Vnitřní energie ideálního plynu podle kinetické teorie

Rozměr: px
Začít zobrazení ze stránky:

Download "Vnitřní energie ideálního plynu podle kinetické teorie"

Transkript

1 Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau elkého počtu nepatrných hotných částic olekul, které jsou neustálé pohybu (tz. neuspořádaný pohyb, a poocí echanických lastností těchto částic (jejich hotnosti, rychlosti, hybnosti, echanické energie ysětluje terodynaické eličiny plynu (tlak a teplotu plynu, jeho nitřní energii, a také poje tepelné energie. ejjednodušší je aplikace kinetické teorie na ideální plyn, jehož choání jse popsali inulé otázce. Zopakuje si jeho základní lastnost že olekuly tohoto plynu na sebe zájeně nepůsobí žádnýi silai (případně je ožno dodat kroě nepatrných okažiků zájených pružných srážek olekul. Důsledke nuloých sil ezi olekulai ideálního plynu je poto také nuloá potenciální energie každé olekuly (neboť tato energie je stanoena prací působící síly, jak je znáo z echaniky. Z toho dále plyne, že celkoá echanická energie (každé olekuly je tedy tořena pouze její energií kinetickou, a že nitřní energie plynu jako součet šech energií šech jeho olekul je pak dána celkoou kinetickou energií těchto olekul. Pro axiální ožné zjednodušení budee ještě naíc předpokládat, že olekuly plynu jsou prakticky hotné body pak totiž ůžee zanedbat rotační pohyb olekuly a saozřejě i energii tohoto pohybu. Toto zanedbání bude zřejě eli dobře yhooat pro jednoatooé olekuly (He, e, Ar, a také například pro plazatu běžně se yskytující ionizoané atoy, jejichž lastní oent setračnosti je jistě zanedbatelně alý. U ětších olekul, skládajících se ze dou a íce atoů pak oše bude nutno započítat i kinetickou energii rotace olekuly, případně i energii jejích kitů. euspořádaný pohyb olekul plynu a jejich stále probíhající zájené srážky (a saozřejě i srážky se stěnai nádoby ede k tou, že okažité rychlosti olekul jejich sěry i elikosti se neustále ění. Jistě si uíe předstait, jak se nějaká ybraná olekula po několika hodných srážkách téěř zastaí, nebo jak naopak dojde k nohonásobnéu zýšení její rychlosti (i když jsou to éně praděpodobné situace, proto ůžee předpokládat, že jakékoli čase ají olekuly plynu různé rychlosti celé interalu ožných elikostí tj. od nuly do nekonečna. Z důodu obroského počtu částic (řádu Aogadroa čísla není oše ožno sledoat pohyb každé částice a určoat její rychlost, případně její polohu. Přito rychlosti částic určitě záisejí i na celkoé stau plynu například při zahříání se jistě zyšuje podíl rychlejších částic. Metodai ateatické statistiky se podařilo r. 85 Maxwelloi (Jaes Clerk Maxwell stanoit tz. rozdělení rychlostí (jednoatooých olekul ideálního plynu e stau terodynaické ronoáhy : Pro počet d olekul {z celkoého počtu, které ají elikosti sých rychlostí zadané interalu (, + d platí : d 4 kt e kt d ( je hotnost jedné olekuly, k je Boltzannoa konstanta a T je absolutní teplota.

2 Podíl obou diferenciálů, který á sysl počtu částic jednotkoé interalu rychlostí ( ístě dané rychlosti - lze také použít terín hustota částic na ose rychlostí - se pak označuje jako rozděloací funkce : f d d Maxwelloa rozděloací funkce 4 e kt kt f( Pro celý soubor částic (olekul plynu je pak ožno ypočítat střední rychlost olekul aritetický průěr z rychlostí šech olekul : jako s Za použití rozděloací funkce lze přeést tento součet jako ážený aritetický průěr na určitý integrál přes celý obor rychlostí a relatině lehce ypočítat (jde o tz. Laplaceů integrál : d f d 8 k T střední rychlost olekul Také se počítá střední kadratická rychlost olekul jako aritetický průěr ze šech kadrátů jednotliých rychlostí olekul :... f d kt střední kadratická rychlost

