Kinematika hmotného bodu

Rozměr: px
Začít zobrazení ze stránky:

Download "Kinematika hmotného bodu"

Transkript

1 DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld Příkld... 3 Rychlos... 3 Zrychlení... 4 Tečné normáloé zrychlení... 4 Klsifikce pohybů... 5 Přímočrý pohyb... 5 Křiočrý pohyb... 6 Kruhoý pohyb... 6 Úhloá dráh... 7 Souřdnice při kruhoém pohybu... 7 Úhloá rychlos... 7 Úhloé zrychlení...7 Souislos obodoých úhloých eličin... 7 Period, frekence, úhloá frekence... 8 Pel Schuer 7-1 (8) - Kinemik hmoného bodu

2 DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Klsická mechnik Klsická mechnik (dále jen mechnik) suduje mechnický pohyb. Kinemik se zbýá jeho popisem prosoru čse dynmik suduje příčiny pohybu. Mechnický pohyb je změn zájemné polohy ěles prosoru čse. Klsická mechnik splňuje podmínku, že rychlosi ěles jsou mnohem menší než rychlos sěl e kuu c 3. m.s. KINEMATIKA -popisprosoru čse bez užoání příčin pohybu jeho změn MECHANIKA DYNAMIKA - sudium příčin pohybu jeho změn STATIKA - zlášní čás mechniky, pohyb nensáá Hmoný bod je ěleso nenuloé hmonosi, jehož geomerické rozměry jsou znedbelně mlé. Vzžný sysém Pohyb je reliní, proo je nuno zés zžný sysém (zžnou sousu). Se zžným sysémem spojíme pohyb ěles. Nejznámější zžný sysém je proúhlý souřdný sysém (krézský), kerý je znázorněn n obr. 1. Polohoý ekor Polohoý ekor určuje polohu bodu. Jeho počáeční bod leží počáku souřdné sousy jeho koncoý bod splýá s polohou, kerou určuje. Velikos polohoého ekoru je (šimněe si znčení) souřdnice z r r P y z. (1) i 1; ; Jednokoý polohoý ekor je definoán poměrem j 1 ; ; r r k ; 1 ;. () r r i yj zk Jeho elikos je jedn je bezrozměrný. os z bod P je počáek (;;) souřdnice os r zákldní ekor j obr. 1 Krézský souřdný sysém souřdnice y os y Trjekorie Množin koncoých bodů polohoého ekoru r r je rjekorie. Je o křik, po keré se hmoný bod pohybuje. Pel Schuer 7 - (8) - Kinemik hmoného bodu

3 DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Prmerické ronice rjekorie Čsoá záislos polohoého ekoru je ekoroá ronice popisující křiku prosoru. r f ( ) [ ; y ; z]. (3) Kždá souřdnice ekoroé funkce předsuje jednu prmerickou ronici rjekorie. z Trjekorie je nkreslená n obr.. Kždý polohoý ekor, určující rjekorii, zčíná r = ()i + y()j + z()k počáku souřdnic končí n rjekorii. Vekor r ( ) určuje polohu počáku rjekorie, ekor r ( ) určuje konec rjek- r () orie, obecný bod n rjekorii je určen ekorem r ( ). Množin šech koncoých bodů r ( +) polohoých ekorů je rjekorie. r ( ) P y Příkld 1 Je dán polohoý ekor r 1 ; 5; cm. Jká je jeho elikos? r 1 5 obr. Trjekorie souřdné sousě r cm Velikos zdného ekoru je 13 cm. Příkld Jká je elikos zákldních ekorů? z i i 1 1, j j 1 1, k k 1 1. r () r (+) Zákldní ekory jsou jednokoé. Rychlos P y Okmžiá rychlos je dán změnou polohy z jednoku čsu. Určuje ji ronice (je definoán) dr. (4) Jednok rychlosi je m.s -1. Ronici (4) obr. 3 K ysělení definice rychlosi čeme ko: rychlos je derice polohoého ekoru podle čsu. Okmžiá rychlos má ečný směr k rjekorii. Ronice (4) předsuje 3 složkoé ronice. Pel Schuer 7-3 (8) - Kinemik hmoného bodu

