P P P S. P P P ix ix ix ix iy iy iy iy iz iz iz iz

Rozměr: px
Začít zobrazení ze stránky:

Download "P P P S. P P P ix ix ix ix iy iy iy iy iz iz iz iz"

Transkript

1 54 9 Sestvování pohybových rovnic metodmi nlyticé mechniy Obecná rovnice dynmiy Pro ždé těleso romě prcovních setrvčných sil uvážíme i prcovní setrvčné momenty s tím, že setrvčné síly umístíme do těžišť ednotlivých těles setrvčné momenty vztáhneme těžištím. Po rozepsání do slože p pro soustvu N těles můžeme psát N P P P ( ɺɺ ) ( ɺɺ ) ( ɺɺ ) F n ix mi xi δ xi + Fix mi yi δ yi + Fiz mi zi δ zi + S = ( Q + Q ) δ q = 0 + ( M I ɺɺ ϕ ) δϕ + ( M I ɺɺ ϕ ) δϕ + ( M I ɺɺ ϕ ) δϕ (9.8) P P P i = ix ix ix ix iy iy iy iy iz iz iz iz = Rovnice (9.8) sou rovnice slární neobshuí vzbové síly, de proto o hlvní pohybové rovnice soustvy. Rovnice (9.8) e nzýván obecnou rovnicí dynmiy pro soustvu těles Soustv se pohybue t, že lgebricý součet virtuálních prcí všech prcovních setrvčných zobecněných silových účinů e v ždém omžiu roven nule. Postup při sestvení pohybové rovnice pomocí obecné rovnicepro rovinou soustvu hmotných těles s edním stupněm volnosti čsově nezávislých vzbách: - Anlyzueme pohyby do prcovního schémtu zreslíme smysly pohybů rotcí ednotlivých těles. ále do prcovního schémtu zreslíme všechny prcovní setrvčné silové účiny. Setrvčné síly umisťueme do těžišť, setrvčné momenty vzthueme těžištím. -Anlyzueme vzby, není li něterá ideální, p příslušný vzební silový účine zhrneme do prcovních 3- Vybereme záldní zobecnělou souřdnici q. 5- Všechn posunutí pootočení vyádříme pomocí záldního t. nlezneme vzthy = f(δ q ) d =f(δ q). V přípdě onstntních převodů e pro tento účel možné používt vzthy mezi rychlostmi známé z inemtiy (vzthy mezi virtuálními posunutími sou v tomto přípdě stené o mezi rychlostmi), podmíny vlení pod. V přípdě neonstntních převodů n prcovním digrmu zvolíme pevný počáte n záldě geometricých souvislostí vyádříme souřdnice x,, y působišť všech prcovních setrvčných sil pomocí zvolené zobecněné souřdnice q t. nlezneme x ( q ), y ( q ). Podobně v místě působišť všech prcovních setrvčných momentů nlezneme závislosti ϕ ( q ). Vricí těchto vzthů p zistíme vzthy δx = f(δ q), δy = f(δ q) d =f(δ q) 6- Npíšeme výrz pro celovou virtuální práci všech prcovních i setrvčných silových účinů. Položíme-li v tomto výrzu oeficient u δ q roven nule, dostneme pohybovou rovnici dné soustvy. Poznám: J e zřemé ze vzthu (9.8), obecnou rovnici dynmiy e možné používt i pro soustvy s více stupni volnosti, systém nezávislých pohybových rovnice přitom zistíme t, že položíme rovno nule postupně oeficienty u ednotlivých δ q. 54

2 55 Příld 9. N obrázu e soustv nehmotných pá určená e zvedání břemen. Určete zrychlení břemene o hmotnosti m při působení síly veliosti F. Hmotnosti pá tření znedbete. A = C C... Obr. 9.4 Soustv pá pro zdvihání břemene F g s F Řešení: o prcovního schémtu zreslíme působící vněší setrvčné sily příslušná virtuální posunutí působišť těchto sil (zísáme virtuálním pohybem soustvy). Soustv má 0 volnosti, proto počet nezávislých posunutích e rovno. Zvolíme záldní posunutí (npř. u působící síly t. ) vyádříme zbylá posunutí pomocí tohoto záldního tím, že se soustvou myšleně pohneme. odu udělíme virtuální posunutí, virtuální posunutí bodu e. Z vlstností podobných troúhelníů plyne, že δ ra =. ále pltí, že δ rc = A, b tže můžeme psát δ rc =. Podobně postupueme dále zistíme, že δ r = C. Proto b b pltí tedy =. Nyní dosdíme do obecné rovnice dynmiy b s s ( Fi Fi ) ri Fg r F ra F r 0 δ A = + δ = δ + δ + δ = 55