3 Její odocnina se pak nazýá efektiní rychlost : kt ef efektiní rychlost Je zajíaé, že obě tyto rychlosti se příliš neliší (asi o % od tz. nejpraděpodobnější rychlosti, která určuje polohu axia rozděloací funkce (iz obr : kt P nejpraděpodobnější rychlost Fyzikálně nejdůležitější je efektiní, či střední kadratická rychlost, protože se použíá pro ýpočet střední energie jedné olekuly : ef kt Po ykrácení dostááe jeden ze zásadních ýsledků kinetické teorie, totiž že střední energie olekuly ideálního plynu nezáisí na hotnosti plynu, tj. na druhu plynu : k T střední energie jedné olekuly A celkoá kinetická energie šech částic (olekul dohroady bude : E kin k T Jestliže yjádříe počet částic poocí látkoého nožstí a použijee definice unierzální plynoé konstanty R, tj. : A R A k Poto dostanee : E kin A k T R T Protože ideální plyn neá žádnou potenciální energii, toří nái ypočítaná kinetická energie eškerou nitřní energii U plynu : U Ekin R T nitřní energie ideálního plynu

4 Poznáka : Pro reálný plyn by nitřní energie byla oše určena oběa složkai energie : U E kin E pot Vidíe, že nitřní energie ideálního plynu je funkcí dou staoých eličin teploty a látkoého nožstí : U U,T A tedy při zadané konstantní nožstí plynu je nitřní energie dána pouze teplotou plynu, což nás přiádí k určení ýznau teploty jako fyzikální eličiny: Teplota je írou kinetické energie neuspořádaného pohybu částic látky za stau terodynaické ronoáhy (u ideálního plynu je přío úěrná celkoé energii. Teplota je staoá eličina, která charakterizuje ronoážný sta celé terodynaické soustay (jako celku, tz. akrosta, unitř soustay jsou pak ikrostay jednotliých částic. Podínka terodynaické ronoáhy je saozřejě eli oezující, proto se e fyzice definuje teplota i při tz. lokální terodynaické ronoáze ( dané ístě soustay. Poznáka : Přesto šak někdy teplota neexistuje, např. elektrický ýboj zářice je typický silně neronoážný systée: elektrony ají teplotu 5 K, ionty a olekuly pouze 5 K, nelze pak stanoit celkoou teplotu Vraťe se zpět k nitřní energii : Protože je nitřní energie jednoznačně určena staoýi eličinai teplotou a látkoý nožstí je saa také jednoznačně přiřazena danéu stau - a je ji proto ožno roněž poažoat za staoou eličinu (idíe oše určitý rozdíl, proto se někdy staoé eličiny rozlišují na staoé proěnné a staoé funkce, případně terodynaické potenciály. Jestliže se ná podařilo určit přesný funkční ztah pro nitřní energii, ůžee nyní ypočítat její nekonečně alý přírůstek (zěnu, tz. úplný diferenciál, jako ateatický diferenciál funkce dou proěnných : (,T U d U T dt Při dané nožstí plynu pak jednodušeji : (T dt dt R dt Dále ůžee určit celkoou zěnu nitřní energie - při nějaké terodynaické procesu např. při přechodu ze stau (určeného staoýi eličinai p, V, T, do stau (p, V, T, : U R dt R dt R T T T T 4