4 DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ d, d y y, d z z. Velikos rychlosi se zjišťuje jko elikos ekoru, edy (5) d d y d z d s y z, (6) kde s je délk dráhy. Dericí délky dráhy nezjisíme směr rychlosi, zjisíme jen elikos rychlosi. Zrychlení Okmžié zrychlení je dáno změnou ekoru rychlosi z jednoku čsu. Určuje ho ronice (zrychlení je definoáno) d. (7) Jednok zrychlení je m.s -. Ronici (7) čeme ko: zrychlení je derice ekoru rychlosi podle čsu. Okmžié zrychlení nemá obecně směr ázný k rjekorii. Ronice (7) předsuje 3 složkoé ronice, podobně jko je omu u rychlosi ronici (5). Tečné normáloé zrychlení obr. 4 K ysělení definice zrychlení Zrychlení čso rozkládáme n ečnou normáloou n složku zrychlení n. (8) Tečná složk zrychlení má směr ečny normáloá směr normály (kolmice) k rjekorii. Velikos ěcho složek je d, (9) n, R kde je elikos rychlosi R je poloměr křiosi rjekorie, obojí mísě rozkldu ekoru zrychlení, jk ukzuje obr. 4. Velikos zrychlení se zjišťuje jko elikos ekoru nebo z ečné normáloé složky zrychlení. (1) y z n Pel Schuer 7-4 (8) - Kinemik hmoného bodu

5 DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Klsifikce pohybů Pohyby lze klsifiko zejmén 1) podle ru dráhy ) podle chrkeru rychlosi. Podle ru dráhy Přímočrý - ekor má sále sejný směr, kerý splýá s přímkou, po níž se hmoný bod pohybuje. Křiočrý - ekor mění sůj směr, kerý je ždy ečný ke křice, po níž se hmoný bod pohybuje. Speciálními křiočrými pohyby jsou kruhoý pohyb rhy. Podle chrkeru rychlosi Někeré z uedených pohybů si popíšeme. Neronoměrný - ekor rychlosi sou elikos mění, kons. Speciálním neronoměrným pohybem je pohyb ronoměrně zrychlený. Ronoměrný - ekor rychlosi má sále sejnou elikos kons. Přímočrý pohyb Dráhou přímočrého pohybu je přímk. Proo sčí popis souřdné sousě s jedinou osou. Pohyb edy sčí pops eličinmi s,,. Rychlos přímočrého pohybu ododíme z definiční ronice zrychleni (7), sčí ji nps pro směr. d d d. (11) Dále budeme pokrčo pro pohyb ronoměrně zrychlený, splňující podmínku kons. d. (1) Rychlos přímočrého pohybu ronoměrně zrychleného je edy dán ronicí. (13) Polohu přímočrého pohybu n ose, edy souřdnici, ododíme z definiční ronice rychlosi (4), sčí ji nps pro směr. d d d. (14) Dále budeme opě pokrčo pro pohyb ronoměrně zrychlený, splňující ronici (13) podmínku kons. 1 ( ) d d. (15) Pel Schuer 7-5 (8) - Kinemik hmoného bodu

6 DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Délk dráhy přímočrého pohybu ronoměrně zrychleného je edy dán ronicí s 1. (16) dráh s / m rychlos / m.s -1 čs / s čs / s obr. 5 Čsoá záislos dráhy rychlosi ronoměrně zrychleného přímočrého pohybu Křiočrý pohyb Ke křiočrému pohybu už musíme obecně použí ekoroý popis. Bez odození npišme, že pro popis obecného křiočrého pohybu prosoru plí nlogické ronice jko předchozím odsci s ím rozdílem, že k popisu použijeme ekory. Bude edy pli následující ses ronic (méně použíné nejsou zýrzněné). Pro pohyb s obecným zrychlením:. (17) Pro pohyb ronoměrně zrychlený s konsnním zrychlením:, (18) r 1 r. (19) Kruhoý pohyb Kruhoý pohyb je speciální přípd křiočrého pohyby. Probíhá roině po kruhoé rjekorii, proo k jeho popisu sčí souřdný sysém s osmi, y. Kruhoý pohyb znázorněný prosoru je n obr. 4, znázorněný roině je n obr. 7. Kruhoý pohyb se nejýhodněji popisuje kruhoými eličinmi, keré zedeme. obr. 6 Znázornění kruhoého pohybu prosoru Pel Schuer 7-6 (8) - Kinemik hmoného bodu

