Derivace a průběh funkce příklady z písemných prací

Rozměr: px
Začít zobrazení ze stránky:

Download "Derivace a průběh funkce příklady z písemných prací"

Transkript

1 Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ± =+ (převáží člen x ). 5. První derivace e 8 >< + f + >: + = x x+3 x x+ = (x ) + +( x) = x x+ = +( x) x x+ +(x ) (x ) (x ) + (x ) + x<0 0 <x< = x x+3 x x+ = (x ) + (x ) + x> V bodech 0, funkce derivace nemá, poněvadž limity derivací zleva a zprava v těchto bodech dávaí f (0) = 3, f +(0) =, f () = 0, f +() =. Odtud e zřemé, že funkce e na (, 0) klesaící, na (0, ) a (, + ) rostoucí, ze spoitosti pak plyne, že e rostoucí na (0, + ). Maxima a minima se může nabývat pouze v bodech, kde derivace neexistue. Protože na okolí nuly derivace mění znaménko, e v bodě 0 (globální minimum), f(0) = arctg() = π. Na okolí bodu e funkce rostoucí, lokální extrém zde funkce nemá. 6. Druhá derivace e ( (x ) f x<, x 0 (x x+) (x ) x> (x x+) (Protože první derivace není v bodech 0, spoitá, nemůže mít funkce v těchto bodech druhou derivaci.) Odtud plyne, že funkce f e konkávní na (, 0), (0, ) a (, + ). Funkce není konvexní ani konkávní na žádnémokolíbodů0a(lzeupočítatzdefinice). 7. Asymptota v : a = lim =, b = lim x x ( ax) = π x = y = x + π. Asymptota v + : a = lim =, b = lim x + x ( ax) = π x + = y = x + π. 8. Oborem hodnot e H(f) =[f(0), + ) =[ π, + ). Hodí se eště spočíst, že f() =, neboť v tomto bodě se výrazně mění charakter funkce. 0

2 Příklad. = x 3 x. D(f) =R \±.. Funkce e spoitá na D(f). 3. Funkce e lichá, není sudá, není periodická.. lim x ± =±, lim x ± = ±. 5. První derivace e 8 < f : x (x 3) (x ) 3/ x (, ) (, + ) x (x 3) ( x ) 3/ x (, +) Vbodech± funkce derivace nemá. Odtud e zřemé, že funkce e rostoucí na (, 3), na (, )ana( 3, + ), na ( 3, ) a (, + 3) e klesaící. Globální maxima a minima funkce nemá. V bodě 3 má lokální maximum 3 3,vbodě 3má lokální minimum 3 3, neboť na okolí těchto bodů první derivace mění znaménko. 6. Druhá derivace e 8 < f : 6x(x +) (x ) 5/ x (, ) (, + ) 6x(x +) ( x ) 5/ x (, ) Odtud plyne, že funkce f e konkávní na (, ), (, 0) a konvexní na (0, ) a (, + ). Funkce má tedy v bodě 0 inflexní bod. Je f(0) = Asymptota v : a = lim =, b = lim ( ax) =0 = y = x. x x x Asymptota v + : a = lim =, b = lim ( ax) =0 = y = x. x + x x + Asymptota y = x e tedy společná pro obě nekonečna. Vbodech± má funkce asymptoty bez směrnice. 8. Oborem hodnot e H(f) =R (ze spoitosti na (, )). 0

3 3 Příklad 3. = ( x )e x. D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x + = 0, lim x =+. 5. O znaménku vnitřku absolutní hodnoty rozhodue člen ( x )=( x)( + x). První derivace e tedy f e x (x x ) x (, ) e x (x x ) x (, ) (, + ) Vbodech, funkce derivace nemá, poněvadž limity derivací zleva a zprava v těchto bodech dávaí f ( ) = e, f +( ) = e, f () = e, f +() = e. Protože e x > 0naR a x x =0 x, =±, e zřemé, že funkce e klesaící na (, ) a na (, ) a rostoucí na (, ) a na (, + ). Extrémů se může nabývat pouze v bodech, kde e první derivace nulová a kde neexistue = podezřelé body sou,,, +. Protože f(±) = 0 a funkce f e nezáporná, má v bodech ± (globální) minimum. Protože na okolí bodů ± se mění monotonie, na levém okolí obou bodů e funkce klesaící anapravémrostoucímávbodech± lokální maxima. 6. Druhá derivace e f e x (x x +) x (, ) (, + ) e x (x x +) x (, ) Platí, že f 0 x { 3, + 3} f (x) > 0 x (, ) ( 3, ) ( + 3, + ) f (x) < 0 x (, 3) (, + 3) Na příslušných intervalech, kde e f (x) > 0 e funkce konvexní, na příslušných intervalech, kde e f (x) < 0 e funkce konkávní. V bodech ± 3máinflexníbody. 7. Asymptota v : a = lim =, asymptotu nemá. x x Asymptota v + : a = lim =0, b = lim ( ax) =0 = y =0. x + x x + 8. Oborem hodnot e H(f) =[0, + ). 0

