SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY"

Transkript

1 SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls) δ (t) Lineárně rostoucí signál Harmonický signál f ( t) = C cos( ωt ϕ) a jeho parametry Manipulace se signály Je dán signál s(t) rovnicí nebo grafem Stanovení signálu s( τ -τ ), signálu posunutého v čase Stanovení signálu s(-t), signálu s otočenou (obrácenou) časovou osou Kombinace otočení časové osy a posunutí v čase Střední výkon harmonického signálu Stejnosměrná složka a střední výkon periodického impulsu (periodického sledu obdélníkových impulsů) Periodické signály se spojitým časem Definice (spojitého) periodického signálu Fourierova řada v komplexním tvaru (Fourierova řada periodické funkce), k = ( t) = ck exp( k k= - f ω t) Modul a argument komplexního koeficientu Fourierovy řady Velikost a znaménko stejnosměrné složky periodického signálu a její určení z množiny koeficientů Fourierovy řady Určení amplitudy harmonické složky periodického signálu f(t), je-li dán koeficient, k 0, Fourierovy řady Spektrum modulů a spektrum c k argumentů (amplitudové spektrum a fázové spektrum) Spektrum periodicky se opakujících obdélníkových impulsů Analýza spojitých aperiodických signálů Fourierova transformace, + F ( ω ) = f ( t)exp( jωt) dt Vzor a obraz (signál a spektrální funkce) Inverzní Fourierova transformace Modul obrazu (amplitudové spektrum), argument obrazu (fázové spektrum) Vlastnosti obrazu reálného vzoru (vlastnosti reálné a imaginární části obrazu obecného reálného signálu) Vlastnosti obrazu sudého a lichého vzoru Posunutí vzoru (posunutí funkce, posunutí signálu) v čase Spektrum pravoúhlého impulsu Energie obdélníkového impulsu 4 Vnější popis lineárních soustav se souvislým časem Lineární časově invariantní (lineární neparametrické) systémy a jejich popis Diferenciální rovnice systému Operátorový přenos systému (obvyklá značení: F(p), H(p), K(p)) Nuly a póly Určení operátorového přenosu systému na základě diferenciální rovnice systému Rozklad na částečné zlomky Frekvenční přenos systému (komplexní kmitočtová charakteristika, F ( jω), H ( jω), K( jω)) Amplitudová (modulová) kmitočtová charakteristika Fázová (argumentová) kmitočtová charakteristika Impulsní charakteristika g(t) a přechodová charakteristika h(t) T5 Vzorkování Ideální vzorkování Periodizace spektra při vzorkování Vzorkovací kmitočet (vzorkovací frekvence) Signál s omezeným spektrem Vzorkovací teorém Aliasing efekt Rekonstrukce

2 signálu se spojitým časem z jeho vzorků - frekvenční pohled (rekonstrukce v kmitočtové oblasti) Frekvenční přenos (přenosová funkce) ideálního rekonstrukčního filtru Rekonstrukce signálu ze vzorků časový pohled (rekonstrukce v časové oblasti) 6 Diskrétní signály Diskrétní normovaný čas (značení: k, n) a skutečný čas (kt, nt) Signály s diskrétním časem Diskrétní jednotkový impuls ( δ ( k), δ ( n) ) Diskrétní jednotkový skok ( σ ( k), σ ( n) ) Harmonická posloupnost ( f ( kt ) = C cos( ΩkT + ϕ ), f ( k) = C cos( ωk + ϕ) ) Otázka periodicity harmonické posloupnosti Manipulace s diskrétními signály Posun v čase Otočení časové osy Otočení časové osy s posunutím Pravoúhlé okno 7 Diskrétní Fourierova řada a Fourierova transformace diskrétního signálu Diskrétní Fourierova řada Definice Nechť s(n) je periodická posloupnost s periodou n Pak N obraz S( k) = s( n)exp j kn Obraz (koeficienty diskrétní Fourierovy řady) je také periodická posloupnost s periodou N Zpětná diskrétní Fourierova řada, N s( n) = S( j nk k= jω Fourierova transformace diskrétního signálu Je označována (ω), S e F ( ) F ( ω ) = f ( n)exp( jωn) Posloupnost f(n) je vzor, F (ω) je obraz Periodicita funkce F (ω) 8 Diskrétní Fourierova transformace Diskrétní Fourierova transformace (DFT) Přiřazuje vzoru f ( n), n = 0,,, N, obraz N- π S ( k), k = 0,,, N S ( k) = f ( n)exp - jk n Zpětná diskrétní Fourierova N- π transformace f ( n) = S( jn k Pojem rychlá Fourierova transformace (Fast N Fourier Transform, FFT) 9 Vnější popis diskrétních systému Vnější popis systémů s diskrétním časem Diferenční rovnice Operátorový přenos systému (přenosová funkce systému) F(z), H(z) Póly a nulové body Z-transformace, k F ( z) = f ( k) z, n S ( z) = s( n) z Z-transformace jednotkového skoku, jednotkového k= 0 k = impulsu a reálného exponenciálního signálu Vlastnosti Z-transformace Linearita transformace a obraz posunuté posloupnosti Nulové body a póly 0 Frekvenční přenos diskrétního systému Frekvenční přenos (kmitočtové charakteristiky) systému s diskrétním časem, jω jω F ( jω), H (e ) Uvažujeme T = Pak F ( jω) = F( z) z= exp( jω) = H ( e ) Impulsní charakteristika diskrétního systému Vztah impulsní charakteristiky k přenosu systému FIR