3 56 V nšem přípdě tedy pltí (znmén u ednotlivých členů určíme podle výsledu slárního součinu!) δ A = Fδ r F δ r m δ r = 0. g Po doszením z = dostáváme b F mg m δ r = 0. b b Virtuální posunutí e obecně nenulové t. δ r 0. Pltí tedy b = F mg m Příld Obecná rovnice dynmiy e v tomto přípdě ( mg m) δ x + ( Iα) = 0 δ x osdíme-li inemticé rovnice δϕ = α = dostáváme r r ( mg m) I x = 0 r δ Virtuální posunutí závží δ x e obecně nenulové, proto pltí že výrz v hrnté závorce e roven nule. Odtud dostáváme pro hodnotu zrychlení závží vzth mg = I m + r 56

4 57 Lgrngeovy rovnice II Z pohybových rovnice integrcí vznily vzthy pro práci A, výon P, E, E p,.můžeme vš postupovt obráceně t. pohybovým rovnicím můžeme doít n záldě derivování slárních veličin A, P, E, E p,. To e přípd Lgrngeových rovnic II. Má-li soustv n 0 volnosti, p pomocí Lgrngeových rovnic II dostneme systém pohybových rovnic pomocí výrzu d E E E p E + + = Q, d t q (9.37) ɺ q q qɺ de =,, n, E e celová ineticá energie soustvy, E p e celová potenciální energie N soustvy, E = bivi e Ryleighov dissiptivní funce Q sou zobecněné síly i= příslušné zobecněným souřdnicím q. V přípdě onstntních převodů můžeme Q určit z rovnosti výonu sutečně působících nepotenciálových silových účinů P s = F i.vi + M.ω výonu práce sil zobecněných Pzob = Q q ɺ. Postup při sestvování pohybových rovnic pomocí Lgrngeových rovnic II pro rovinnou soustvu s edním stupněm volnosti onstntními převody: ) Ověříme zd soustv má 0 V onstntní převody ) o prcovního schémtu zreslíme směry všech posunutí pootočení určuících polohu ednotlivých těles soustvy. Ze souboru všech posunutí pootočení vybereme nezávislou souřdnici q. ále do prcovního schémtu zreslíme nepotenciálové prcovní síly Fi prcovní momenty M (v přípdě neideálních vzeb síly tření zhrneme mezi prcovní síly). 3) Zistíme převodní vzthy mezi rychlostmi vyádříme všechny trnslční popř. rotční rychlosti pomocí qɺ. Stené převody pltí i mezi souřdnicemi. 4) Z pomoci převodních vzthů pro soustvu určíme závislosti celové E E ( q, q) E ( ) p = E p q E ( qɺ ) = ɺ, 5) o rovnosti Q q ɺ = F i.vi + M.ω dosdíme převodní vzthy určíme zobecněnou sílu Q 6) osdíme do L.R. II 57

5 58 Postup při sestvování pohybových rovnic pomocí Lgrngeových rovnic II pro rovinnou soustvu s n 0 volnosti neonstntními převody: ) Zistíme pro soustvu počet stupňů volnosti ze souboru všech posunutí pootočení vybereme nezávislé ( záldní ) souřdnice q ) o prcovního schémtu zreslíme nepotenciálové prcovní síly F i prcovní momenty M (v přípdě neideálních vzeb síly tření zhrneme mezi prcovní síly). Ve zvolené souřdné soustvě vyádříme souřdnice působištˇ prcovních silových účinů pomocí zobecněných souřdnic t. definueme xi ( q ), yi( q ) ϕ ( q ). erivcí těchto vzthů podle čsu p zísáme vyádření všech rychlostí pomocí rychlostí zobecněných. ále ndeme vyádření virtuálních posunutí δ xi, δ yi δϕ pomocí virtuálních pohybů δ q pomocí vricí n n n xi yi ϕ t. používáme vzthy δ xi = δ q, δ yi = δ q, δϕ = δ q. q q q = 3) Z pomoci převodních vzthů mezi souřdnicemi rychlostmi určíme závislosti celové E = E qɺ, q, E = E ( q ) E ( qɺ ) ( ) p p 5) Zobecněné síly Q určíme z rovnosti virtuální práce δ A = F δ x + F δ x + M δϕ s xi i yi i účinů = sutečně působících nepotenciálových silových virtuální práce n zob = δ zobecněných sil t položíme δ As δ Azob = δ A Q q = =. Zobecněné síly Q,Q Q n přitom dostneme po doszení z δ xi, δ yi δϕ o oeficienty u δq, δq...δq n. Něteré zobecněné silové účiny mohou být přitom nulové. 6) osdíme do L.R. II 58