7 DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ y y Úhloá dráh předsuje úhel, kerý sírá průodič (polohoý ekor) pohybujícího se bodu s osou. Úhloá dráh nrůsá při kždé proedené oáčce o může edy dosáhnou liboolně ysokých hodno. Souřdnice při kruhoém pohybu S yužiím úhloé dráhy obr. 7 lehce nejdeme souřdnice hmoného bodu pohybujícího se po kružnici. Souřdnice jsou r cos, () y r sin. Pokud z úhloou dráhu dosdíme někeré z níže uedených yjádření úhloé dráhy, získáme čsoou záislos souřdnic. Úhloá rychlos je definoán ronicí d, (1) Úhloé zrychlení obr. 7 Znázornění kruhoého pohybu roině je definoáno ronicí d, () Definice uedené ronicích (1) () jsou elmi podobné k definicím obecného pohybu (4) (7). Vekoroý popis kruhoého pohybu není obykle nuný, proože šechny ekory,, jsou souběžné leží ose roce, jk nznčuje obr. 6, kde je zkreslen ekor úhloé rychlosi. N obr. 6 je roněž idě, že ekory r,, jsou zájemně kolmé. Dále již nebudeme ekoroý popis použí. Řešením ronic (1) (), sejným posupem jko u přímočrého pohybu, dosneme zákldní ronice popisující čsoé záislosi úhloé rychlosi úhloé dráhy. Předpokládejme ronoměrně zrychlený kruhoá pohyb, kons., poom, (3) 1. (4) Souislos obodoých úhloých eličin Obodoými eličinmi kruhoého pohybu jsou obodoá dráh s, obodoá rychlos, obodoé zrychlení. Úhloými eličinmi jsou,,. Mezi nimi lze njí následující jednoduché souislosi Pel Schuer 7-7 (8) - Kinemik hmoného bodu

8 DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ s r, (5) r, (6) r. (7) Period, frekence, kruhoá frekence U periodických pohybů, ke kerým pohyb kruhoý pří, zádíme následující eličiny. Period kruhoého pohybu T je čs pořebný k ykonání jedné oáčky. Frekence kruhoého pohybu f je poče oběhů z 1 sekundu. 1 f. (8) T Kruhoá frekence je ron úhloé rychlosi. Její záislos n frekenci njdeme ko. Využijeme oho, že úhloá dráh se po jedné oáčce zýší o čs o periodu T. ( ) ( ( T ) oud získáme T ) ( ) T, (9) f. (3) T Pel Schuer 7-8 (8) - Kinemik hmoného bodu

O s 0 =d s Obr. 2. 1

O s 0 =d s Obr. 2. 1 3 KINEMATIKA BODU Kinemik jko čás mechniky je nuk o pohybu ěles bez ohledu n síly, keré pohyb způsobily Těles nebudou mí nšich úhách hmonos budou popsán jen sými geomerickými lsnosmi Ty budou během pohybu

Více

Rovnoměrně zrychlený pohyb v grafech

Rovnoměrně zrychlený pohyb v grafech ..9 Ronoměrně zrychlený pohyb grfech Předpokldy: 4 Př. : N obrázku jsou nkresleny grfy dráhy, rychlosi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. s,, ronoměrně zrychlený pohyb: zrychlení

Více

Mechanický pohyb vyšetřujeme jednak z hlediska kinematiky, jednak z hlediska dynamiky

