa pak pevosti v tlaku. Se vzrůstajícím objemem saací kostrukcí a tedy i betoových kostrukcí se zvyšuje i podíl těchto saací a celkovém objemu stavebí výroby u ás za posledích patáct let. S ohledem a současý ekoomický vývoj se edá očekávat sížeí podílu saací a rekostrukcí v ašem stavebictví, ale právě aopak. Společě s tím vyvstává i utost stavebího průzkumu kde jede z moha požadavků je zjistit druh a kvalitu betou, to je změřit pevost v tlaku betoové kostrukce. O způsobu zkoušeí co do metod prováděí zkoušek eí účelé se zde zmiňovat. Zde popsaá metoda je kompleě použitelá pro sledováí jakosti eje betoové směsi, betou a betoových výrobků ze všech druhů betou, ale i dalších stavebích materiálů. Je to tedy vhodá metoda i pro vyhodoceí zkoušek pevosti betou v případě použití edestruktiví metody zkoušeí pomocí Schmidtova kladívka. Straa č.

22 Dále je třeba předeslat, že uvedeé vyhodoceí eí je modelovým příkladem aplikace statistiky ve stavebí prai, ale praktickým použitím, eboť zde uvedeé závěry byly v plém rozsahu použity v rámci zakázky HČ a stavebí fakultě VŠB TU Ostrava. V rámci této čiosti byla provedea možia měřeí a železobetoové kostrukci da bazéu Městských lází Vsetí, kde došlo k porušeí kostrukce a ašim úkolem bylo zjistit příčiu. Součástí bylo i edestruktiví zkoušeí betou včetě jeho vyhodoceí. Na úvod této kapitoly je uté zavést ěkteré pojmy, se kterými se bude dále pracovat. Hodoceí se dělí do skupi podle hodoceého zaku. Jeli obor dobré jakosti větší, ež daá mezí hodota, jedá se o zak.druhu. Teto zak se týká zejméa pevosti v tlaku a v tahu, krychelé pevosti, atd. Zak.druhu je charakterizová vztahem opačým, tedy obor dobré jakosti musí být meší, ež daá mezí hodota. Zde je možé jako příklad uvést velikost zatížeí. Zaky 3. a 4.druhu jsou kombiací zaků. a.druhu, protože vyšetřovaý obor dobré jakosti je omeze itervalem, jehož mezemi jsou ějaké daé mezí hodoty. Liší se od sebe pouze důsledky porušeí jakosti, tedy edodržeím hodot omezeých itervalem. Pro zak 3.druhu jsou důsledky porušeí stejé, padeli hodota mimo iterval vlevo ebo vpravo. U zaku 4.druhu je rozdíl, zda byl iterval poruše zleva ebo zprava. Pro statistické hodoceí zaku 3. i 4.druhu se používají stejé metody bez rozlišeí těchto zaků. V případě vyhodocováí edestruktivích zkoušek pevosti betou se bude pracovat se zakem.druhu. Při statistickém hodoceí se pracuje se statistickým souborem prvků, jejichž zaky áhodě kolísají. Možia hodot daého zaku tvoří umerický soubor, který je pro umožěí výpočtů ahraze vhodým matematickým modelem. Vhodost modelu je možo ověřit testem. U kvatitativího zaku, který lze vyjadřovat číselě, se pracuje s ormálím modelem pravděpodobosti. Kokrétě se jedá o rozděleí GaussLaplaceovo ebo o Pearsoovo rozděleí typu III (pokud se charakterizuje šikmost). U kvalitativího zaku, který má podobu výrokově logistickou, se používá rozděleí biomické. Takto adefiovaý statistický soubor prvků je azvá pojmem dávka a mohou se vyšetřovat buď izolovaé dávky ebo série dávek. Obecě uvedeo v samém počátku této práce. Straa č.