5 Po roznásobení idíe, že zěna nitřní energie je jednoduše dána rozdíle nitřních energií počáteční a koncoé stau : U R T R T U U Terodynaický proces ůžee graficky znázornit jako křiku spojující počáteční a koncoý sta nějaké soustaě souřadnic staoých eličin, např. oblíbené p-v diagrau : p p(v p'(v V Pak ůžee konstatoat, že náš ýpočet zěny nitřní energie při určité terodynaické procesu nezáisí na dráze integrační cestě (křice procesu, ale záisí pouze na počáteční a koncoé stau. Pro da různé procesy (edoucí od. do.stau, tj. pro dě různé křiky p(v a p (V spojující tyto stay, tedy bude platit ronost integrálů : ( p ( p Přeedee na leou stranu a upraíe : ( p ( p ( p ( p A protože se jedná o liboolné da stay a liboolné křiky ezi těito stay, dostááe na leé straně ronice integrál platný pro liboolnou uzařenou křiku : 5

6 Celkoá zěna nitřní energie je tedy nuloá při jakékoli uzařené integrační cestě (křice tj. při tz. uzařené ( kruhoé terodynaické procesu. Vnitřní energie plynu je tak forálně ateaticky podobná potenciální energii konzeratiní siloé poli. Vnitřní energie se proto řadí ezi tz. terodynaické potenciály a zniklo ná pro ni několik ekialentních podínek : U je staoá eličina existuje úplný diferenciál konst (zěna nitřní energie záisí pouze na počáteční a koncoé stau. (při uzařené procesu se nitřní energie nezění Tyto ztahy jsou teoreticky eli užitečné a uožňují jednoznačné a pohodlné rozlišení staoých a nestaoých eličin terodynaice, jak uidíe i další kapitole. Pošiněte si také forální podoby s podínkai konzeratinosti siloých polí (konec kapitoly K. Rusňák, erze /5 6

Kinetická teorie plynu

Kinetická teorie plynu Kineticá teorie plnu Kineticá teorie plnu, terá prní poloině 9.století doázala úspěšně spojit lasicou fenoenologicou terodnaiu s echaniou, poažuje pln za soustau elého počtu nepatrných hotných částic oleul,

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc.

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc. IDEÁLÍ PLY I Prof. RDr. Eanuel Soboda, CSc. DEFIICE IDEÁLÍHO PLYU (MODEL IP) O oleulách ideálního plynu ysloujee 3 předpolady: 1. Rozěry oleul jsou zanedbatelně alé e sronání se střední zdáleností oleul

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera Srovnání klasického a kvantového oscilátoru Ondřej Kučera Seestrální projekt 010 Obsah 1. Úvod... 3. Teorie k probleatice... 4.1. Mechanika... 4.1.1. Klasická echanika... 4.1.1.1. Klasický oscilátor...

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

Kinetická teorie plynů

Kinetická teorie plynů Kinetická teorie plynů 1 m 3 při tlaku 10 5 Pa teplotě o C obsahuje.,5 x 10 5 molekul při tlaku 10-7 Pa teplotě o C obsahuje.,5 x 10 13 molekul p>100 Pa makroskopické choání, plyn se posuzuje jako hmota

Více

Fázové přechody. navzájem nezávislé chemicky čisté látky obsažené v termod.soustavě

Fázové přechody. navzájem nezávislé chemicky čisté látky obsažené v termod.soustavě Fázoé řechody Složky soustay s: nazáje nezáislé cheicky čisté látky obsažené terod.soustaě Fáze látky f: hoogenní soubor olekul, který je akroskoické ěřítku ostře ohraničen od jiných souborů olekul, které

Více

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc.

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc. Vnitřní energie a její zěna erodynaická soustava Vnitřní energie a její zěna První terodynaický zákon Řešení úloh Prof. RNDr. Eanuel Svoboda, CSc. erodynaická soustava a její stav erodynaická soustava

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KINEICKÁ EORIE PLYNŮ IDEÁLNÍ PLYN plyn skládající se z velkého počtu veli alých částic stejné hotnosti částice jsou stejně velké a ají tvar koule všechny polohy a všechny sěry pohybu částice jsou stejně

Více

Pohyb soustavy hmotných bodů

Pohyb soustavy hmotných bodů Pohyb soustavy hotných bodů Tato kapitola se zabývá úlohai, kdy není ožné těleso nahradit jední hotný bode, předevší při otáčení tělesa. Těžiště soustavy hotných bodů a tělesa Při hodu nějaký složitější