6 y 59 Příld 9.5. Těleso o hmotnosti m e zvedáno horizontální silou P smýáním po dvou doonle hldých přímách (viz. obr.9.6). Sestvte hlvní pohybovou rovnici. A e T e y T ϕ P x x T x Obr.9.6. Schémticé znázornění zdání příldu 9.5. Řešení. Těleso má eden stupeň volnosti. Z zobecněnou souřdnici zvolíme úhel ϕ, protože pomocí ně určíme sndno polohy působišť prcovních setrvčných sil. Pltí EK = m ( vt x + vt y ) + ITω, Ep = mgyt, de ω = ɺ ϕ, vt x =ɺ xt, vt y =ɺ yt. Z obrázu e zřemé, že xt = e cosϕ, xɺ T = e ɺ ϕ sinϕ, yt = e sinϕ, yɺ T = e ɺ ϕ cosϕ, Po doszení do Lgrngeovy funce dostáváme L = EK Ep = ( IT + me ) ɺ ϕ mg sinϕ. Zobecněnou sílu určíme z rovnosti virtuálních prcí nepotenciálních prcovních zobecnělých sil Qδϕ = Pδ x. Veliost virtuálního posunutí δ x dostneme vricí souřdnice x t. x = ecosϕ, δ x = e sinϕ δϕ, tže potom pro zobecněnou sílu dostáváme Q = Pe sinϕ. Po doszení do L.R. II úprvách dostneme vlstní pohybovou rovnici I + me ϕ Pe sinϕ + e cosϕ = 0. ( T ) 59

7 60 60

8 6 6 om. cv.. Závží hmotnosti m 3 e zvěšené n nehmotné niti přes ednoduchý ldostro dle obr. Hmotnosti lde sou m, momenty setrvčnosti eich osám otáčení sou I, I. Vypočítete zrychlení závží m 3, estliže e volně spustíme směrem dolů. + + = r i r i g

1 stupeň volnosti vynucené kmitání. Iva Petríková

1 stupeň volnosti vynucené kmitání. Iva Petríková Kmitání mechnicých soustv 1 stueň volnosti vynucené mitání Iv Petríová Ktedr mechniy, ružnosti evnosti Obsh Soustv s jedním stuněm volnosti vynucené mitání Vynucené mitání netlumené Vynucené mitání tlumené

Více

GEOMETRIC PROGRAMMING IN EVALUATING OF EXPERIMENTAL DATA GEOMETRICKÉ PROGRAMOVÁNÍ PŘI VYHODNOCOVÁNÍ EXPERIMENTÁLNĚ STANOVENÝCH DAT

GEOMETRIC PROGRAMMING IN EVALUATING OF EXPERIMENTAL DATA GEOMETRICKÉ PROGRAMOVÁNÍ PŘI VYHODNOCOVÁNÍ EXPERIMENTÁLNĚ STANOVENÝCH DAT 40. MEZINÁRODNÍ KONFERENCE EXPERIMENTÁLNÍ ANALÝZY NAPĚTÍ 40 th INTERNATIONAL CONFERENCE EXPERIMENTAL STRESS ANALYSIS 3. 6. VI. 2002, PRAHA/PRAGUE, CZECH REPUBLIC GEOMETRIC PROGRAMMING IN EVALUATING OF

Více

třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy:

třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy: SPŠ VOŠ KLADO SAIKA - PASIVÍ ODPORY PASIVÍ ODPORY Při vzájemném pohybu těles vznikjí v reálných vzbách psivní odpory, jejichž práce se mění v teplo. Psivní odpory předstvují ztráty, které snižují účinnost

Více

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo TEORETICKÁ MECHANIKA INTEGRÁLNÍ PRINCIPY MECHANIKY Záladní pojmy z mechaniy Mechanicý systém: jaáoli soustava částic nebo těles teré se rozhodneme popisovat (eletron atom Zeměoule planetární systém ).