23 Statistické vyhodoceí spočívá ve vyšetřeí, zda se v souboru evyskytuje větší ež předepsaý maimálě přípustý podíl prvků se sížeou jakostí. Jeli k dispozici pouze malý ebo velmi malý áhodý výběr, lze toto zjištěí učiit pouze s ějakou předem daou pravděpodobostí. Samoté hodoceí jakosti se děje prověřeím platosti erovosti pro zak. druhu P if P if, cr, kde P if je zjištěý souborový podíl souborových prvků oboru hodot sížeé jakosti a P if,cr je předepsaý kritický souborový podíl prvků oboru hodot sížeé jakosti. Pro správé ohodoceí příslušého zaku, musí být předepsáy mezí hodoty if, maimálí přípustý souborový podíl hodot se sížeou jakostí P if,cr a pravděpodobost γ, s íž se má prověřeí platosti erovostí provést. Podle velikosti se výběry rozlišují a velmi malé (3 6), malé (7 99) a velké ( 00). 3.. Hodoceí izolovaého souboru 3... Velmi malý výběr Předpokládáme ormálě rozděleý soubor velmi malého výběru (3 6). Musíme posoudit etrémí hodoty výběru, zda ejsou příliš odlehlé a zda se ápadě eodlišují od ostatích. Jsouli hodoty příliš odlehlé od ostatích a je epochybé, že tato odlehlost je způsobea chybou měřeí, tyto hodoty ze souboru vyloučíme. V případě jakýchkoliv pochybostí musíme tyto hodoty testovat, zda z hlediska matematické statistiky do souboru patří Testováí odlehlých hodot Mějme soubor hodot,,...,, tj. i, kde,,...,. Vypočítáme průměr tohoto souboru hodot = i a výběrovou směrodatou odchylku s s = ( i ) V kokrétím výpočtu je dvacet souborů deseti měřeí. Nejprve se zhodotí každá série zvlášť jako velmi malý výběr. Straa č. 3

24 Naměřeé hodoty S 36,5 48,79 46,3 55,36 40,8 4,30 57,4 46,3 56,39 58,44 S 49,58 44,76 5,84 45,0 49,58 40,84 5,84 54,336 48,4 47,54 S3 45,75 47,54 5,84 48,4 5,84 4,34 37,90 4,8 48,699 43,5 S4 46,3 47,77 56,39 46,3 40,8 44,69 56,90 46,74 4,8 49,7 S5 40,79 55,36 35,6 4,3 49,7 55,88 5,8 50,75 33, 44,8 S6 45,0 6,53 4,79 8,7 48,4 5,80 39,3 44,69 48,4 36,07 S7 44,8 45,0 53,3 57,4 5, ,4 50,75 44,8 45,7 S8 5,6 47,77 50,75 48,70 48,4 47,5 60,49 48,70 55,36 50,75 S9 43,5 34,65 35,4 48,70 35,6 38,36 4,8 37,44 47,77 9,4 S0 49,7 55,88 48,4 36,5 9,4 45,7 58,44 56,90 30,46 30,9 S 37,90 4,30 46,74 54,85 54,34 50,75 48,70 45,0 34,7 38,36 S 8,99 3,75 53,3 59,98 53,8 46,74 4,30 53,3 64,70 49,6 S3 59,47 56,39 49,6 5,77 59,47 49,7 49,6 49,7 5,77 59,98 S4 39,80 5,6 46,3 5,8 58,95 48,4 39,80 38,36 54,85 5,6 S5 56,39 44,8 36,5 47,5 56,39 49,6 57,4 46,74 5,8 48,4 S6 39,80 5,8 4,8 44,8 49,7 54,34 49,7 50,75 4,79 43,5 S7 48,70 54,85 58,44 5,80 4,30 55,36 49,7 56,39 58,95 58,44 S8 5,6 55,88 56,39 55,36 48,4 44,69 5,80 59,47 5,80 49,6 S9 53,3 59,98 49,6 49,7 53,8 7,4 48,4 43,7 5,80 4,3 S0 40,79 5,8 5,6 45,0 4,8 47,77 50,3 44,69 45,0 49,6 b mi Z průměrů a směrodatých odchylek se vypočítají testovací charakteristiky, což jsou veličiy pro testováí odlehlých hodot bma a b = ma ma ; s b mi = s mi Testovací charakteristiky bma tabulce. a b mi se porovají s kritickou hodotou Bcr uvedeou v Jeli jeda z erovostí bma Bcr, bmi Bcr pravdivá, příslušá maimálí ebo miimálí hodota se vyloučí. Platíli obě erovosti současě, obě krají hodoty se v souboru poechají. Straa č. 4