Více

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství)

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství) . Mechanika - úvod. Základní pojy V echanice se zabýváe základníi vlastnosti a pohybe hotných těles. Chcee-li přeístit těleso (echanický pohyb), potřebujee k tou znát tyto tři veličiny: hota, prostor,

Více

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktiku 1 Úloha č...xvi... Název: Studiu Brownova pohybu Pracoval: Jan Kotek stud.sk.: 17 dne: 7.3.2012 Odevzdal dne:... ožný počet

Více

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady Příklady 1. Jaký je tlak vzduchu v pneuatice nákladního autoobilu při teplotě C a hustotě 8, kg 3? Molární hotnost vzduchu M 9 1 3 kg ol 1. t C T 93 K -3 ρ 8, kg, M 9 1 3 kg ol 1 p? p R T R T ρ M V M 8,31

Více

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný

Více

Podívejte se na časový průběh harmonického napětí

Podívejte se na časový průběh harmonického napětí Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP FP 5 Měření paraetrů solárních článků Úkoly : 1. Naěřte a poocí počítače graficky znázorněte voltapérovou charakteristiku solárního článku. nalyzujte vliv různé intenzity osvětlení, vliv sklonu solárního

Více

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it

Více

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti

Více

MĚŘENÍ NA ASYNCHRONNÍM MOTORU

MĚŘENÍ NA ASYNCHRONNÍM MOTORU MĚŘENÍ NA ASYNCHRONNÍM MOTORU Základní úkole ěření je seznáit posluchače s vlastnosti asynchronního otoru v různých provozních stavech a s ožnosti využití provozu otoru v generátorické chodu a v režiu

Více

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Náze a adesa školy: Střední škola ůysloá a uěleká, Oaa, řísěkoá oganizae, Paskoa 399/8, Oaa, 7460 Náze oeačního ogau: OP zděláání o konkueneshonost, oblast odoy.5 Registační číslo ojektu: CZ..07/.5.00/34.09

Více

Identifikátor materiálu: ICT 2 54

Identifikátor materiálu: ICT 2 54 Identifikátor ateriálu: ICT 2 54 Registrační číslo projektu Název projektu Název příjece podpory název ateriálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního ateriálu Druh interaktivity

Více

Elektrický proud v elektrolytech

Elektrický proud v elektrolytech Elektrolytický vodič Elektrický proud v elektrolytech Vezěe nádobu s destilovanou vodou (ta nevede el. proud) a vlože do ní dvě elektrody, které připojíe do zdroje stejnosěrného napětí. Do vody nasypee

Více

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v A1B15EN kraty Příklad č. 1 V soustaě na obrázku je označeném místě trojfázoý zkrat. rčete: a) počáteční rázoý zkratoý proud b) počáteční rázoý zkratoý ýkon c) nárazoý proud Řešení: 1) olíme ztažný ýkon;

Více

1.2.5 2. Newtonův zákon I

1.2.5 2. Newtonův zákon I 15 Newtonův zákon I Předpoklady: 104 Z inulé hodiny víe, že neexistuje příý vztah (typu příé nebo nepříé úěrnosti) ezi rychlostí a silou hledáe jinou veličinu popisující pohyb, která je navázána na sílu

Více

Tlak plynu a stavová rovnice podle kinetické teorie

Tlak plynu a stavová rovnice podle kinetické teorie lak lynu a staoá onice odle kinetické teoie této kaitole ozkouáe zájené ůsobení ideálního lynu (za teodynaické onoáhy) s oche ené látky, kteá ho obklouje (stěny nádoby) a ysětlíe (a yočítáe) tlak lynu

Více

11. Tepelné děje v plynech

11. Tepelné děje v plynech 11. eelné děje v lynech 11.1 elotní roztažnost a rozínavost lynů elotní roztažnost obje lynů závisí na telotě ři stálé tlaku. S rostoucí telotou se roztažnost lynů ři stálé tlaku zvětšuje. Součinitel objeové

