K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze Malé kmity Leoš Dvořák, MFF UK Praha, 2014

Rozměr: px
Začít zobrazení ze stránky:

Download "K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze Malé kmity Leoš Dvořák, MFF UK Praha, 2014"

Transkript

1 K přednášce NUFY08 Teoetcá mechana pozatímní učební text, veze 0 4. Malé mty Leoš Dvořá, MFF UK Paha, 04 Malé mty soustav hmotných bodů Nyní se budeme věnovat chování soustavy hmotných bodů v oolí ovnovážné polohy. Toto chování lze totž často spočítat ednoduše než v obecném případě. Příladem e pohyb našeho oblíbeného matematcého yvadla: Dobu mtu po malé výchyly učíme snadno ze známého vztahu π g l, učt po velé výchyly e mnohem obtížněší. Potencální enege v oolí ovnovážné polohy Podíveme se nepve na ednoduchý ednoozměný případ. Uvažume hmotný bod, ehož pohyb e vázán na řvu, třeba pávě na užnc, ao v případě matematcého yvadla. Rovnovážná poloha e v nenžším bodě řvy, tedy v x = x. 0 V oolí ovnovážné polohy můžeme tva řvy apoxmovat paabolou (na obázu e vyznačena tmavozeleným body). Potencální enege bodu v homogenním V = mgy = mg x x 0. Kvadatcé závslost V odpovídá síla přímo úměná výchylce to znamená, že v naší apoxmac se hmotný bod pohybue steně ao závaží na pužně. Fevenc esp. peodu mtů lze tedy už snadno spočítat. gavtačním pol e tedy přblžně ( ) Steně budeme postupovat v případě soustavy hmotných bodů. Potencální eneg v oolí ovnovážné polohy budeme apoxmovat členy, teé budou duhým mocnnam výchyle. Potože budeme uvažovat soustavu hmotných bodů s vazbam, bude vhodné pacovat v zobecněných souřadncích q, =,,, vz ap.. Souřadnce odpovídaící ovnovážné poloze budeme značt q, výchyly z ovnovážné polohy pa q q = δq =. 3 Potencální eneg v oolí ovnovážné polohy budeme apoxmovat Tayloovým ozvoem 4 V V V q V q q q q ( ) 3 ( ) = ( ) + δ + δ δ + O ( δ q ) (4.) = = = q q Členy třetího a vyššího řádu, označené ve (4.) symbolem O, budeme zanedbávat. 5 V q e onstanta. Ovšem potencální enege e defnována až na onstantu a navíc Člen ( ) lbovolná adtvní onstanta v lagangánu nezmění Lagangeovy ovnce. To znamená, že tento člen můžeme vypustt. Z obázu e vdět, že po větší výchyly se sutečná potencální enege od naší apoxmace lší (oanžová řva e výš, než zelené body). Po malé výchyly vša paabola apoxmue sutečnou řvu velm dobře. V Fx = = mg ( x x0 ) 3 Výchyly z ovnovážné polohy, tedy, pa vezmeme ao nové souřadnce místo souřadnc q, abychom nemusel pořád vypsovat q q nebo δ q. 4 Přpomeňme, že záps q zde symbolzue všechny poměnné, tedy q, q,, q. 5 S výmou patologcých případů budou tyto členy po malé výchyly zanedbatelně malé opot členům, teé v (4.) ponecháme.

2 K přednášce NUFY08 Teoetcá mechana pozatímní učební text, veze 0 4. Malé mty Leoš Dvořá, MFF UK Paha, 04 Co členy pvního řádu? Z aptoly víme, že pacální devace V podle zobecněných poměnných sou zobecněné síly, V = Q. Ve (4.) ale tyto devace beeme v ovnovážné poloze ovšem v ní sou všechny síly nulové! To znamená, že členy pvního řádu sou všechny ovny nule 6. Ve (4.) tedy zbudou pouze členy duhého řádu: V V( q ) = δq δq = = q q q Duhé devace potencální enege v ovnovážné poloze sou onstanty. Po stučnost zápsu e označíme Ja sme už avzoval výše, od souřadnc V q ozn. = V q předeme souřadncím enege e pa v naší apoxmac dána ednoduchým výazem 7. (4.) = q q. Potencální V = = V =. (4.3) Poznameneme eště, že v dalších úpavách využeme sutečnost, že V sou symetcé vzhledem záměně ndexů, tedy že platí 8 Knetcá enege Knetcá enege soustavy N hmotných bodů e Potože vazby nezávsí na čase 9 x = x q ( t) V N = = V. (4.4) T= mx. (4.5) ( ), e a složy ychlost sou dány vztahy x q. (4.6) = = Po dosazení (4.6) do (4.5) dostáváme 6 Tentýž výslede dostaneme, dyž s uvědomíme, že ovnováha e v mnmu potencální enege. V mnmu musí být všechny pvní pacální devace V ovny nule. 7 Zde ž nepíšeme symbol ovná se přblžně, tedy =. V něteých učebncích se apoxmace potencální enege odlšue od přesné hodnoty V zvláštním symbolem, např. V, my vša po ednoduchost budeme používat en symbol V, z ontextu budeme vědět, že se edná o apoxmac. 8 Předpoládáme, že podmíny po záměnnost duhých pacálních devací sou splněné. 9 Poud by vazby závsely na čase, zřemě by nemohla exstovat v čase stálá ovnovážná poloha. Je tedy ozumné, že se v našem odvození omezueme se na vazby holonomní sleonomní.