3 VZOROVÉ PŘÍKLADY Příklad T/ Je dán signál 0 s ( t) = 0, 5t 0 Pro t < nakreslete graf signálu s ( t + ) t < 0, 0 t < t 0 a Nejprve nakreslíme graf signálu s (t) : Pak nakreslíme graf signálu s( t) : A nakonec posunutím v čase získáme signál s ( t + ) :

4 Příklad T/ Reálný periodický signál má jen od nuly různé koeficienty Fourierovy řady Jsou dány hodnoty dvou těchto koeficientů c0 =, c =,4exp( j0,p ) a perioda signálu T =0,4 Určete třetí koeficient (využijte toho, že signál je reálný) Určete okamžitou hodnotu signálu v čase t = 0, Vzhledem k tomu, že je signál reálný, je třetí koeficient roven komplexně sdružené hodnotě koeficientu c tedy c =, 4 exp ( + j0, p ) Pro kmitočet základní harmonické platí π π ω = = = 5π T 0, 4 Časový průběh signálu je pak určen jako f ( t) c exp( jωt) c c exp( jωt) hodnot obdržíme f t = c exp jωt + c + c exp jωt = = + + Dosazením 0 ( ) ( ) 0 ( ), 4 exp( j0, p) exp( j5pt), 4 exp( j0, p) exp ( j5pt) = V čase t = 0, bude hodnota signálu rovna ( 0,), 4 exp ( 0, p) exp ( 0,5p), 4 exp ( 0, p) exp ( 0,5p),4exp( j0,p),4exp( j0,p),4( cos( 0,p) ),65 f = + j j + j + j = = = + = Příklad T/ Signál f(t) je zadán svým obrazem F (ω) ve Fourierově transformaci: 60 ω = 0 a F ( ω) = sin5ω 60 ω 0 5ω Stanovte okamžitou hodnotu signálu f(t-8) t = s Pomůcka: Nejprve určete spektrum sudého signálu, který má tvar pravoúhlého impulsu s výškou D a šířkou ϑ F ( ω) = + f ( t)exp( jωt) dt = D ϑ / ϑ / exp( jωt) dt = Dϑ ϑ sin ω Dϑ ϑ ω ω = 0 a ω 0 Signál f(t) je tedy obdélníkovým impulsem se součinem výšky D a šířky ϑ rovným 60 Polovina šířky impulsu je 5 Odtud ϑ = 0 a 60 D = = Po nakreslení grafu signálu f(t) 0 snadno zjišťujeme, že f(--8) = f(-0) = 4