Více

Elektřina a magnetismus Elektrostatické pole

Elektřina a magnetismus Elektrostatické pole Elektrostatické pole Elektrostatické pole je prostor (v okolí elektricky nabitých částic/těles), ve které na sebe náboje působí elektrickýi silai. Zdroje elektrostatického pole jsou elektrické náboje (vázané

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

10.1 CO JE TO SRÁŽKA?

10.1 CO JE TO SRÁŽKA? 10 Sr ûky Fyzik Ronald McNair byl jednìm z astronaut, kte Ì zahynuli p i ha rii raketopl nu Challenger. Byl takè nositelem ËernÈho p sku karate a jedin m derem dok zal zlomit nïkolik betono ch tabulek.

Více

MĚŘENÍ POVRCHOVÉHO NAPĚTÍ VODY

MĚŘENÍ POVRCHOVÉHO NAPĚTÍ VODY LABORATORNÍ PRÁCE Č. 3 MĚŘENÍ POVRCHOVÉHO NAPĚTÍ VODY TEORETICKÉ ZÁKLADY CO JE POVRCHOVÉ NAPĚTÍ Jednotlivé olekuly vody na sebe působí přitažlivýi silai, lepí se k sobě. Důsledke je například to, že se

Více

K Mechanika styku kolo vozovka

K Mechanika styku kolo vozovka Mechanika styku kolo ozoka Toto téma se zabýá kinematikou a dynamikou kola silničních ozidel. Problematika styku kolo ozoka má zásadní ýznam pro stanoení parametrů jízdy silničních ozidel, neboť má li

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fzikálních praktik při Kabinetu výuk obecné fzik MFF UK Praktiku I Mechanika a olekulová fzika Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Matáš Řehák stud.sk.:

Více

4 SÁLÁNÍ TEPLA RADIACE

4 SÁLÁNÍ TEPLA RADIACE SÁLÁNÍ TEPLA RADIACE Vyzařovaná energie tělese se přenáší elektroagnetický vlnění o různé délce vlny. Podle toho se rozlišuje záření rentgenové, ultrafialové, světelné, infračervené a elektroagnetické

Více

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5 Obsah Historický přehled 5 Plynný sta hmoty 8. Jednotky tlaku................ 8.. Použíané jednotky tlaku.......... 9.. Rozlišení oblastí akua podle tlaku...... 9. Staoá ronice................ 9.. Gay

Více

Poznámky k cvičením z termomechaniky Cvičení 9.

Poznámky k cvičením z termomechaniky Cvičení 9. Voda a vodní pára Při výpočtech příkladů, které jsou zaěřeny na výpočty vody a vodní páry je důležité si paatovat veličiny, které jsou kritické a z hlediska výpočtu i nezbytné. Jedná se o hodnoty teploty

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

Úvod do elektrických měření I

Úvod do elektrických měření I Úvod do elektrických ěření I Historické střípky První pozorované elektrické jevy byly elektrostatické povahy Proto první elektrické ěřicí přístroje byly založeny právě na elektrostatické principu ezi první

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná

Více

1.8.9 Bernoulliho rovnice

1.8.9 Bernoulliho rovnice 89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její

Více

Energie, její formy a měření

Energie, její formy a měření Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN Ientifikátor ateriálu: ICT 1 10 Regitrační čílo projektu Náze projektu Náze příjece popory náze ateriálu (DUM) Anotace Autor Jazyk Očekáaný ýtup Klíčoá loa Druh učebního ateriálu Druh interaktiity Cíloá

Více

3.1.2 Harmonický pohyb

3.1.2 Harmonický pohyb 3.1.2 Haronický pohyb Předpoklady: 3101 Graf závislosti výchylky koštěte na čase: Poloha na čase 200 10 100 poloha [c] 0 0 0 10 20 30 40 0 60 70 80 90 100-0 -100-10 -200 čas [s] U některých periodických