3 K přednášce NUFY08 Teoetcá mechana pozatímní učební text, veze 0 4. Malé mty Leoš Dvořá, MFF UK Paha, 04 N N T= mx = m q q = = = = =. (4.7) N = m qq = = = Předeme-l souřadncím = q q, e zřemé, že q =. Navíc, estlže výchyly z ovnovážné polohy považueme za malé, e asné, ychlost sou taé malé. (Jestlže výchyly sou úměné ~ ε ~ něaé malé velčně ε,, e taé ε.) To znamená, že v (4.7) už máme apoxmac netcé enege steného řádu ao byla apoxmace (4.3) (tedy řádu ε ), estlže vezmeme výazy v ulatých závoách na duhém řádu (4.7) ao onstantní: (4.8) N M = m = q q q q Pacální devace x podle q přtom beeme v ovnovážné poloze 0. Výslede možná složtě vypadaících úvah e ednoduchý: netcá enege e v dané apoxmac T = M. (4.9) = = Poznameneme, že podobně ao V, sou oefcenty M symetcé vůč přehození ndexů : M = M. (4.0) Lagangán a Lagangeovy ovnce po malé mty Ze (4.3) a (4.9) oamžtě dostaneme vztah po lagangán v apoxmac malých mtů : L= T V = M V ( ) = = (4.) Po Lagangeovy ovnce. duhu potřebueme pacální devace L = = l l = = = = l ( M V ) M ( ). (4.) 0 Ve(4.8) byly tyto devace bány v atuální poloze hmotných bodů. Potože de o polohy blízo ovnováhy, lší se hodnoty devací en nepatně: = + O( ε ). Členy ( ) ql ql taové členy už v našem odvození zanedbáváme. Je to vdět přímo z (4.8). 3 O ε by po vynásobení qq měly řád ε 3 ale Je fascnuící, že tato ednoduchý obecný tva lagangánu popsue systémy od ednoho závaží na pužně č matematcého yvadla, přes neůzněší soustavy hmotných bodů spoených pužnam až třeba po 0 6 atomů v něaém ystalu, poud bychom na dané atomy pohlížel ao na lascé hmotné body spoené pužným vazbam.

4 K přednášce NUFY08 Teoetcá mechana pozatímní učební text, veze 0 4. Malé mty Leoš Dvořá, MFF UK Paha, 04 Ovšem ( ) = δ + δ l. 3 l l (4.3) taže z (4.) dostáváme L = M δ + M δ = M. 4 l l l l = = = = = (4.4) Naposto steným postupem vyde po devace podle L = V. (4.5) l l = Lagangeovy ovnce po dosazení (4.4) a (4.5) daí 5 d L L = dt 0 ( M V ) = + = 0 (4.6) po =,,. Máme tedy ovnc po neznámých. Fevence malých mtů Ja řešt ovnce (4.6)? A hlavně, a z nch učt fevence mtů? Zusme nedříve předpoládat, že všechny hmotné body mtaí se stenou fevencí ω: = e ω t 6 (4.7) Ampltudy sou po ůzná obecně ůzné, fevence ω e po všechna stená. Po dvoím ω devování podle času e = ω e t. Dosazení do (4.6) dá ( ω M V ) e = ωt + = 0. 7 Po zácení e ω t -, esp. vynásobení (-e ω t ) dostaneme = + a = 0 po l a =. 3 Je totž ( ) l l l 7 Zde e vdět, poč bylo výhodné zvolt stenou fevenc; člen e celou ovnc zátt. 4 l 4 Rozmyslete s, že obě sumy vlevo daí opavdu stený příspěve. 5 Mezo e d M V dt + = 0 = = 6 Výchyly zapsueme pomocí omplexního fomalsmu, teý sme poznal v úvodním uzu mechany. Postup uvedený dále by vša šel aplovat, poud bychom předpoládal eálná řešení = cos( ω ). ω t t díy tomu můžeme vytnout a následně ím