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

II. 5. Aplikace integrálního počtu

II. 5. Aplikace integrálního počtu 494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu

Více

Přibližné řešení algebraických rovnic

Přibližné řešení algebraických rovnic Přblžné řešení lgebrcých rovnc Algebrcou rovncí stupně n nzýváme rovnc =, tj n n x x x =, de n N, x C, oefcenty P n,,, n R, Budeme prcovt s tzv normovou lgebrcou rovncí ( = ) n n x x x = Řešením (ořenem)

Více

III.4. Fubiniova (Fubiniho) věta pro trojný integrál

III.4. Fubiniova (Fubiniho) věta pro trojný integrál E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E

Více

4. cvičení z Matematiky 2

4. cvičení z Matematiky 2 4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y

Více

Relativiatická fyzika a astrofyzika I. Geometrie

Relativiatická fyzika a astrofyzika I. Geometrie Reltivitická fyzik strofyzik I Geometrie Definice: Nechť g je metrický tenzor jeho komponenty vůči souřdnicové zi jsou g.dále nechť je g -1 inverzní mtice k g její komponenty k příslušné zi jsou g. zvedání

Více

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34. I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y

Více

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Václav Čibera 12. února 2009 1 Motivace Na obrázku 1 máme znázorněný mechanický systém, který může představovat

Více

Dynamika vázaných soustav těles

Dynamika vázaných soustav těles Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

1. Pokyny pro vypracování

1. Pokyny pro vypracování 1. Pokyny pro vyprcování Zvolený příkld z druhé kpitoly vyprcujte písemně (nejlépe vysázejte pomocí LATEXu) dodejte osobně po předchozí domluvě milem n krbek@physics.muni.cz. Dále si vyberte tři z jednodušších

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

Střední škola automobilní Ústí nad Orlicí

Střední škola automobilní Ústí nad Orlicí Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,

Více

6. Setrvačný kmitový člen 2. řádu

6. Setrvačný kmitový člen 2. řádu 6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

= 2888,9 cm -1. Relativní atomové hmotnosti. leží stejný přechod pro molekulu H 37 Cl? Výsledek vyjádřete jako

= 2888,9 cm -1. Relativní atomové hmotnosti. leží stejný přechod pro molekulu H 37 Cl? Výsledek vyjádřete jako Přijímcí zkoušk n nvzující mgisterské studium - 018 Studijní progrm Fyzik - všechny obory kromě Učitelství fyziky-mtemtiky pro střední školy, Vrint A Příkld 1 Určete periodu periodického pohybu těles,

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17. Obr.17. F F 1x = F.cos α1,..., Fnx = F. cos 1y = F.sin α1,..., Fny = F. sin α α n n. Původní soustava je nyní nahrazena děma soustavami sil ve směru osy x a ve směru osy y. Tutu soustavu nahradíme dvěma

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

ČVUT SBÍRKA PŘÍKLADŮ STAVEBNÍ MECHANIKY

ČVUT SBÍRKA PŘÍKLADŮ STAVEBNÍ MECHANIKY SBÍRKA PŘÍKLADŮ STAVEBNÍ MECHANIKY Ing. ALEŠ JÍRA, Ph.D. Ing. DAGMAR JANDEKOVÁ, Ph.D. Ing. ADÉLA HLOBILOVÁ Ing. ELIŠKA JANOUCHOVÁ Ing. LUKÁŠ ZRŮBEK ČVUT FAKULTA STAVEBNÍ ČVUT V PRAZE ČESKÉ VYSOKÉ UČENÍ

Více

HYDROMECHANIKA. Požadavky ke zkoušce: - zápočet Zkouška: písemný test (příklady) + ev. ústní

HYDROMECHANIKA. Požadavky ke zkoušce: - zápočet Zkouška: písemný test (příklady) + ev. ústní HYDROMECHANIKA Rozsh : /1 z, zk, semestr: 3 Ktedr vodního hospodářství environmentálního modelování Grnt předmětu: Rdek Roub FŽP MCEV II, D439 Tel.: 4 38 153, 737 483 840, e-mil: roub@fzp.czu.cz Konzultční