Více

tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému

tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému III. TERMODYNAMIKA PROUDÍCÍCH PLYNŮ A PAR Termodynamika plynů a par sleduje změny stau látek za předpokladu, že jsou látky klidu, nebo že li rychlosti proudění látky má zanedbatelný li na změnu termodynamického

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í GRAVITAČNÍ POLE I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Newtonů aitační zákon (1687 Newton díle Mateatické pincipy příodní filozofie) aždá dě hotná tělesa na sebe nazáje působí stejně

Více

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

Látkové množství n poznámky 6.A GVN

Látkové množství n poznámky 6.A GVN Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové

Více

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření e r i k a Havní body epota, ěření epotní závisosti fyzikáních veičin Kinetická teorie pynů Maxweova rozděovací funkce epo, ěrné tepo, kaorietrie epota Je zákadní veičinou, kterou neze odvodit? Čověk ji

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

3.1.8 Přeměny energie v mechanickém oscilátoru

3.1.8 Přeměny energie v mechanickém oscilátoru 3..8 Přeěny energie v echanické oscilátoru Předoklady: 0050, 03007 Pedagogická oznáka: Odvození zákona zachování energie rovádí na vodorovné ružině, rotože je říočařejší. Pro zájece je uvedeno na konci

Více

6.2.5 Pokusy vedoucí ke kvantové mechanice IV

6.2.5 Pokusy vedoucí ke kvantové mechanice IV 65 Pokusy vedoucí ke kvantové echanice IV Předpoklady: 06004 94: J Franck, G Hertz: Frack-Hertzův pokus Př : Na obrázku je nakresleno schéa Franck-Hertzova pokusu Jaký způsobe se budou v baňce (pokud v

Více

Vznik a vlastnosti střídavých proudů

Vznik a vlastnosti střídavých proudů 3. Střídavé proudy. Naučit se odvození vztahu pro okažitý a průěrný výkon střídavého proudu, znát fyzikální význa účiníku.. ět použít fázorový diagra na vysvětlení vztahu ezi napětí a proude u jednoduchých

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

FÁZOVÉ PŘECHODY. Fyzikální děj, při kterém se mění skupenství látky, se nazývá změna skupenství.

FÁZOVÉ PŘECHODY. Fyzikální děj, při kterém se mění skupenství látky, se nazývá změna skupenství. SSPU OPAVA, Fyzika 3, školní rok 2006-2007 1 FÁZOVÉ PŘECHODY Skupenství je stav tělesa z terodynaického hlediska. Skupenství rozeznáváe: 1. Pevné potenciální energie olekul je značně větší než jejich kinetická

Více

Elektromagnetické kmitání

Elektromagnetické kmitání Elektroagnetické kitání ELEKTROMAGNETICKÝ OSCILÁTOR zdroje jsou nejen alternátory, ale i jiné typy oscilátoru Střídavé proudy a napětí označujee jako elektroagnetické kitání Mechanické oscilátory kitají

Více

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..6 Znaménka Předpoklad: 3, 5 Opakoání: Veličin s elikostí a směrem = ektoroé eličin Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek).

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek). Soustava SI SI - zkratka francouzského názvu Systèe International d'unités (ezinárodní soustava jednotek). Vznikla v roce 1960 z důvodu zajištění jednotnosti a přehlednosti vztahů ezi fyzikálníi veličinai

Více

Metody termické analýzy. 2. Struktura a fázové chování polymerů

Metody termické analýzy. 2. Struktura a fázové chování polymerů 2. Struktura a fázové chování polyerů 2.1. Rozdělení akroolekulárních látek Rozeznáváe přírodní a syntetické akroolekulární látky. U prvních dochází k tvorbě akroolekul v živých rostlinných nebo živočišných

Více

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA Modularizace a odernizace studijního prograu počáteční přípravy učitele fyziky Studijní odul MOLEKULOÁ FYZIKA A TERMODYNAMIKA Renata Holubová Oloouc 1 Zpracováno v ráci řešení projektu Evropského sociálního