5 K přednášce NUFY08 Teoetcá mechana pozatímní učební text, veze 0 4. Malé mty Leoš Dvořá, MFF UK Paha, 04 = ( ω ) =, po =,, M V 0. (4.8) To e soustava ovnc po neznámých čísel. Můžeme zapsat v matcovém tvau ω M V ω M V ω M V 0 ω M V ω M V ω M 0 V = ω M 0 V ω M V. (4.9) Můžeme vyřešt po lbovolnou hodnotu ω? Můžeme ale poud e matce na levé staně (4.9) egulání, bude řešením nulový veto, to znamená ampltudy mtů všech bodů budou nulové. Kmtání s nulovou ampltudou ale není žádné mtání! Nenulové ampltudy mtů vydou pouze v případě, dyž matce na levé staně (4.9) e sngulání.. Nutnou a postačuící podmínou po to e, že eí detemnant e oven nule, což můžeme symbolcy zapsat ao det M V ω = 0. (4.0) Pávě tato ovnce učue hodnoty fevencí mtů. Rozepsáním detemnantu bychom dostal polynom -tého stupně v poměnné ω. Podle záladní věty algeby má tento polynom obecně ořenů. To znamená, že ovnce (4.0) má obecně řešení, dává hodnot po fevence ω. 8 Po malé mty tedy dostáváme obecně řešení. (4.) ( n ) ( n ) ωn e t =, n=,, Ja z nch dostat obecné řešení našeho poblému? Rovnce (4.6) sou lneání, taže ech obecné řešení e postě supepozcí řešení (4.): ( n) ωn t e, po,, (4.) n= = = Výsledné mtání e složením mtů ůzných fevencí. 9 O mtech ednotlvých fevencí mluvíme ao o ůzných módech mtání. Př sutečném mtání nemuseí být všechny módy vybuzeny steně, mohou mít ůznou ampltudu. Po aždý ednotlvý mód sou přtom ampltudy mtů ednotlvých bodů svázány ovncem (4.8) esp. (4.9). 8 Ve specálních případech mohou něteé ořeny zmíněného polynomu splývat, tedy být vícenásobné. V taovýchto případech splývaí něteé fevence mtů. Tyto specální případy zde nebudeme blíže dsutovat. V obecném případě dostáváme ůzných fevencí mtů. 9 Přtom de o hamoncé mty. 5

6 K přednášce NUFY08 Teoetcá mechana pozatímní učební text, veze 0 4. Malé mty Leoš Dvořá, MFF UK Paha, 04 Matematcé yvadlo 0 Přílady V příladech v ap. sme po matematcé yvadlo odvodl netcou eneg a potencální eneg T = mv = ml ϕ (4.3) V = mglcosϕ. (4.4) Souřadnce ϕ e přtom pávě odchylou od ovnovážné polohy. Vztah (4.3) po netcou eneg už upavovat nemusíme, má v sobě pávě duhou mocnnu zobecněné ychlost. Potencální eneg bychom mohl ozvíet olem ovnovážné polohy ϕ = 0 s pomocí duhých devací, vz (4.). Jednodušší e ale použít známý ozvo po malá ϕ, cosϕ = ϕ, po ϕ <<. Apoxmace lagangánu po malé mty e tedy L= T V = ml ϕ mglϕ. Lagangeova ovnce d L L = 0 v apoxmac malých mtů po dosazení vychází dt ϕ ϕ d ( ml ϕ) + mgl ϕ = 0. (4.5) dt Rovnce (4.5) e ž ovncí po hamoncé osclace, ϕ+ ωϕ= 0, de ω= g l. Kmty bodu vázaného na řvu Uvažume hmotný bod pohybuící se po něaé řvce, napřílad y= A sn( x). (4.6) Rovnovážná poloha e v x0 ( 3) π novou souřadnc vezmeme x ( 3) =, taže za = π. Potencální enege e V = mgy, de y= Asn( x) = Asn( + 3π ) = Acos( ) = A+ A. T= m x + y = m + A = m. 3 Knetcá enege e ( ) ( sn ) Lagangán (v němž už nepíšeme onstantu v potencální eneg) e v apoxmac po malé mty L= m mga, Lagangeova ovnce pa dává + ga = 0. Odtud fevence malých mtů e ω = ga. 4 0 Už e tu zas Když ono se na něm opavdu řada věcí velm dobře lustue. Adtvní onstantu ž do L nepíšeme. Zde x by muselo být bezozměné. Poud bychom chtěl x měřt např. v metech, musel bychom řvu popsat např. vztahem y= A sn( x B). Zuste s přílad vypočítat po tato zadanou řvu. 3 Pohyb hmotného bodu v y-ovém směu se v netcé eneg v dané apoxmac vůbec nepoevue. Rozmyslete s, že to e ozumné. y A sn x y= A sn x B. 4 Výsledný vztah nevychází ozměově pávě poto, že sme vzal = ( ) a ne ( ) 6