4 Příklad. =(x 3x +)exp( x +3 3) f e x (x x ) x ( 3, + ) e 6 x (x 5x +5) x (, 3) f e x (x )(x +) x ( 3, + ) e 6 x (x 5)(x ) x (, 3) lim x ± x = ±. 0

5 5 Příklad 5. =cos(x) sin(x) f cosx cos x sin x sin x f cosx sin x 5cosx sin x lim x ± x = neex

6 6 Příklad 6. =sinx cos x f cos x +sinx cos x>0 cos x sin x cos x<0 f sin x +cosx cos x>0 sin x cos x cos x<0 lim =0, lim 0 x = neex

7 7 Příklad 7. =(x arctg(x 5)) sgn(x) ( (x 6)(x ) f x (, 0) x 0x+6 (x 6)(x ) x (0, + ) x 0x+6 ( (x 5) f x (, 0) (x 0x+6) (x 5) x (0, + ) (x 0x+6) lim = ±, lim ± x = π 0

8 8 Příklad 8. = 3 (x +) 3 (x ) f «3 3 x + 3 x! f p 9 p 3 (x ) 3 (x +) x ± x ± lim =0, lim 0 x =0. 0

9 9 Příklad 9. =arcsin( sin x) f cosx sin x p sin x f cos x p ( sin x) 3 x π + kπ, k Z x π + kπ, k Z lim =0, lim 0 x = neex. 0

10 0 Příklad 0. =(x x +)e x f e x x(x +) x<0 e x (x )(x ) x>0 f e x (x +3x +) x<0 e x (x 5x +5) x>0 lim =0, lim 0 x =0 0.5 Příklad. =e sin x cos x 0 f e sin x (sin x cos x) f e sin x cos x(cos x 3sinx ) lim =0, lim 0 x = neex. 0 ( Příklad. =exp ) sin pro x R \{kπ, k Z}, f(kπ) =0pro k Z. x f e cotg x sin x sin x kπ, f (kπ) =0. x f e sin x sin 6 ( + 6 cos x +cosx) x x kπ lim =0, lim 0 x = neex.

11 Příklad 3. = 3 x e x f e x x(3x ) 3x /3 f e x (9x x ) 9x /3 lim =+, asymptota v není x x lim =0, lim 0 x =0. x + x x Příklad. = 3cosx +cos 3 x f 3sinx 6cos x sin x cos x>0 3sinx 6cos x sin x cos x<0 f 3cosx +cosx sin x 6cos 3 x cos x>0 3cosx +cosx sin x 6cos 3 x cos x<0 lim =0, lim 0 x = neex.

12 0 Příklad 5. =(x )e x f e x (x ) x> xe x x< f e x (x 3) x> e x (x +) x< lim =0, lim 0 x =

13 3 Příklad 6. =x tg x f cos x f sin x cos 3 x lim x ± x x π + πk, k Z x π + πk, k Z = neex.

14 Příklad 7. =arcsin x x Definiční obor: x x x x odtud plyne, že 3x x 0 x x 0 D(f) =(, 0] [ 3, + ) Derivace. 8 >< f >: r (x ) x(3x (x ) r (x ) x(3x (x ) 0 < x x < < x x < 0 8 >< f >: x 9x+ (x ) 5 x(3x ) (x ) x 9x+ (x ) 5 x(3x ) (x ) «3/ 0 < x x < «3/ < x x < 0 lim =0, lim x ± x 0 x = π x ± 6. ( Příklad 8. =arctgx +arcsin ) x +x 0 Využite substituce x =tgy (e možná na celém R), faktu, že tgy +tg y =sin(y) afaktu,že Dostanete tak, že 8 < z z ( π, π ) arcsin(sin z) = π z z ( π, π : ) π z z ( π,π) 8 < π x (, ) = arctgx x (, ) : π x (, + )