Více

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Střídavý proud Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Vznik střídavého proudu Výroba střídavého napětí:. indukční - při otáčivé pohybu cívky v agnetické poli

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

Pár zajímavých nápadů

Pár zajímavých nápadů Pár zajíavých nápadů Václav Pazdera Gynáziu, Oloouc, Čajkovského 9 Abstrakt Příspěvek je věnován tře jednoduchý poůcká, které si ůže každý učitel fyziky sá vyrobit: "Tlak plynu v balónku", "Zpívající trubky"

Více

Dynamika vozidla Hnací a dynamická charakteristika vozidla

Dynamika vozidla Hnací a dynamická charakteristika vozidla Dynamika ozidla Hnací a dynamická charakteristika ozidla Zpracoal: Pael BRABEC Pracoiště: VM Tento materiál znikl jako součást projektu In-TECH, který je spoluinancoán Eropským sociálním ondem a státním

Více

Tento text se snaží být takovým atlasem elementárních funkcí podobně jako atlas hub, ptáků či květin.

Tento text se snaží být takovým atlasem elementárních funkcí podobně jako atlas hub, ptáků či květin. A T L A S F U N K C Í Každý absolvent(ka) gynázia či střední odborné školy zaěřené na techniku by si ěl(a) do života po aturitě odnést povědoí o eleentárních funkcích, jejich seznau a vlastností jednotlivých

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

Návod k úloze Studium Rutherfordova rozptylu na zlaté a hliníkové fólii

Návod k úloze Studium Rutherfordova rozptylu na zlaté a hliníkové fólii Návod k úloze Studiu Rutherfordova rozptylu na zlaté a hliníkové fólii Úvod V této úloze provedee dnes již klasický experient, na jehož základě bylo objeveno atoové jádro. Rutherford navrhl pokus, v něž

Více

MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost:

MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost: Projekt Efektivní Učení Reforou oblastí gynaziálního vzdělávání je spolufinancován Evropský sociální fonde a státní rozpočte České republiky. MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojy: Setrvačnost:

Více

6. OBROBITELNOST MATERIÁLŮ

6. OBROBITELNOST MATERIÁLŮ 6. OBROBITELNOST MATERIÁLŮ Po úspěšném a aktiním absoloání této KAPITOLY Budete umět: Obecné pojmy a terminologii obrobitelnosti. Stanoit základní kritéria obrobitelnosti a součinitel obrobitelnosti. Popsat

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

LABORATORNÍ CVIČENÍ Z FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY ABORATORNÍ CVIČENÍ Z FYZIKY Jéno: Petr Česák Datu ěření: 7.. Studijní rok: 999-, Ročník: Datu odevzdání:.5. Studijní skupina: 5 aboratorní skupina: Klasifikace:

Více

2.1.6 Relativní atomová a relativní molekulová hmotnost

2.1.6 Relativní atomová a relativní molekulová hmotnost .1. Relativní atoová a elativní oleklová hotnost Předpoklady: Pedagogická poznáka: Tato a následjící dvě hodiny jso pokse a toch jiné podání pobleatiky. Standadní přístp znaená několik ne zcela půhledných

Více

RELATIVISTICKÁ DYNAMIKA

RELATIVISTICKÁ DYNAMIKA RELATIVISTICKÁ DYNAMIKA Klasiká dnaika Klasiká dnaika se zabýá íinai ohbu tles zájený siloý sobení dou a íe tles Je založena na Newtonoýh ohboýh zákoneh (zákon setranosti, zákon síl a zákon ake a reake),

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí Fakulta staební ČVUT Praze Katedra hydrauliky a hydrologie Předmět HYA K4 FS ČVUT Hydraulika potrubí Doc. Ing. Aleš Halík, CSc., Ing. Tomáš Picek PhD. K4 HYA Hydraulika potrubí 0 DRUHY PROUDĚNÍ V POTRUBÍ

Více

Důležité pojmy, veličiny a symboly

Důležité pojmy, veličiny a symboly FBI ŠB-U Ostraa erodynaka lynů a ar základní ojy Důležté ojy, elčny a syboly Alkoaná fyzka Staoé elčny, staoé zěny elota, tlak, obje a nožstí čsté látky nejsou nezáslé. U hoogenního systéu lze olt lboolné

Více

Řešení: Odmocninu lze vždy vyjádřit jako mocninu se zlomkovým exponentem. A pro práci s mocninami = = = 2 0 = 1.