Více

7 KONVOLUCE, KORELACE A AUTOKORELACE 1. 7 Konvoluce a Fourierova transformace konvoluce. Korelace, autokorelace

7 KONVOLUCE, KORELACE A AUTOKORELACE 1. 7 Konvoluce a Fourierova transformace konvoluce. Korelace, autokorelace 7 KONVOLUCE, KORELACE A AUTOKORELACE 7 Konvoluce Fourierov trnsformce onvoluce. Korelce, utoorelce 7. Definice onvoluce Konvolucí f( f ( f ( dvou funcí f (, f (, E N, se rozumí integrál f( f ( f ( f (

Více

6. Určitý integrál a jeho výpočet, aplikace

6. Určitý integrál a jeho výpočet, aplikace Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

POUŽITÍ PRINCIPU VIRTUÁLNÍCH PRACÍ PRO VÝPOČET PŘETVOŘENÍ

POUŽITÍ PRINCIPU VIRTUÁLNÍCH PRACÍ PRO VÝPOČET PŘETVOŘENÍ POUŽITÍ PRINCIPU VIRTUÁLNÍCH PRACÍ PRO VÝPOČET PŘETVOŘENÍ PRINCIP VIRTUÁLNÍCH PRACÍ Ve sttce jsme defnovl vrtuální prác jo prác síly př vrtuálních posunech neo jo prác slové dvojce př vrtuálním pootočení,

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting

Více

Příklad 5.3. v 1. u 1 u 2. v 2

Příklad 5.3. v 1. u 1 u 2. v 2 Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám Stvební mechnik,.ročník bklářského studi AST Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

NMAF061, ZS Písemná část zkoušky 16. leden 2018

NMAF061, ZS Písemná část zkoušky 16. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmyslová šol Vyšší odorná šol tehniá Brno, Soolsá 1 Šlon: Inove zvlitnění výuy prostřednitvím ICT Název: Tém: utor: ehni, stti Jednoduhé mehnizmy Ing.Jroslv Svood Číslo: VY_32_INVCE_ 10 19 note:

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

Hledání hyperbol

Hledání hyperbol 759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,

Více

2.5 Rovnováha rovinné soustavy sil

2.5 Rovnováha rovinné soustavy sil Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice

Více

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9. 9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1).

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1). A DIRACOVA DISTRIBUCE A Dircov distribuce A Definice Dircovy distribuce Dircovu distribuci δx) lze zvést třemi ekvivlentními způsoby ) Dirc [] ji zvedl vzthy δx) dx, δx) pro x ) Grficky znázorňujeme Dircovu

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

Stereometrie metrické vlastnosti 01

Stereometrie metrické vlastnosti 01 Stereometrie metrické vlstnosti 01 Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek

Více

Styčníkovou metodou vyřešte síly v prutech u soustavy na obrázku.

Styčníkovou metodou vyřešte síly v prutech u soustavy na obrázku. Styčníkovou metodou vyřešte síly v prutech u soustvy n obrázku. Př. 1,, = 3 m, b = 4 m, c = 5, d = m 1) výpočet úhlů b cos = /( + b ) 1/ sin = b/( + b ) 1/ = 0,6 = 0,8 (e) d b c (h) cos = /[e + ] 1/ e

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

f k nazýváme funkční řadou v M.

f k nazýváme funkční řadou v M. 6. Funční řdy posloupnosti. Bodová stejnoměrná onvergence. Nechť pro N jsou f omplení či reálné funce omplení či reálné proměnné, teré mjí společný definiční obor M. Posloupnost {f ; N} nzýváme funční

Více

Modelování a simulace

Modelování a simulace Modelování a simulace Modelování mechanických systémů Doc. Ing. Pavel Václavek, Ph.D. Modelování a simulace Mechanické systémy - str. 1/14 přednášky Modelování a simulace Mechanické systémy - str. 2/14

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Petr Schreierová, Ph.D. Ostrv Ing. Petr Schreierová, Ph.D. Vsoká škol áňská Technická univerzit

Více

( s) ( ) ( ) ( ) Stabilizace systému pomocí PID regulátoru. Řešený příklad: Zadání: Uvažujme řízený systém daný přenosovou funkcí

( s) ( ) ( ) ( ) Stabilizace systému pomocí PID regulátoru. Řešený příklad: Zadání: Uvažujme řízený systém daný přenosovou funkcí tbilizce ytému pomocí regulátoru Řešený příld: Zdání: Uvžujme řízený ytém dný přenoovou funcí ) ožte, že je ytém netbilní. ) Nvrhněte dnému ytému regulátor, terý bude ytém tbilizovt. ) Úpěšnot vého nárhu

Více

MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF

MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF RNDr. Petr Rádl RNDr. Bohumil Černá RNDr. Ludmil Strá 0 Petr Rádl, 0 ISBN 97-0-77-9- OBSAH Předmluv... Poždvky k přijímcí zkoušce z mtemtiky..