15 5 0

16 6 Příklad 9. =(x +)e /x f e/x (x )(x +), x 0 x f e/x (5x +), x 0 x lim =, lim x =

17 7 Příklad 0. Pro funkci f určete intervaly monotonie, intervaly konvexity/konkávnosti a obor hodnot: ( ) x =arctg x + [rostoucí na intervalech (, ), (, + ); konvenxní na (, ) a (, /), konkávní na ( /, + ). H(f) =( π/,π/) (π/,π/). Příklad. Pro funkci f určete asymptoty v +, v a určete obor hodnot: =log (e x+ + x ). [asymptota v + : y = x + ; asymptota v neexistue. H(f) =R.] Příklad. (a) Nalezněte obor hodnot funkce =e x 6αx v závislosti na parametru α. (b) Rozhodněte, pro která α R e funkce ge x αx 3 konvexní na R. [(a) pro α<0eh(f) =R, proα =0eH(f) =(0, + ), pro α>0eh(f) =[6α( log(6α)), + ). (b) Funkce g e konvexní na R, pokudα [0,e/6].] Příklad 3. Pro funkci =e arcsin x určete D(f), intervaly konvexity a konkávnosti, inflexní body a spočtěte tečny v inflexních bodech. [D(f) =[, ], f earcsin x (x+ x ), / einflexníbod,konkávnínax (, / ), ( x ) 3/ konvexní na x ( /, ). f earcsin x, tečna má směrnici f x ( / ) = e π/, tečna prochází bodem [ /,e π/ ], má tedy tvar y = e π/ x +e π/ ]

18 8 Příklad. Spočtěte derivaci a ednostranné derivace funkce f všude, kde existuí. =(cosx) /x, x ( π/,π/) \{0}, f(0) = / e. [f (cosx) /x x ( logcosx x +tgx) nad(f) \{0}, f (0) = 0.] Příklad 5. Spočtěte derivaci a ednostranné derivace funkce f všude, kde existuí. =arcsin( x ) [f x3 x x 8 pro x (, + ) \{0}, f (0) = 0, f ( ) =, f +( ) = ] Příklad 6. Zistěte, kde má funkce f derivaci. Zistěte, kde e f spoitá. =(x ) x cos( x + x ) pro x 0,, f(0) = 0, f() = 0. [Funkce e spoitá na R a derivaci má v každém bodě vyma nuly.] Příklad 7. Rozhodněte, zda existue c tak, že funkce f má v bodě vlastní derivaci. = x pro x, = x + c(x ) pro x<. [c = 6 log (log )] Příklad 8. Spočtěte ( derivaci ) funkce f v bodě. x = arcsin +x + x. [0] Příklad 9. Spočtěte derivaci a ednostranné derivace funkce f všude, kde existuí. =max{,e sin x } [f 0prox (π, π) +kπ, k Z; f e sin x cos x pro x (0,π)+kπ, k Z; f + (kπ) =,f (kπ) =0,f + ((k +)π) =0,f ((k +)π) =, k Z.] Příklad 30. Spočtěte derivaci a ednostranné derivace funkce f všude, kde existuí. [..] znamená celou část. = [ π arctg x] sin(πx) [x R\{, 0, } e f [ π arctg x] π cos(πx), f ( ) = π, f + ( ) = π, f (0) = f + () = π, f () = f +(0) = 0.] Příklad 3. Spočtěte derivaci a ednostranné derivace funkce f všude, kde existuí. = sin x sin x [Pro x R \{k π,k Z} e f sgn(sin x) cosx sin x + sin x cos x; f (kπ) =0pro k Z; f +( π + kπ) =( )k, f ( π + kπ) =( )k+ pro k Z.] Příklad 3. Spočtěte derivaci a ednostranné derivace funkce f všude, kde existuí. =(x + x) cos x [f (x +) cos x +(x sin x + x) pro x R \{kπ, k Z}; f (0) = 0; cos x f + (kπ) =(k π +kπ) a f (kπ) = (k π +kπ),pokudk Z \{0}.] Příklad 33. Spočtěte derivaci a ednostranné derivace funkce f všude, kde existuí. [..] značí celou část. =(max{x, }) [x] [f 0prox (, ), f [x]x [x] pro x (, + ) \ N; Prok N e f + (k) =kk, f () = 0 a f (k) =+ pro k>.] Příklad 3. Spočtěte derivaci a ednostranné derivace funkce f všude, kde existuí. =max{min{cos x, (/)}, ( /)} [f 0prox ( π/3,π/3) + kπ, k Z; f sin x pro x (π/3, π/3) + kπ, k Z; f +(π/3 +kπ) = 3/, f (π/3 +kπ) =0,f +(π/3 +kπ) =0,f (π/3 +kπ) = 3/, f +(π/3+kπ)= 3/, f (π/3+kπ)=0,f +(5π/3+kπ)=0,f (5π/3+kπ)= 3/, k Z] Příklad 35. (**) Spočtěte derivaci funkce f všude, kde existue. = sin x pro x 0, f(0) =. x [f x cos x sin x x pro x 0, lim x 0 (sin x)/x x = lim x 0 sin x x x = lim x 0 (x x 3 3! +...) x x =0.]