5 Příklad T4/ Lineární, časově invariantní systém je popsán diferenciální rovnicí y ( t) + y( t) = x( t) s nulovou počáteční podmínkou a kde x( t ) je vstup systému a ( ) vstup systému působí signál xt () = σ () t Určete průběh výstupu a načrtněte at Pomůcka: L{ e } = p+ a Pro operátorový přenos systému platí F( p) ( p) ( ) y t je výstup systému Na Y = = Pro Laplaceův obraz vstupního X p p+ signálu platí X(p) = Pro Laplaceův obraz výstupu pak platí p Y( p) = F( p) X ( p) = Rozkladem tohoto výrazu na parciální zlomky obdržíme pp+ Y( p) = p p + Časový průběh je dán zpětnou Laplaceovu transformací, tedy t 0 platí ( ) t t y t e ( e ) = = yt () 0 t Příklad T5/ Fourierova řada spojitého periodického signálu má tvar f( t) n π j nt T = ce Základní perioda T signálu je msec Tento signál je vzorkován a vzorky jsou vstupním signálem ideální dolní pusti Jaký musí být vzorkovací kmitočet aby na výstupu dolní pusti byl tentýž spojitý signál? Horní mezní kmitočet f max spektra signálu f(t) je dán kmitočtem čtvrté harmonické složky f max = 4 = 4 0 Hz Vzorkovací kmitočet to musí být větší, než 8 tisíc vzorků za 0 sekundu Příklad T6/ Pro k = určete hodnotu signálu f(k) = 5cos(0,5π k 0,5π ) + δ ( k 4) + s ( k ) f() = 5cos(0,5π 0,5π ) + δ ( 4) + s ( ) = = 5

6 Příklad T7/ Je dána periodická posloupnost s periodou 4: s(0) =, s() = 0, s() = 0, s() = Stanovte N prvek S() obrazu Pomůcka: S( k) = s( n)exp j kn p S() = s( n)exp j n = exp(0) exp( j ) = j Příklad T8/ Obraz v diskrétní Fourierově transformaci je tvořen právě těmito čtyřmi prvky: S(0) =, S() =-j, S() = 0, S() = +j Stanovte prvek f() vzoru Pomůcka: N- π f ( n) = S( jn k N k = f () = 4 k = 0 Příklad T9/ S( j k = 4 4 [ exp(0) + ( j)exp( jp ) ( + j)exp( jp )] Systém s diskrétním časem má přenosovou funkci F ( z) = + z Určete amplitudu ustálené harmonické odezvy ψ ( n) = Y cos( ω n + ψ ) na posloupnost x ( n) = X cos( ω n + ϕ) = 5cos(0,πn + 0,4π ) Symbol n označuje normovaný (celočíselný) čas, symbol ω označuje normovaný úhlový kmitočet π j0,π j0, F z = e = + e j0,π Y = 5 + e = 5,90 = 9,5 = 0 Příklad T0/ - - Je dán přenos F(z) = + z + z Určete impulsní charakteristiku systému Při použití pouček o linearitě Z-transformace, poučky o obrazu opožděného signálu a znalosti obrazu funkce δ (n) zjišťujeme, že impulsní charakteristika g(n) systému je dána vztahem g( n) = δ ( n) + δ ( n ) + δ ( n ) Poznámka: V některých učebnicích se místo označení g(n) používá označení h(n) 6

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Základní metody číslicového zpracování signálu a obrazu část II.

Základní metody číslicového zpracování signálu a obrazu část II. A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,

Více

Vlastnosti Fourierovy transformace

Vlastnosti Fourierovy transformace Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda 2.předn ednáška Telefonní kanál a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda Telekomunikační signály a kanály - Při přenosu všech druhů telekomunikačních signálů je nutné řešit vztah

Více

Úloha D - Signál a šum v RFID

Úloha D - Signál a šum v RFID 1. Zadání: Úloha D - Signál a šum v RFID Změřte úrovně užitečného signálu a šumu v přenosovém řetězci systému RFID v závislosti na čtecí vzdálenosti. Zjistěte maximální čtecí vzdálenost daného RFID transpondéru.

Více

Ideální frekvenční charakteristiky filtrů podle bodu 1. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U 1.

Ideální frekvenční charakteristiky filtrů podle bodu 1. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U 1. Aktivní filtry Filtr je obecně selektivní obvod, který propouští určité frekvenční pásmo, zatímco ostatní frekvenční pásma potlačuje. Filtry je možno realizovat sítí pasivních součástek, tj. rezistorů,

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

P6 Časově frekvenční analýza signálů

P6 Časově frekvenční analýza signálů P6 Časově frekvenční analýza signálů Je vhodné podotknout, že převážná většina reálných technických signálů je zařazována do oblasti nestacionárních signálů. Fourierova transformace, případně její modifikace

Více

Základní principy přeměny analogového signálu na digitální

Základní principy přeměny analogového signálu na digitální Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Vlastnosti konvoluce. ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Vlastnosti konvoluce. ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz Systémy Vlastnosti lineárních systémů. Konvoluce diskrétní a spojitý čas. Vlastnosti konvoluce Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Systémy obecně: spojení komponentů, zařízení nebo