Více

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECNICKÁ UNIVEZITA OSTAVA FAKULTA STOJNÍ PUŽNOST A PEVNOST V PŘÍKLADEC Kvadratický moment I doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. ichard Klučka Ing.

Více

Příklad 1 Osově namáhaný prut průběhy veličin

Příklad 1 Osově namáhaný prut průběhy veličin Příkld 1 Osově nmáhný prut průběhy veličin Zdání Oelový sloup složený ze dvou částí je neposuvně ukotven n obou koníh v tuhém rámu. Dolní část je vysoká, m je z průřezu 1 - HEB 16 (průřezová ploh A b =

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

NMAF061, ZS Písemná část zkoušky 25. leden 2018

NMAF061, ZS Písemná část zkoušky 25. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Téma 6 Staticky neurčitý rovinný oblouk. kloubový příhradový nosník

Téma 6 Staticky neurčitý rovinný oblouk. kloubový příhradový nosník Stvení mechnik,.ročník klářského studi AST Tém 6 Stticky neurčitý rovinný olouk Stticky neurčitý rovinný klouový příhrdový nosník Zákldní vlstnosti stticky neurčitého rovinného olouku Dvoklouový olouk,

Více

Vzorová řešení čtvrté série úloh

Vzorová řešení čtvrté série úloh FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 7501, 7507 Př 1: Vrchol elips leží v odech A[ 1;1], [ 3;1], [ 1;5], [ 1; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Regulace v ES na výroby

Regulace v ES na výroby Regulce v ES n výroy Regulce v ES n strně výroy Regulce v ES n strně výroy Sttická chrkteristik Regulce v ES n strně výroy regulce více G Regulce v ES n strně výroy korektor frekvence rimární Regulce Úkol

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. 1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními

Více

Dráhy planet. 28. července 2015

Dráhy planet. 28. července 2015 Dáhy plnet Pet Šlecht 28. čevence 205 Výpočet N střední škole se zpvidl učí, že dáhy plnet jsou elipsy se Sluncem v ohnisku. Tké se učí, že tento fkt je možné dokázt z Newtonov gvitčního zákon. Příslušný

Více

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS

Více

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log Řešme n množině reálných čísel rovnice: ) 6 b) 8 d) e) c) f) ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC Co budeme potřebovt? Chápt definici ritmu. Znát průběh ritmické funkce. Znát jednoduché vět o počítání

Více

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá. TRIN_STT_P11.doc STTIK - SOUOR PŘNÁŠK 11. Prutové soustavy, základní pojmy, metody řešení. Teoreticky je PRUTOVÁ SOUSTV definována jako soustava složená z tuhých prutů, které jsou navzájem spojeny ideálními

Více

Měření výkonu jednofázového proudu

Měření výkonu jednofázového proudu Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

7 Analytická geometrie

7 Analytická geometrie 7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.

Více

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra Zadání: Vypočtěte polohu těžiště, momenty setrvačnosti a deviační moment k centrálním osám a dále určete hlavní centrální momenty setrvačnosti, poloměry setrvačnosti a natočení hlavních centrálních os

Více

1. Teoretická mechanika

1. Teoretická mechanika 1. Teoretická mechanika 16 Teoretická mechanika 1.1 Integrální principy mechaniky V teoretické mechanice se hojně používá Einsteinova sumační konvence, diferenciálu a Lagrangeova věta o přírůstku. Pokud

Více

Transformátory. Mění napětí, frekvence zůstává

Transformátory. Mění napětí, frekvence zůstává Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0

Více

Hyperbola a přímka

Hyperbola a přímka 7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B

Více

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního

Více

1.2.7 Sbírka příkladů - vozíčky

1.2.7 Sbírka příkladů - vozíčky 7 Sbírk příkldů - vozíčky Předpokldy: 06 Při řešení vozíčků určujeme dvě veličiny: zrychlení soustvy, síly, kterými provázky působí n jednotlivé předměty F Zrychlení soustvy určíme pomocí NZ ze vzorce

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více