25 B cr B cr B cr B cr ,54,463,67,8,938,03,0,76,34,85,35,37,409,443, ,504,53,557,580,603,64,644,663,745,8,866,94,956 3, Tabulka 3,08 3,30 3,7 3,07 3,69 3,33 3,367 3,40 3,436 3,479 3,59 3,55 3,584 3,605 Test kokrétích souborů: ,637 3,659 3,680 3,7 3,744 3,776 3,787 3,808 3,89 3,840 3,86 3,88 3,893 3,903 Půměr Směr.odch. ma b ma b ma >B cr mi b mi b mi >B cr výsledek S 48,70 7,49 58,44,30 eplatí 36,5,659 eplatí obě poechat S 48,4 4,0 54,34,57 eplatí 40,8,9787 eplatí obě poechat S3 45,98 4,44 5,8,4 eplatí 37,90,887 eplatí obě poechat S4 47,68 5,8 56,90,78 eplatí 40,8,47 eplatí obě poechat S5 46,0 7,59 55,88,99 eplatí 33,,6853 eplatí obě poechat S6 4,6 8,6 5,80,44 eplatí 6,53,8056 eplatí obě poechat S7 47,0 7,0 57,4,48 eplatí 30,473 platí mi vyechat S8 50,93 3,90 60,49,454 platí 47,5 0,94 eplatí ma vyechat S9 39,9 5,85 48,70,67 eplatí 9,4,78 eplatí obě poechat S0 44,9 0,96 58,44,3 eplatí 9,4,3738 eplatí obě poechat S 45,3 6,77 54,85,4 eplatí 34,7,633 eplatí obě poechat S 47,4,77 64,70,354 eplatí 8,99,5 platí mi vyechat S3 53,66 4,40 59,98,437 eplatí 49,6,033 eplatí obě poechat S4 48,0 6,6 58,95,64 eplatí 38,36,4737 eplatí obě poechat S5 49,46 6,3 57,4,97 eplatí 36,5,08 eplatí obě poechat S6 46,86 4,78 54,34,56 eplatí 39,80,4766 eplatí obě poechat S7 53,49 5,8 58,95,034 eplatí 4,30,3095 platí mi vyechat S8 5,60 4,9 59,47,64 eplatí 44,69,8909 eplatí obě poechat S9 48,05 8,4 59,98,49 eplatí 7,4,4534 platí mi vyechat S0 46,84 3,73 5,8,46 eplatí 40,79,647 eplatí obě poechat Odlehlé hodoty, které eprošly testem jsou vyecháy a je uté zovu přepočítat průměr souborů a jejich směrodaté odchylky. Přepočítaé a upraveé hodoty jedotlivých souborů jsou výchozím stavem pro začátek vyhodocováí pevostí. Straa č. 5

26 Upraveé hodoty Průměr Sm.odch. S 36,5 48,79 46,3 55,36 40,8 4,30 57,4 46,3 56,39 58,44 48,70 7,49 S 49,6 44,8 5,8 45, 49,6 40,8 5,8 54,34 48,4 47,5 48,4 4,0 S3 45,7 47,5 5,8 48,4 5,8 4,3 37,9 4,8 48,7 43,5 45,98 4,44 S4 46,3 47,77 56,39 46,3 40,8 44,69 56,90 46,74 4,8 49,7 47,68 5,8 S5 40,79 55,36 35,6 4,3 49,7 55,88 5,8 50,75 33, 44,8 46,0 7,59 S6 45,0 6,53 4,79 8,7 48,4 5,80 39,3 44,69 48,4 36,07 4,6 8,6 S7 44,8 45,0 53,3 57,4 5,6 48,4 50,75 44,8 45,7 48,9 4,34 S8 5,6 47,77 50,75 48,70 48,4 47,5 48,70 55,36 50,75 49,86,36 S9 43,5 34,65 35,4 48,70 35,6 38,36 4,8 37,44 47,77 9,4 39,9 5,85 S0 49,7 55,88 48,4 36,5 9,4 45,7 58,44 56,90 30,46 30,9 44,9 0,96 S 37,90 4,30 46,74 54,85 54,34 50,75 48,70 45,0 34,7 38,36 45,3 6,77 S 3,75 53,3 59,98 53,8 46,74 4,30 53,3 64,70 49,6 50,56 9,03 S3 59,47 56,39 49,6 5,77 59,47 49,7 49,6 49,7 5,77 59,98 53,66 4,40 S4 39,80 5,6 46,3 5,8 58,95 48,4 39,80 38,36 54,85 5,6 48,0 6,6 S5 56,39 44,8 36,5 47,5 56,39 49,6 57,4 46,74 5,8 48,4 49,46 6,3 S6 39,80 5,8 4,8 44,8 49,7 54,34 49,7 50,75 4,79 43,5 46,86 4,78 S7 48,70 54,85 58,44 5,80 55,36 49,7 56,39 58,95 58,44 54,85 3,55 S8 5,6 55,88 56,39 55,36 48,4 44,69 5,80 59,47 5,80 49,6 5,60 4,9 S9 53,3 59,98 49,6 49,7 53,8 48,4 43,7 5,80 4,3 45,3 5,0 S0 40,79 5,8 5,6 45,0 4,8 47,77 50,3 44,69 45,0 49,6 46,84 3, Posouzeí ormality rozděleí jedotlivých souborů Histogramy ově vziklých souborů ukazují, zda rozděleí vypadá jako Gauss Laplaceovo ebo zda je uté ormalitu ověřit testem. Podle přiložeých grafů je zřejmé, že W test (ČSN 0 05) a testováí ormality souborů by byl vhodý pro soubory, 4, 5, 6, 9, 0,,, 3, 4, 5, 6 a 7. W test testovaou hypotézu emůže potvrdit, pouze zamítout či ezamítout. V dalším postupu se yí bude předpokládat rozděleí ormálí Testováí odlehlých hodot Pro odhad souborového podílu hodot se sížeou jakostí P if se použije metoda vydatého bodového odhadu podle orem ČSN Pracujeme s průměrem upraveého souboru, směrodatou odchylkou s, dolí mezí if. Vypočítá se testovací veličia Q if pro souborový podíl jedotek v daém oboru Q if = s if Straa č. 6