7 K přednášce NUFY08 Teoetcá mechana pozatímní učební text, veze 0 4. Malé mty Leoš Dvořá, MFF UK Paha, 04 Poznáma příladům: Po ednoduchost sme zde uvedl en přílady s edním stupněm volnost. Poto sme nemusel počítat výše uvedeným postupem využívaícím detemnant (v našem případě šlo o matc ) a vyšla en edná fevence mtů. Závěečné poznámy (aneb dy popsaný postup nefungue) Zatím sme mlčy předpoládal, že ω e eálné. Ovšem (4.0) dá polynom v poměnné ω. Co dyž něteé ořeny tohoto polynomu sou záponé? Pa ω bude yze magnání. To ale znamená, že ω t (4.7) dá e a e + ω t něaému sutečnému pohybu?. Tato řešení zevně nepopsuí mtání! Odpovídá tento případ Odpovídá ovšem pohybu v blízost lablní ovnovážné polohy. 5 I toto řešení e zaímavé. Z eho časového vývoe lze vdět, že napřílad ulča položená na velou oul v nepatné vzdálenost od vcholu se bude zpočátu pohybovat ta, že eí vzdálenost od vcholu bude naůstat exponencálně. Může ovšem nastat případ, dy nám popsaná apoxmace využívaící ozvo do duhého řádu selže úplně. V ozvo (4.) sme ponechal pouze členy duhého řádu. Ovšem co dyž sou všechny tyto 6 členy duhého řádu nulové? Pa bychom členy vyššího řádu nemohl zanedbat. Příladem by byl 4 oscláto, v němž by potencální enege závsela na výchylce podle vztahu V = x. Taovýto oscláto mtá, ale nede o hamoncé mty. 5 Naše řešení e apoxmací pohybu v oolí lablní ovnovážné polohy, ale en na chvíl. Za něaou dobu + ω t odchyly od ovnovážné polohy vzostou (díy členu e ), přestanou být malé a apoxmace, teé sme výše užíval, přestanou být použtelné. 6 Tedy všechny oefcenty V ve vztazích (4.3) a následuících by byly ovny nule. 7

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze Lagrangeovy rovnice 2. druhu Leoš Dvořák, MFF UK Praha, 2014

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze Lagrangeovy rovnice 2. druhu Leoš Dvořák, MFF UK Praha, 2014 K přednášce UFY08 Teoetcá mechana pozatímní učební text, veze 0 Lagangeovy ovnce duhu Leoš Dvořá, MFF UK Paha, 04 Lagangeovy ovnce duhého duhu V této aptole ž půde o dynamu, tedy o pohyb soustavy hmotných

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

Q N v místě r. Zobecnění Coulombova zákona Q 3 Q 4 Q 1 Q 2

Q N v místě r. Zobecnění Coulombova zákona Q 3 Q 4 Q 1 Q 2 Zobecnění Coulombova zákona Uvažme nyní, jaké elektostatcké pole vytvoří ne jeden centální) bodový náboj, ale více nábojů, tzv. soustava bodových) nábojů : echť je náboj v místě v místě.... v místě Pak

Více

ZÁKLADY GEOMETRIE KŘIVEK A PLOCH

ZÁKLADY GEOMETRIE KŘIVEK A PLOCH ZÁKLADY GEOMETRIE KŘIVEK A PLOCH Povzoní studní mateál - - Křvky v toozměném postou Úvod E - toozměný eukldovský posto s pevně zvolenou katézskou soustavou P e e V - eho zaměření D Nechť J R Zobazení X

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně

Více

Výslednice, rovnováha silové soustavy.

Výslednice, rovnováha silové soustavy. Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky

Více

Cvičení 5 (Potrubní systémy)

Cvičení 5 (Potrubní systémy) VŠ Techncá unvezta Ostava aulta stoní Kateda pužnost a pevnost (9) Pužnost a pevnost v enegetce (Návody do cvčení) Cvčení (Potubní systémy) uto: aoslav oíče Veze: Ostava 9 PP Cvčení Potubní systémy: Ob

Více

Délka kružnice (obvod kruhu) II

Délka kružnice (obvod kruhu) II .10.7 Déla užnice (obvod uhu) II Předpolady: 01006 Př. 1: Bod je od středu užnice ( ;cm) vzdálen 7 cm. Uči početně vzdálenost z bodu do bodu, teý je tečným bodem tečny užnice jdoucí z bodu. vůj výslede

Více

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005 Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Cvičení 2 (MKP_příklad)

Cvičení 2 (MKP_příklad) VŠB Technicá univezita Ostava aulta stoní Kateda pužnosti a pevnosti (9) Úvod do MKP (Návody do cvičení) Cvičení (MKP_přílad) Auto: Jaoslav oíče Veze: Ostava 9 Úvod do Metody onečných pvů př. tyč. Každé

Více

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo TEORETICKÁ MECHANIKA INTEGRÁLNÍ PRINCIPY MECHANIKY Záladní pojmy z mechaniy Mechanicý systém: jaáoli soustava částic nebo těles teré se rozhodneme popisovat (eletron atom Zeměoule planetární systém ).