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Fourierova trasformace ve zpracováí obrazů Jea Baptiste Joseph Fourier 768-83 6. předáška předmětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasformaci? základí matematický

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Nové směry v řízení ES

Nové směry v řízení ES Nové směry v řízení ES Nové směry v řízení ES Systémy založené na technologii měření synchronních fázorů: WAM - Wide Area Monitoring WAC Wide Area Control WAP - Wide Area Protection Někdy jsou všechny

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Senzor teploty. Katalogový list SMT 160-30

Senzor teploty. Katalogový list SMT 160-30 Senzor teploty Katalogový list SMT 160-30 Obsah 1. Úvod strana 2 2. Inteligentní senzor teploty strana 2 3. Vývody a pouzdro strana 4 4. Popis výrobku strana 4 5. Charakteristické údaje strana 5 6. Definice

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

POHYB ROTORU MODERNÍHO TURBODMYCHADLA V ČASOVÉ DOMÉNĚ ROTOR MOTION OF THE MODERN TURBOCHARGER IN TIME DOMAIN

POHYB ROTORU MODERNÍHO TURBODMYCHADLA V ČASOVÉ DOMÉNĚ ROTOR MOTION OF THE MODERN TURBOCHARGER IN TIME DOMAIN POHYB ROTORU MODERNÍHO TURBODMYCHADLA V ČASOVÉ DOMÉNĚ ROTOR MOTION OF THE MODERN TURBOCHARGER IN TIME DOMAIN Tomáš Fryščok 1 Anotace: Tento článek ve své první části popisuje teorii měření pohybu hřídele

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Číslicové řízení procesů

Číslicové řízení procesů Číslicové řízení procesů čební text VOŠ a SPŠ Ktná Hora Ing. Lděk Kohot Základní pojmy číslicového řízení Rozdělení řízení podle průběh signálů logické řízení binární signály (RUE, FALSE) analogové řízení

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

Vybrané kapitoly z praktické NMR spektroskopie

Vybrané kapitoly z praktické NMR spektroskopie Vybrané kapitoly z praktické NMR spektroskopie DRX 500 Avance SPECTROSPIN 500 Způsob snímání dat, CW versus FT CW frekvence RF záření postupně se mění B eff 2 efektivní magnetické pole zůstává konstantní

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

YU = I kde I = 0 (6.1)

YU = I kde I = 0 (6.1) Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Číslicové obvody základní pojmy

Číslicové obvody základní pojmy Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:

Více

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází.

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází. Písemná práce z Úvodu do počítačových sítí 1. Je dán kanál bez šumu s šířkou pásma 10kHz. Pro přenos číslicového signálu lze použít 8 napěťových úrovní. a. Jaká je maximální baudová rychlost? b. Jaká je

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

Účinky měničů na elektrickou síť

Účinky měničů na elektrickou síť Účinky měničů na elektrickou síť Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Definice pojmů podle normy ČSN

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně Rozmanitost signálů v komunikační technice způsobuje, že rozdělení měřicích metod není jednoduché a jednoznačné.

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

11 Manipulace s drobnými objekty

11 Manipulace s drobnými objekty 11 Manipulace s drobnými objekty Zpracování rozměrově malých drobných objektů je zpravidla spojeno s manipulací s velkým počtem objektů, které jsou volně shromažďovány na různém stupni uspořádanosti souboru.

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

2.5.1 Kvadratická funkce

2.5.1 Kvadratická funkce .5.1 Kvadratická funkce Předpoklad: 1 Pedagogická poznámka: Velká většina studentů zvládne hodinu zcela samostatně. Snažím se nezapomenout je pochválit. Slovo kvadratická už známe, začínali jsme s kvadratickou

Více

Analýza vlastností a chování DSD modulátoru v časové a frekvenční doméně

Analýza vlastností a chování DSD modulátoru v časové a frekvenční doméně Analýza vlastností a chování DSD modulátoru v časové a frekvenční doméně Dominik Peklo, Pavel Valoušek dominik@audiopraise.com, pavel@audiopraise.com 1 Úvod V internetových diskuzích na serveru www.f-sport.cz/hifi

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

DISKRÉTNÍ FOURIEROVA TRANSFORMACE P I NELINEÁRNÍ ULTRAZVUKOVÉ SPEKTROSKOPII

DISKRÉTNÍ FOURIEROVA TRANSFORMACE P I NELINEÁRNÍ ULTRAZVUKOVÉ SPEKTROSKOPII DISKRÉTNÍ FOURIEROVA TRANSFORMACE PI NELINEÁRNÍ ULTRAZVUKOVÉ SPEKTROSKOPII Luboš PAZDERA *, Jaroslav SMUTNÝ **, Marta KOENSKÁ *, Libor TOPOLÁ *, Jan MARTÍNEK *, Miroslav LUÁK *, Ivo KUSÁK * Vysoké uení

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Kvalita dodávky elektrické energie Odběratel elektrické energie požaduje dodávku elektrické energie v požadovaném množství a kvalitě.