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

Pravděpodobnostní modely

Pravděpodobnostní modely Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ 3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.). STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

1 ROVNOMĚRNOST BETONU KONSTRUKCE

1 ROVNOMĚRNOST BETONU KONSTRUKCE ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

OVMT Přesnost měření a teorie chyb

OVMT Přesnost měření a teorie chyb Přesost měřeí a teorie chyb Základí pojmy Naměřeé údaje ejsou ikdy absolutě přesé, protože skutečé podmíky pro měřeí se odlišují od ideálích. Při každém měřeí vzikají odchylky od správých hodot chyby.

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

Téma: 11) Dynamika stavebních konstrukcí

Téma: 11) Dynamika stavebních konstrukcí Počítačová podpora statických výpočtů Téma: ) Dyamika stavebích kostrukcí Katedra stavebí mechaiky Fakulta stavebí, VŠB V Techická uiverzita Ostrava Rozděleí mechaiky Statika Zabývá se problematikou působeí

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/ Teto projekt je spolufiacová Evropským sociálím fodem a Státím rozpočtem ČR IoBio CZ..07/2.2.00/28.008 Připravil: Ig. Vlastimil Vala, CSc. Metody zkoumáí ekoomických jevů Kapitola straa 3 Metoda Z řeckého

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Přednášky část 7 Statistické metody vyhodnocování dat

Přednášky část 7 Statistické metody vyhodnocování dat DŽ ředášky část 7 tatistické metody vyhodocováí dat Mila Růžička mechaika.fs.cvt.cz mila.rzicka@fs.cvt.cz DŽ tatistické metody vyhodocováí dat Jak velké rozptyly lze očekávat mezi dosažeými pevostmi ebo

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

Dynamická pevnost a životnost Statistika

Dynamická pevnost a životnost Statistika DŽ statistika Dyamická pevost a životost tatistika Mila Růžička, Josef Jreka, Zbyěk Hrbý mechaika.fs.cvt.cz zbyek.hrby@fs.cvt.cz DŽ statistika tatistické metody vyhodocováí dat DŽ statistika 3 tatistické

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

6. P o p i s n á s t a t i s t i k a

6. P o p i s n á s t a t i s t i k a 6. P o p i s á s t a t i s t i k a 6.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II 2,3 ČTYŘI STADARDÍ METODY I, ČTYŘI STADARDÍ METODY II 1.1.1 Statické metody a) ARR - Average Rate of Retur průměrý ročí čistý zisk (po zdaěí) ARR *100 % ( 20 ) ivestic do projektu V čitateli výrazu ( 20

Více

523/2006 Sb. VYHLÁŠKA

523/2006 Sb. VYHLÁŠKA 523/2006 Sb. VYHLÁŠKA ze de 21. listopadu 2006, kterou se staoví mezí hodoty hlukových ukazatelů, jejich výpočet, základí požadavky a obsah strategických hlukových map a akčích pláů a podmíky účasti veřejosti