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

Using a Kalman Filter for Estimating a Random Constant Použití Kalmanova filtru pro výpočet odhadu konstantní hodnoty

Using a Kalman Filter for Estimating a Random Constant Použití Kalmanova filtru pro výpočet odhadu konstantní hodnoty II. Semnar ASR 007 Instruments and Control, Farana, Smutný, Kočí & Babuch (eds) 007, VŠB-TUO, Ostrava, ISB 978-80-48-7-4 Usng a Kalman Flter for Estmatng a Random Constant Použtí Kalmanova fltru pro výpočet

Více

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů

Více

Rovnováha soustavy hmotných bodů, princip virtuální práce

Rovnováha soustavy hmotných bodů, princip virtuální práce K přednášce NUFY028 Teoretcká mechanka prozatímní učební text, verze 0. Prncp vrtuální práce Leoš Dvořák, MFF UK Praha, 204 Rovnováha soustav hmotných bodů, prncp vrtuální práce V této kaptole nepůjde

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

Aplikované chemické procesy

Aplikované chemické procesy Aplkované chemcké pocesy Blance eaktoů Chemcký eakto Základní ysy chemckého sou učovány těmto faktoy: způsob přvádění výchozích látek a odvádění poduktů, způsob povádění eakce (kontnuální nebo dskontnuální)

Více

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Evopský sociální fond Paha & EU: Investujeme do vaší budoucnosti F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Asi nejznámějším konzevativním polem je gavitační silové pole Ke gavitační

Více

P. Bartoš, J. Blažek, P. Špatenka. Katedra fyziky, Pedagogická fakulta Jihočeské univerzity, Jeronýmova 10, České Budějovice

P. Bartoš, J. Blažek, P. Špatenka. Katedra fyziky, Pedagogická fakulta Jihočeské univerzity, Jeronýmova 10, České Budějovice VYUŽITÍ MATLABU PŘI STATISTICKÉM ZPRACOVÁNÍ AT PŘI POČÍTAČOVÉM MOELOVÁNÍ EBYEOVA STÍNĚNÍ TECHNIKOU MAKROČÁSTIC P. Batoš, J. Blaže, P. Špatena Kateda fz, Pedagogcá faulta Jhočesé unvezt, Jeonýmova, Česé

Více

Metoda konjugovaných gradientů

Metoda konjugovaných gradientů 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá

Více

Kinematika a dynamika tuhého tělesa

Kinematika a dynamika tuhého tělesa K přednášce UFY08 Teoretická mechanika prozatímní učební text verze 0 9. Kinematika a dynamika tuhého tělesa Leoš Dvořák MFF UK Praha 04 Kinematika a dynamika tuhého tělesa V této kapitole se soustředíme

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

Kinematika a dynamika tuhého tělesa

Kinematika a dynamika tuhého tělesa K přednášce UFY8 Teoretická mechanika prozatímní učební tet verze 9. Kinematika a dynamika tuhého tělesa Leoš Dvořák MFF UK Praha 4 Kinematika a dynamika tuhého tělesa V této kapitole se soustředíme na

Více

1 Gaussova kvadratura

1 Gaussova kvadratura Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro

Více

Přibližné řešení algebraických rovnic

Přibližné řešení algebraických rovnic Přblžné řešení lgebrcých rovnc Algebrcou rovncí stupně n nzýváme rovnc =, tj n n x x x =, de n N, x C, oefcenty P n,,, n R, Budeme prcovt s tzv normovou lgebrcou rovncí ( = ) n n x x x = Řešením (ořenem)

Více

15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut)

15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut) 15 Mletí Oldřch Holeče (atualzace v roce 2014 Mchal Přbyl & Mare Schöngut) I Záladní vztahy a defnce I.1 Úvod Rychlost mnoha chemcých a fyzálních procesů závsí na velost mezfázového povrchu. Je-l v nch

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

vektor a vrátili jiný vektor. Měli-li jsme jistou pozorovatelnou A, dostali jsme jejím změřením

vektor a vrátili jiný vektor. Měli-li jsme jistou pozorovatelnou A, dostali jsme jejím změřením Operátor hustoty Popsueme-l vývo uzavřeného kvantového systému, vystačíme s většnou s pomem čstého stavu. Jedná se o vektor v Hlbertově prostoru H, který e danému kvantovému systému přdružen. Na daném

Více

II Polynomy. 1. Zá kladnívlastnosti

II Polynomy. 1. Zá kladnívlastnosti II Polynomy S polynomy (mnohoč leny) se setkáváme jž na střední š kole a pozdě j pak v kuzu matematcké analýzy, kde se polynom chápe jako eálná funkce Zá kladnívlastnost II Defnce Nechť a 0, a,, a n jsou