Řešení: Odmocninu lze vždy vyjádřit jako mocninu se zlomkovým exponentem. A pro práci s mocninami = = = 2 0 = 1. Varianta A Př.. Zloek 3 3 je roven číslu: a), b) 3, c), d), e) žádná z předchozích odpovědí není Řešení: Odocninu lze vždy vyjádřit jako ocninu se zlokový exponente. A pro práci s ocninai již áe jednoduchá

Více

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu

Více

F10 HARMONICKÝ OSCILÁTOR

F10 HARMONICKÝ OSCILÁTOR F1 HARMONICKÝ OSCILÁTOR Evropský sociální fond Praha & EU: Investujee do vaší budoucnosti F1 HARMONICKÝ OSCILÁTOR V okolí inia potenciální energie ůžee vždy očekávat kity. Síla působí do inia potenciální

Více

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa yzikálí praktiku I Úloha č10 Měřeí oporu prouícího zuchu (erze 0/01) Úloha č 10 Měřeí rychloti prouu zuchu Měřeí záiloti íly oporu protřeí a taru tělea 1) Poůcky: Aeroyaický tuel, ikroaoetr, Pratloa trubice,

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

9. Magnetické pole. e) vodič s elektrickým proudem vyvolává kolem sebe magnetické pole (soustředné kružnice).

9. Magnetické pole. e) vodič s elektrickým proudem vyvolává kolem sebe magnetické pole (soustředné kružnice). 9. Magnetické pole 9.1 Základní poznatky o agnetisu a) Tyč z ěkké oceli ovinee dráte, do něhož zavedee stejnosěrný proud. Tyč ná zagnetuje. Po přerušení proudu bude tyč neagnetická. Nahradíe-li tyč z ěkké

Více

Fyzikální korespondenční seminář UK MFF ročník XIX číslo 2/7

Fyzikální korespondenční seminář UK MFF ročník XIX číslo 2/7 Milí řešitelé! Nový (již devatenáctý) ročník FYKOSu teprve začíná a chtěli bycho dát příležitost vše studentů ještě se zapojit do řešení našeho seináře. Chceš zayslet nad fyzikálníi úlohai a probléy či

Více

Systémy finančních toků a jejich využití v praxi

Systémy finančních toků a jejich využití v praxi UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Systéy finančních toků a jejich využití v praxi Vedoucí bakalářské práce: Mgr.

Více

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t Dilatae času 1 Na kosmiké lodi zdalujíí se od Země ryhlostí,1 probíhal určitý děj, který podle měření účastníků letu tral jednu hodinu Jak dlouho trá tento děj pro pozoroatele na Zemi? Je možné, aby děj

Více

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1

Více

1A Impedance dvojpólu

1A Impedance dvojpólu 1A pedance dvojpólu Cíl úlohy Na praktických příkladech procvičit výpočty odulů a arguentů ipedancí různých dvojpólů. Na základních typech prakticky užívaných obvodů ověřit ěření příou souvislost ezi ipedancí

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

POTENCIOMETRICKÁ TITRAČNÍ KŘIVKA Stanovení hydroxidu a uhličitanu vedle sebe dle Wardera

POTENCIOMETRICKÁ TITRAČNÍ KŘIVKA Stanovení hydroxidu a uhličitanu vedle sebe dle Wardera Úloha č. 10 POTENCIOMETRICKÁ TITRAČNÍ KŘIVKA Stanovení hydroxidu a uhličitanu vedle sebe dle Wardera Princip Potencioetrické titrace jsou jednou z nejrozšířenějších elektrocheických etod kvantitativního

Více