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

2 Zatížení stálé a užitné Teorie Zatížení stavebních konstrukcí

2 Zatížení stálé a užitné Teorie Zatížení stavebních konstrukcí 2 Zatížeí stálé a užité Norma ČSN EN 1991-1-1: Objemové tíhy, vlastí tíha a užitá zatížeí [1] uvádí pokyy pro určeí zatížeí kostrukcí pozemích a ižeýrských staveb, a to kokrétě pro: objemové tíhy stavebích

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb

Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb Příloha č. 7 Dodatku ke Smlouvě o službách Systém měřeí kvality Služeb Dodavatel a Objedatel se dohodli a ahrazeí Přílohy C - Systém měřeí kvality Služeb Obchodích podmíek Smlouvy o službách touto Přílohou

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Úloha III.S... limitní

Úloha III.S... limitní Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION 0/008 MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ STATISTICAL ASSESSMENT

Více

Vliv tváření za studena na pevnostní charakteristiky korozivzdorných ocelí Ing. Jan Mařík

Vliv tváření za studena na pevnostní charakteristiky korozivzdorných ocelí Ing. Jan Mařík stavebí obzor 9 10/2014 125 Vliv tvářeí za studea a pevostí charakteristiky korozivzdorých ocelí Ig. Ja Mařík Ig. Michal Jadera, Ph.D. ČVUT v Praze Fakulta stavebí Čláek uvádí výsledky tahových zkoušek

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

Cyklické namáhání, druhy cyklických namáhání, stanovení meze únavy vzorku Ing. Jaroslav Svoboda

Cyklické namáhání, druhy cyklických namáhání, stanovení meze únavy vzorku Ing. Jaroslav Svoboda Středí průmyslová škola a Vyšší odborá škola tecická Bro, Sokolská 1 Šabloa: Iovace a zkvalitěí výuky prostředictvím ICT Název: Téma: Autor: Číslo: Aotace: Mecaika, pružost pevost Cyklické amááí, druy

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

Číselné charakteristiky náhodných veličin

Číselné charakteristiky náhodných veličin Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A ); 1 PSE 1 Náhodý pokus, áhodý jev. Operace s jevy. Defiice pravděpodobosti jevu, vlastosti ppsti. Klasická defiice pravděpodobosti a její použití, základí kombiatorické vzorce. 1.1 Teoretická část 1.1.1

Více

PRAVDĚPODOBNOSTNÍ POSUDEK SPOLEHLIVOSTI KOTEVNÍ

PRAVDĚPODOBNOSTNÍ POSUDEK SPOLEHLIVOSTI KOTEVNÍ PRAVDĚPODOBNOSTNÍ POSUDEK SPOLEHLIVOSTI KOTEVNÍ VÝZTUŽE DLOUHÝCH DŮLNÍCH A PODZEMNÍCH DĚL PROBABILISTIC RELIABILITY ASSESSMENT OF ANCHORING REINFORCEMENT IN MINE EXCAVATIONS AND UNDERGROUND WORKINGS Petr

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

Teorie chyb a vyrovnávací počet. Obsah:

Teorie chyb a vyrovnávací počet. Obsah: Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí

Více

1 Úvod { }.[ ] A= A A, (1.1)

1 Úvod { }.[ ] A= A A, (1.1) Obsah Obsah... Úvod... 3 Základí pojmy počtu pravděpodobosti... 7. Základí statistické pojmy... 7. Fukce áhodých veliči... 8.3 Charakteristiky áhodých veliči... 0.4 Některá rozděleí pravděpodobosti....5

Více

Pružnost a pevnost. 9. přednáška, 11. prosince 2018

Pružnost a pevnost. 9. přednáška, 11. prosince 2018 Pružost a pevost 9. předáška, 11. prosice 2018 1) Krouceí prutu s kruhovým průřezem 2) Volé krouceí prutu s průřezem a) masivím b) otevřeým tekostěým c) uzavřeým tekostěým 3) Ohybové (vázaé) krouceí Rovoměré

Více

Statistika pro metrologii

Statistika pro metrologii Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35

Více

Posouzení struktury strojní sestavy pomocí teorie hromadných obsluh

Posouzení struktury strojní sestavy pomocí teorie hromadných obsluh Projekt zpracová s podporou FRVŠ. Posouzeí struktury strojí sestavy pomocí teorie hromadých obsluh 1 Základí údaje Ve stavebí praxi se velmi často vyskytuje požadavek rychle a objektivě posoudit strukturu

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více