Kvalita dodávky elektrické energie Odběratel elektrické energie požaduje dodávku elektrické energie v požadovaném množství a kvalitě. Kvalita dodávky elektrické energie Odběratel elektrické energie požaduje dodávku elektrické energie v požadovaném množství a kvalitě. Množství je charakterizováno dodávkou elektrické práce, což představuje

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN: 978-80-87035-94-8

Více

Fázový závěs. 1. Zadání:

Fázový závěs. 1. Zadání: Fázový závěs 1. Zadání: A. Na ázovém závěsu (IO NE 565 ve školním přípravku) změřte: a) vlastní kmitočet 0 oscilátoru řízeného napětím (VCO) b) závislost kmitočtu VCO na řídicím napětí (vstup VCO IN) v

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Učební osnova předmětu ELEKTRONICKÁ ZAŘÍZENÍ

Učební osnova předmětu ELEKTRONICKÁ ZAŘÍZENÍ Učební osnova předmětu ELEKTRONICKÁ ZAŘÍZENÍ Obor vzdělání: 26-41-M/01 Elektrotechnika, zaměření slaboproud Forma vzdělávání: denní studium Ročník kde se předmět vyučuje: čtvrtý Počet týdenních vyučovacích

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a Autor Mgr. Bronislava Salajová Tematický celek Funkce Cílová skupina 3. ročník SŠ s maturitní zkouškou Anotace Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

Základy elektrotechniky řešení příkladů

Základy elektrotechniky řešení příkladů Název vzdělávacího programu Základy elektrotechniky řešení příkladů rčeno pro potřeby dalšího vzdělávání pedagogických pracovníků středních odborných škol Autor ng. Petr Vavřiňák Název a sídlo školy Střední

Více

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY

ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY 1. Definujte elektrický proud procházející průřezem vodiče a uveďte jeho jednotku. 2. Definujte elektrické napětí mezi dvěma body v elektrickém poli a uveďte jeho

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

Dioda - ideální. Polovodičové diody. nelineární dvojpól funguje jako jednocestný ventil (propouští proud pouze jedním směrem)

Dioda - ideální. Polovodičové diody. nelineární dvojpól funguje jako jednocestný ventil (propouští proud pouze jedním směrem) Polovodičové diody: deální dioda Polovodičové diody: struktury a typy Dioda - ideální anoda [m] nelineární dvojpól funguje jako jednocestný ventil (propouští proud pouze jedním směrem) deální vs. reálná

Více

FAKULTA ELEKTROTECHNICKÁ

FAKULTA ELEKTROTECHNICKÁ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA ELEKTROTECHNICKÁ Měření zpoždění mezi signály EEG Ondřej Drbal Vedoucí diplomové práce: Doc. Ing. Roman katedra Teorie obvodů rok obhajoby 24 Čmejla, CSc. Zadání diplomové

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

Osciloskopy, základní vlastnosti a jejich použití v laboratorních měřeních SPŠD Masná 18, Praha 1

Osciloskopy, základní vlastnosti a jejich použití v laboratorních měřeních SPŠD Masná 18, Praha 1 Osciloskopy, základní vlastnosti a jejich použití v laboratorních měřeních SPŠD Masná 18, Praha 1 Úvod Ing. L. Harwot, CSc. Osciloskop zobrazuje na stínítku obrazovky (CRT) nebo LC displeji v časové (amplituda/čas)

Více

Základy práce s programem Winscope (Oscilloscope 2.51) Obsah. Úvod co je program Winscope. Co je dobře vědět před prací s programem

Základy práce s programem Winscope (Oscilloscope 2.51) Obsah. Úvod co je program Winscope. Co je dobře vědět před prací s programem Obsah Základy práce s programem Winscope (Oscilloscope 2.51) Úvod co je program Winscope... 1 Co je dobře vědět před prací s programem... 1 První kroky s programem Winscope: jak jednoduše zobrazit zvuk...

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více