Mechanický pohyb vyšetřujeme jednak z hlediska kinematiky, jednak z hlediska dynamiky 1.ÚVOD Mechnický pohyb yšeřujeme jednk z hledik kinemiky, jednk z hledik dynmiky Kinemik je čá mechniky, kerá popiuje pohyb ěle (rjekorie, dráh, rychlo ), nezkoumá šk příčiny pohybu, neužuje íly, keré

Více

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I ..5 Řešení příkldů n ronoměrně zrychlený pohyb I Předpokldy: 4 Pedgogická poznámk: Cílem hodiny je, by se sudeni nučili smosně řeši příkldy. Aby dokázli njí zh, kerý umožňuje příkld yřeši, dokázli ze zhů

Více

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb 1.1.20 Sbírk n procvičení vzhů mezi veličinmi popisujícími pohyb Máme ři veličiny popisující pohyb dv vzhy, keré je spojují nvzájem. s v = Rychlos je změn dráhy z změnu čsu (rychlos říká, jk se v čse mění

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Veličiny a jednotky v mechanice

Veličiny a jednotky v mechanice Veličiny jednoky mechnice Vekory Dokže že úhlopříčky kosočerce jsou n sebe kolmé Řešení Pokládejme srny kosočerce b i jeho úhlopříčky c d z ekory Pro elikosi srn plí b Pro úhlopříčky plí c + b d b Sklární

Více

Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo?

Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo? ..7 Ronoměrně zrychlený pohyb příkldech III Předpokldy: 6 Pedgogická poznámk: Hodinu dělím n dě části: 5 minut n prní d příkldy zbytek n osttní. I když šichni nestihnout spočítt druhý příkld je potřeb,

Více

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

Sbírka B - Př. 1.1.5.3

Sbírka B - Př. 1.1.5.3 ..5 Ronoměrný pohyb Příklady sřední obížnosi Sbírka B - Př...5. Křižoakou projel rakor rychlosí 3 km/h. Za dese minu po něm projela ouo křižoakou sejným směrem moorka rychlosí 54 km/h. Za jak dlouho a

Více

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projek relizoný n SPŠ Noé Měo nd Meují finnční podporou Operční progru Vzděláání pro konkurencechopno Králoéhrdeckého krje Úod do dyniky Ing. Jn Jeelík Dynik je čá echniky, kerá e zbýá pohybe ěle ohlede

Více

1.1.11 Rovnoměrný pohyb VI

1.1.11 Rovnoměrný pohyb VI 1.1.11 onoměrný pohyb VI ředpokldy: 11 edgogická poznámk: Náledující příkld je dokončení z minulé hodiny. Sudeni by měli mí grf polohy nkrelený z minulé hodiny nebo z domo. ř. 1: er yjede edm hodin ráno

Více

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2 Odození zorců pro ýpočet objemů porchů některých těles užitím integrálního počtu Objem rotčního těles, které znikne rotcí funkce y f(x) n interlu, b kolem osy x, lze spočítt podle zorce b V f (x) dx Porch

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

Hlavní body. Úvod do nauky o kmitech Harmonické kmity Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice

Více

5.2.7 Odchylka přímky a roviny

5.2.7 Odchylka přímky a roviny 57 Odchylk přímky roiny Předpokldy: 50, 506 Jk odchylk přímky roiny? o by měl definice splňot: podobně jko u osttních ěcí ji musíme přeést n něco co už umíme (si odchylku dou přímek), měl by být jednoznčná,

Více

K Mechanika styku kolo vozovka

K Mechanika styku kolo vozovka Mechanika styku kolo ozoka Toto téma se zabýá kinematikou a dynamikou kola silničních ozidel. Problematika styku kolo ozoka má zásadní ýznam pro stanoení parametrů jízdy silničních ozidel, neboť má li

Více

Dopravní kinematika a grafy

Dopravní kinematika a grafy Dopraní kinemaika a grafy Sudijní ex pro řešiele F a oaní zájemce o fyziku Přemyl Šediý Io Volf bah 1 Základní pojmy dopraní kinemaiky 1.1 Poloha.... 1. Rychlo... 3 1.3 Zrychlení.... 5 Grafy dopraní kinemaice