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

Diferenciální operátory vektorové analýzy verze 1.1

Diferenciální operátory vektorové analýzy verze 1.1 Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě

Více

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm)

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm) 3.5.9 Přílady na otočení Předpolady: 3508 Př. 1: Je dána ružnice ( ;5cm), na teré leží body, '. Vně ružnice leží bod L, uvnitř ružnice bod M. Naresli obrazy bodů L, M v zobrazení řeš bez úhloměru. R (

Více

Kinematika. Hmotný bod. Poloha bodu

Kinematika. Hmotný bod. Poloha bodu Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény

Více

Předpoklady: a, b spojité na intervalu I.

Předpoklady: a, b spojité na intervalu I. Diferenciální rovnice Obyčejná diferenciální rovnice řádu n: F t, x, x, x,, x n Řešení na intervalu I: funce x : I R taová, že pro aždé t I je F t, xt, x t,, x n t Maximální řešení: neexistuje řešení na

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

ρ = 0 (nepřítomnost volných nábojů)

ρ = 0 (nepřítomnost volných nábojů) Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika

Více

teorie elektronických obvodů Jiří Petržela syntéza a návrh elektronických obvodů

teorie elektronických obvodů Jiří Petržela syntéza a návrh elektronických obvodů Jří Petržela yntéza a návrh eletroncých obvodů vtupní údaje pro yntézu obvodu yntéza a návrh eletroncých obvodů vlatnot obvodu obvodové funce parametry obvodu toleranční pole (mtočtové charaterty fltru)

Více

Statika soustavy těles v rovině

Statika soustavy těles v rovině Statka soustavy těles v rovně Zpracoval: Ing. Mroslav yrtus, Ph.. U mechancké soustavy s deálním knematckým dvojcem znázorněné na obrázku určete: počet stupňů volnost početně všechny reakce a moment M

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a ozvo studa nanomateálů na TUL nano.tul.cz Tyto mateály byly vytvořeny v ámc poektu ESF OP VK: Inovace a ozvo studa nanomateálů na Techncké unveztě v Lbec . Vlastnost zolovaných polymeních molekul

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

Učební text k přednášce UFY102

Učební text k přednášce UFY102 Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy

Více

Difuze v procesu hoření

Difuze v procesu hoření Difuze v procesu hoření Fyziální podmíny hoření Záladní podmínou nepřetržitého průběhu spalovací reace je přívod reagentů (paliva a vzduchu) do ohniště a zároveň odvod produtů hoření (spalin). Pro dosažení

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas Řešení úlo kajskéo kola 58 očníku fyzikální olympiády Kategoie B Auto úlo: J Tomas a) Doba letu střely od okamžiku výstřelu do zásau označíme t V okamžiku výstřelu se usa nacází ve vzdálenosti s měřené

Více

PRVOČÍSLA 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah

PRVOČÍSLA 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah PRVOČÍSLA Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah. Elementární úlohy o prvočíslech 2. Kongruence 2 3. Algebraicé rovnice a polynomy 3 4. Binomicá a trinomicá věta 5 5. Malá Fermatova věta 7 6. Diferenční

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

- Pokud máme na množině V zvoleno pevné očíslování vrcholů, můžeme váhovou funkci jednoznačně popsat. Symbolem ( i)

- Pokud máme na množině V zvoleno pevné očíslování vrcholů, můžeme váhovou funkci jednoznačně popsat. Symbolem ( i) DSM2 C 8 Problém neratší cesty Ohodnocený orientoaný graf: - Definice: Ohodnoceným orientoaným grafem na množině rcholů V = { 1, 2,, n} nazýáme obet G = V, w, de zobrazení w : V V R { } se nazýá áhoá funce

Více

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201 6.. Gonometrcký tvar kompleních čísel I Předpoklad: 07, 09, 60 Pedagogcká poznámka: Gonometrcký tvar kompleních čísel není pro student njak obtížný. Velm obtížné je pro student s po roce vzpomenout na

Více

Fyzikální praktikum č.: 1

Fyzikální praktikum č.: 1 Datum: 5.5.2005 Fyziální pratium č.: 1 ypracoval: Tomáš Henych Název: Studium činnosti fotonásobiče Úol: 1. Stanovte závislost oeficientu seundární emise na napětí mezi dynodami. yneste do grafu závislost

Více

MODELOVÁNÍ HŘÍDELOVÉ SOUSTAVY S ČELNÍMI OZUBENÝMI KOLY. Ing. Karel Jiřička ČVUT v Praze, fakulta strojní