Více

5.2.9 Vzdálenost bodu od roviny

5.2.9 Vzdálenost bodu od roviny 5..9 zdálenost bodu od roiny ředpokldy: 508 Opkoání z minulé hodiny (definice zdálenosti bodu od přímky): Je dán přímk p bod. zdáleností bodu od přímky p rozumíme zdálenost bodu od bodu, který je ptou

Více

Výpočet obsahu rovinného obrazce

Výpočet obsahu rovinného obrazce Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-07 Téma: Mechanika a kinematika Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TESTY Testy Část 1 1. Čím se zabývá kinematika? 2. Které těleso

Více

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

3D grafika. Modelování. Objemový model. Hranový model. Přednáška 9

3D grafika. Modelování. Objemový model. Hranový model. Přednáška 9 Přednášk 9 3D grfik Žár J. Beneš B. Felkel P. Moderní počíčová grfik. Compuer Press Brno 998. ISBN 8-7226-49-9. Pelikán J. PC-prosorové modelování. Grd Prh 992. ISBN 8-85424-53-3. Beneš B. Felkel P. Sochor

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

kolmo dolů (její velikost se prakticky nemění) odpor vzduchu F

kolmo dolů (její velikost se prakticky nemění) odpor vzduchu F .6.4 Sislý r Předpoklady: 6, 6 Pedagogická poznámka: Obsa odpoídá spíše děma yučoacím odinác. Z lediska dalšíc odin je důležié dopočía se k příkladu číslo 7. Hodina paří mezi y, keré záisí na znalosec

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..6 Znaménka Předpoklad: 3, 5 Opakoání: Veličin s elikostí a směrem = ektoroé eličin Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Hledání úhlů se známou hodnotou goniometrické funkce

Hledání úhlů se známou hodnotou goniometrické funkce 4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

3. SEMINÁŘ Z MECHANIKY

3. SEMINÁŘ Z MECHANIKY - 4-3. SEMINÁŘ Z MECHANIKY 3. Auomobil jel po álnici rycloí o álé elikoi. V okmžiku = 8 min jel kolem milníku újem 8 km, okmžiku 3 = 8 3 min kolem milníku újem 44 km. Úkoly: ) Určee eliko rycloi uomobilu.

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

KINEMATIKA. 1. Základní kinematické veličiny

KINEMATIKA. 1. Základní kinematické veličiny KINEMATIKA. Základní kinemaické veličiny Tao čá fyziky popiuje pohyb ěle. VZTAŽNÁ SOUSTAVA je ěleo nebo ouava ěle, ke kerým vzahujeme pohyb nebo klid ledovaného ělea. Aboluní klid neexiuje, proože pohyb

Více

BEZPEČNOST PŘI PRŮJEZDU VOZIDLA SMĚROVÝN OBLOUKEM A SAFE PASSAGE OF A VEHICLE THROUGH A CURVE

BEZPEČNOST PŘI PRŮJEZDU VOZIDLA SMĚROVÝN OBLOUKEM A SAFE PASSAGE OF A VEHICLE THROUGH A CURVE 46 Proceedings of he Conference "Modern Safey Technologies in Transporaion - MOSATT 005" BEZPEČNOST PŘI PŮJEZDU VOZIDLA SMĚOVÝN OBLOUKEM A SAFE PASSAGE OF A VEHICLE THOUGH A CUVE Mirosla VALA - Oakar PETŘÍČEK

Více

FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2

FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2 . Do dou sejných nádob nalijeme odu a ruť o sejných objemech a eploách. Jaký bude poměr přírůsků eplo kapalin, jesliže obě kapaliny přijmou při zahříání sejné eplo? V = V 2 =V, T = T 2, Q =Q 2 c = 9 J

Více

FYZIKA I. Pohyb těles po podložce

FYZIKA I. Pohyb těles po podložce VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová

Více

DvojrozmÏrn a trojrozmïrn pohyb

DvojrozmÏrn a trojrozmïrn pohyb 4 DojrozmÏrn trojrozmïrn pohb CirkusoÈ umïnì odjkûi p itholo pozornost di k. Proto tkè blo e sè dobï elmi rozöì enè po celèm sïtï e zn m ch rtistick ch rodin ch se dïdilo z generce n generci. V roce 1922

Více

9. Planimetrie 1 bod

9. Planimetrie 1 bod 9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

14 Kuželosečky v základní poloze

14 Kuželosečky v základní poloze 4 Kuželosečk v zákldní poloze Následující tet 4 7 se týkjí geometrie v rovině. Až dosud jsme studovli útvr lineární (v nltickém vjádření l vžd proměnné,, z v první mocnině). Nní se udeme zývt některými

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

8 Mongeovo promítání

8 Mongeovo promítání 8 Mongeovo promítání Pomocí metod uvedených v kpitolách 3. 4., 3. 6. bychom mohli promítnout do roviny 3 libovolný útvr U E. V prxi všk většinou nestčí sestrojit jeden průmět. Z průmětu útvru U je většinou

Více

Mechanika tekutin. 21. Určete, do jaké hloubky h se ponoří kužel výšky L = 100 mm z materiálu o hustotě

Mechanika tekutin. 21. Určete, do jaké hloubky h se ponoří kužel výšky L = 100 mm z materiálu o hustotě Mecanika ekuin. Určee do jaké loubky se ponoří kužel ýšky L mm z maeriálu o usoě 8 e odě s usoou. Kužel je zanořen do ody sým kg/m rcolem. kg/m Řešení: Podle Arcimédoa zákona při ploání musí bý ía G kužele

Více

Měření napjatosti na povrchu tělesa Tenkostěnná trubka zatížená krutem a vnitřním přetlakem

Měření napjatosti na povrchu tělesa Tenkostěnná trubka zatížená krutem a vnitřním přetlakem 4. lekce Měření npjosi n povrcu ěles Tenkosěnná rubk zížená kruem vniřním přelkem Obs: 4.1 Úvod 4. Kru enkosěnné válcové rubk 4.3 Tenkosěnná lková válcová nádob 3 4.4 Dvouosá npjos Morov kružnice 4 4.5

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost: 753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

Modelování a simulace regulátorů a čidel

Modelování a simulace regulátorů a čidel Modeloání a simulace regulátorů a čidel. Modeloání a simulace PI regulátoru Přenos PI regulátoru je yjádřen následujícím ztahem F( p) = ( + p ) p V Simulinu je tento blo obsažen nihoně prů. Bohužel použití

Více

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut. 21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Vzdálenosti přímek

Vzdálenosti přímek 5..11 Vzdálenosti přímek Předpokldy: 510 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

II. 5. Aplikace integrálního počtu

II. 5. Aplikace integrálního počtu 494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu

Více

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Kinemaika Základní pojmy Ronoměný přímočaý pohyb Ronoměně zychlený přímočaý pohyb Ronoměný pohyb po kužnici Základní pojmy Kinemaika - popiuje pohyb ělea, neuduje jeho příčiny Klid (pohyb) - učujeme zhledem

Více

Mechanismy s konstantním převodem

Mechanismy s konstantním převodem Mechanismy s konsanním přeodem Obsah přednášky : eičina - přeod mechanismu, aié soukoí, ozubené soukoí, předohoé a paneoé soukoí, kadkosoje a aiáoy. Doba sudia : asi hodina Cí přednášky : seznámi sudeny

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34. I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

POSOUZENÍ VÝKONNOSTI STYKOVÉ KŘIŽOVATKY PO ZMĚNĚ PŘEDNOSTI V JÍZDĚ APPRAISAL OF T-INTERSECTION CAPACITY AFTER TRANSFORMATION OF TRAFFIC PRIORITY

POSOUZENÍ VÝKONNOSTI STYKOVÉ KŘIŽOVATKY PO ZMĚNĚ PŘEDNOSTI V JÍZDĚ APPRAISAL OF T-INTERSECTION CAPACITY AFTER TRANSFORMATION OF TRAFFIC PRIORITY OSOUZENÍ VÝKONNOST STYKOVÉ KŘŽOVATKY O ZMĚNĚ ŘENOST V JÍZĚ ARASA OF T-NTERSETON AATY AFTER TRANSFORMATON OF TRAFF RORTY Vldisl Křid 1 Anoce: říspěek se zbýá problémem kpciního ýpoču neřízené sykoé křižoky.