MODELOVÁNÍ HŘÍDELOVÉ SOUSTAVY S ČELNÍMI OZUBENÝMI KOLY. Ing. Karel Jiřička ČVUT v Praze, fakulta strojní MODELOVÁNÍ HŘÍDELOVÉ SOUSAVY S ČELNÍM OZUBENÝM KOLY ng. Kel Jřč ČVU Pze, fult stoní 1. Úod Po sestoání pohyboých onc dsétních soust e hodné yít z Lngngeoých onc duhého duhu fomuloných po zobecněné souřdnce

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho

Více

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku II. Statické elektické pole v dielektiku Osnova: 1. Dipól 2. Dielektikum 3. Polaizace dielektika 4. Jevy v dielektiku 1. Dipól Konečný dipól 2 bodové náboje stejné velikosti a opačného znaménka ve vzdálenosti

Více

4. Přednáška: Kvazi-Newtonovské metody:

4. Přednáška: Kvazi-Newtonovské metody: 4 Přednáša: Kvazi-Newtonovsé metody: Metody s proměnnou metriou, modifiace Newtonovy metody Efetivní pro menší úlohy s hustou Hessovou maticí Newtonova metoda (opaování): f aproximujeme loálně vadraticou

Více

3.3.4 Thaletova věta. Předpoklady:

3.3.4 Thaletova věta. Předpoklady: 3.3.4 Thaletova věta Předpolady: 030303 Př. : Narýsuj ružnici ( ;5cm) a její průměr. Na ružnici narýsuj libovolný bod různý od bodů, (bod zvol jina než soused v lavici). Narýsuj trojúhelní. Má nějaou speciální

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

2.4. DISKRÉTNÍ SIGNÁLY Vzorkování

2.4. DISKRÉTNÍ SIGNÁLY Vzorkování .4. DISKRÉTÍ SIGÁLY.4.. Vzorování Vzorování je nejběžnější způsob vznu dsrétních sgnálů ze sgnálů spojtých. Předpoládejme, že spojtý sgnál (t) je přveden na spínač, terý se velce rátce sepne aždých T vz

Více

Mechanické vlastnosti materiálů.

Mechanické vlastnosti materiálů. Mechancké vastnost materáů. Obsah přednášky : tahová zkouška, zákadní mechancké vastnost materáu, prodoužení př tahu nebo taku, potencání energe, řešení statcky neurčtých úoh Doba studa : as hodna Cí přednášky

Více

9 Stupně vrcholů, Věta Havla-Hakimiho

9 Stupně vrcholů, Věta Havla-Hakimiho Typicé přílady pro zápočtové písemy DiM 470-301 (Kovář, Kovářová, Kubesa) (verze: November 5, 018) 1 9 Stupně vrcholů, Věta Havla-Haimiho 9.1. Doážete nareslit graf na 9 vrcholech, ve terém mají aždé dva

Více

Části kruhu. Předpoklady:

Části kruhu. Předpoklady: 2.10.3 Části uhu Předpolady: 0201002 Př. 1: Na užnici ( ;5cm) leží body,, = 8cm. Uči početně vzdálenost tětivy od středu užnice. pávnost výpočtu zontoluj ýsováním. Naeslíme si obáze a využijeme speciální

Více

Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Metoda sítí pro 2D úlohy. Possonova rovnce. Vlnová rovnce. Rovnce vedení tepla. Lteratura: Kaptola 5 ze skrpt Karel Rektorys: Matematka 43, ČVUT, Praha, 2. Text přednášky na

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

22. Mechanické a elektromagnetické kmity

22. Mechanické a elektromagnetické kmity . Mechanicé a eletromagneticé mity. Mechanicé mity Mechanicé mitání je jev, při terém se periodicy mění fyziální veličiny popisující mitavý pohyb. Oscilátor těleso, teré je schopné mitat, (mitání způsobuje

Více

I. kolo kategorie Z9

I. kolo kategorie Z9 68. očník Matematické olympiády I. kolo kategoie Z9 Z9 I 1 Najděte všechna kladná celá čísla x a y, po kteá platí 1 x + 1 y = 1 4. Nápověda. Mohou být obě neznámé současně větší než např. 14? (A. Bohiniková)

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1

Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Střední půslová šola sdělovací techni Pansá Paha 1 Jaoslav Reichl, 017 učená studentů 4 očníu technicého lcea jao doplně e studiu apliované ateati Jaoslav Reichl Sbía úloh z apliované ateati, J Reichl,

Více

OBECNÉ ZÁKONY DYNAMIKY TĚLESA S APLIKACÍ NA ROVINNÝ POHYB

OBECNÉ ZÁKONY DYNAMIKY TĚLESA S APLIKACÍ NA ROVINNÝ POHYB OCNÉ ZÁKONY YNMIKY TĚS S PIKCÍ N ROVINNÝ POHY SPCIFIKC PROÉMU Mějme obecným pohybem e pohybující těeo (vz ob.) o tředu hmotnot S (poohový veto nehybnému počátu ouřadncové outavy x y z) na teé v bodech

Více

P. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P.

P. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P. 756 Tečny ružnic II Předpolady: 45, 454 Pedagogicá poznáma: Tato hodina patří na gymnázium mezi početně nejnáročnější Ačoliv jsou přílady optimalizované na co nejmenší početní obtížnost, všichni studenti

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Řízené LRC Obvody

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Řízené LRC Obvody ELEKTŘNA A MAGNETZMUS Řešené úlohy a postupy: Řízené L Obvody Peter Dourmashkin MT 6, překlad: Jan Pacák (7) Obsah 9. ŘÍZENÉ L OBODY 3 9. ÚKOLY 3 9. OBENÉ LASTNOST ŘÍZENÝH L OBODŮ 3 ÚLOHA : ŘÍZENÉ OSLAE

Více

Vzdálenosti a východ Slunce

Vzdálenosti a východ Slunce Vzdálenosti a východ Slunce Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Vzdálenosti a východ Slunce Aplikace matem. pro učitele 1 / 8 Osnova Zdeněk Halas (KDM

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

Odraz a lom rovinné monochromatické vlny na rovinném rozhraní dvou izotropních prostředí

Odraz a lom rovinné monochromatické vlny na rovinném rozhraní dvou izotropních prostředí Odraz a lom rovnné monochromatcké vlny na rovnném rozhraní dvou zotropních prostředí Doplňující předpoklady: prostředí č.1, ze kterého vlna dopadá na rozhraní neabsorbuje (má r r reálný ndex lomu), obě

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

I. MECHANIKA 4. Soustava hmotných bodů II

I. MECHANIKA 4. Soustava hmotných bodů II I. CHIK 4. Soustaa hmotných bodů II 1 Obsah Spojté ozložení hmotnost. Počet stupňů olnost. Knematka tuhého tělesa. Zjednodušení popsu otace kolem osy a peného bodu. Chaslesoa ěta. Dynamka tuhého tělesa.

Více

Derivace funkcí více proměnných

Derivace funkcí více proměnných Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016 Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se

Více

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2 Lneární a adaptvní zpracování dat 8. Kumulační zvýrazňování sgnálů v šumu 2 Danel Schwarz Investce do rozvoe vzdělávání Opakování Kumulační zpracování sgnálů co to e, k čemu to e? Prncp metody? Nutné podmínky

Více

symetrická rovnice, model Redlich- Kister dvoukonstantové rovnice: Margules, van Laar model Hildebrandt - Scatchard mřížková teorie roztoků příklady

symetrická rovnice, model Redlich- Kister dvoukonstantové rovnice: Margules, van Laar model Hildebrandt - Scatchard mřížková teorie roztoků příklady symetrcá rovnce, model Redlch- Kster dvouonstantové rovnce: Margules, van Laar model Hldebrandt - Scatchard mřížová teore roztoů přílady na procvčení 0 lm Bnární systémy: 0 atvtní oefcenty N I E N I E

Více

Energie v magnetickém poli. Jaderný paramagnetismus.

Energie v magnetickém poli. Jaderný paramagnetismus. Enege v magnetcém pol. Jadený paamagnetmu. šeobecně: Damagneta účny eletonů v chemcých vazbách e do značné míy vzáemně ompenzuí výledný vlv e velm labý. K měření e nutné velm homogenní a tablní pole až

Více

Měření tvaru ploch. Postup :

Měření tvaru ploch. Postup : B ěření tvau plo Úol :. Změřte tva plo pomoí souřadnovéo měříío aříení. Poveďte eonstu tvau plo na počítač. Učete polomě sféé plo pomoí sféometu Postup :. ěření tvau plo pomoí souřadnovéo měříío aříení

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/ Střední půmyslová šola a Vyšší odboná šola technicá Bno, Soolsá 1 Šablona: Inovace a zvalitnění výuy postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechania, pužnost pevnost Záladní duhy namáhání,

Více

Derivace goniometrických funkcí

Derivace goniometrických funkcí Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí

Více

3. Absorpční spektroskopie

3. Absorpční spektroskopie 3. Absorpční spetrosope Lambert-Beerův záon Nechť olmovaný svaze ntenzty (λ) dopadá na homogenní planparalelní vrstvu tloušťy l. (λ) (x) Př průchodu vrstvou (x, x+dx) se ntenzta dx sníží o d = -α(λ) (λ,x)

Více

Cvičení z termomechaniky Cvičení 6.

Cvičení z termomechaniky Cvičení 6. Příklad 1: Pacovní látkou v poovnávacím smíšeném oběhu spalovacího motou je vzduch o hmotnosti 1 [kg]. Počáteční tlak je 0,981.10 5 [Pa] při teplotě 30 [ C]. Kompesní pomě je 7, stupeň zvýšení tlaku 2

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více