Více

Bipolární tranzistor jako

Bipolární tranzistor jako Elekronické součásky - laboraorní cvičení 1 Bipolární ranzisor jako Úkol: 1. Bipolární ranzisor jako řízený odpor (spínač) ověření činnosi. 2. Unipolární ranzisor jako řízený odpor (spínač) ověření činnosi.

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

6. Optika. Konstrukce vlnoploch pro světlo:

6. Optika. Konstrukce vlnoploch pro světlo: 6. Opi 6. Záldní pojmy Těles, erá vysíljí svělo, jsou svěelné zdroje. Zářivá energie v nich vzniá přeměnou z energie elericé, chemicé, jderné. Zdrojem svěl mohou bý i osvělená ěles (vidíme je díy odrzu

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU

SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro udržitelný rozvoj v sítí spolupracujících škol,

Více

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé. Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,

Více

Úloha VI.3... pracovní pohovor

Úloha VI.3... pracovní pohovor Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA DOPLŇKOVÉ TEXTY BB0 PAVEL CHAUER INTERNÍ MATERIÁL FAT VUT V BRNĚ HYDRODYNAMIKA Obsah Úod... Průtok kapaliny... Ronice kontinuity... 3 Energie proudící kapaliny... 3 Objemoá hustota energie... 3 Bernoulliho

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

Směrové řízení vozidla

Směrové řízení vozidla Směroé řízení ozidla Ing. Pael Brabec, Ph.D. TEHNIKÁ UNIVERITA V LIBERI Fakulta mechatroniky, informatiky a mezioboroých studií Tento materiál znikl rámci projektu ESF.1.07/..00/07.047 Reflexe požadaků

Více

1.3.5 Dynamika pohybu po kružnici I

1.3.5 Dynamika pohybu po kružnici I 1.3.5 Dynamika pohybu po kružnici I Předpoklady: 1304 Při pohybu po kružnici je výhodnější popisova pohyb pomocí úhlových veličin, keré korespondují s normálními veličinami, keré jsme používali dříve.

Více

11. Dynamika Úvod do dynamiky

11. Dynamika Úvod do dynamiky 11. Dynamika 1 11.1 Úvod do dynamiky Dynamika je částí mechaniky, která se zabývá studiem pohybu hmotných bodů a těles při působení sil. V dynamice se řeší takové případy, kdy síly působící na dokonale

Více

Pravoúhlá axonometrie

Pravoúhlá axonometrie Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou

Více

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice Několik dalších ukázek: Eponenciální rovnice. Řešte v R: a) 5 +. 5 - = 5 - b) 5 9 4 c) 7 + = 5 d) = e) + + = f) 6 4 = g) 4 8.. 9 9 S : a) na každé straně rovnice musí být základ 5, aby se pak základy mohly

Více

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3 Fyzikajekolemnás(Polohaajejízměny) Sudijní ex pro řešiele FO a osaní zájemce o fyziku Ivo Volf Miroslava Jarešová Obsah Slovo úvodem 3 1 Popis polohy ělesa 4 1.1 Jednorozměrnýprosor.......................

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

29. OBJEMY A POVRCHY TĚLES

29. OBJEMY A POVRCHY TĚLES 9. OBJEMY A POVRCHY TĚLES 9.. Vypočítejte poch kádu ABCDEFGH, jestliže ) AB =, BC = b, BH = u b) AB =, BH = u, odchylk AG EH je ϕ H G Poch kádu učíme podle zoce: S = b + c + bc ( ) c E F D b C ) A B u

Více