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 9. srpna 05 Materiál je v aktuální

Více

Cyklometrické funkce

Cyklometrické funkce Cyklometrické funkce Definice. Cyklometrické funkce jsou funkce arcsin(x) (čteme arkussinus x), arccos(x) (čteme arkuskosinus x), arctg(x) (čteme arkustangens x) a arccotg(x) (čteme arkuskotangens x),

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 14. října 01 Materiál je v aktuální

Více

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,

Více

Příklady z matematiky(pro ITS)

Příklady z matematiky(pro ITS) Příklady z matematikypro ITS) František Mošna Definiční obor: Zjistěte maimální definiční obor funkce:. f)=ln 2 8 9 ) + +2 Df= 2, ) 9, ).2 f)=ln 2 4 5 ) 36 2 Df= 6, ) 5,6.3 f)=ln 2 7 8 ) 00 2 Df= 0, 9)

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Derivace a průběh funkce.

Derivace a průběh funkce. Derivace a průběh funkce. Robert Mařík 14. října 2008 Obsah 1 Základní myšlenky. 2 2 Přesné věty a definice 10 3 Okolí nevlastních bodů. 16 4 Sestrojení grafu funkce. 19 1 Základní myšlenky. y x Uvažujme

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Pracovní materiál pro

Pracovní materiál pro Pracovní materiál pro Úvodní kurz pro FELÁKY Temešvár u Písku, září 01 Úvodem Tento text má sloužit jako přehled středoškolských znalostí a dovedností, které jsou nezbytné při studiu matematiky na vysoké

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Spojitost funkcí více proměnných

Spojitost funkcí více proměnných Reálné funkce více proměnných Reálnou funkcí n reálných proměnných rozumíme zobrazení, které každé uspořádané n ticireálnýchčíselznějaképodmnožinykartézskéhosoučinur R=R n přiřazuje nějaké reálné číslo.

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A2. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A2. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vsoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A2 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2004 Obsah 1. Cvičení č.1 2 2. Cvičení č.2

Více

Zimní semestr akademického roku 2013/2014. 3. září 2014

Zimní semestr akademického roku 2013/2014. 3. září 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 03/04 3. září 04 Předmluva ii Rozjezd

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Matematika I Reálná funkce jedné promìnné

Matematika I Reálná funkce jedné promìnné Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme

Více

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat? Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,

Více

RNDr. Jiří Dočkal, CSc. MATEMATIKA I. Řešené příklady

RNDr. Jiří Dočkal, CSc. MATEMATIKA I. Řešené příklady RNDr. Jiří Dočkal, CSc. MATEMATIKA I Řešené příklady Uváděné řešené příklady jsou vybrány a řazeny v návaznosti na orientační učební pomůcku Doc.RNDr.Ing. Josef Nedoma, CSc.: MATEMATIKA I. Tato sbírka

Více

Návod k programu Graph, verze 4.3

Návod k programu Graph, verze 4.3 Návod k programu Graph, verze 4.3 Obsah 1 Úvod 2 2 Popis pracovní lišty a nápovědy 2 2.1 Nastavení os...................................... 2 2.2 Nápověda....................................... 3 3 Jak

Více

M. Hojdarová, J. Krejčová, M. Zámková

M. Hojdarová, J. Krejčová, M. Zámková VŠPJ Matematika II pro studenty oboru Finance a řízení M. Hojdarová, J. Krejčová, M. Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN 978-80-88064-07-7

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83 Sbírka úloh z matematik 7 DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH 8 7 Definiční oblasti 8 Úloh k samostatnému řešení 8 7 Parciální derivace 8 Úloh k samostatnému řešení 8 7 Tečná rovina a normála 8

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

CVIČENÍ Z MATEMATIKY I

CVIČENÍ Z MATEMATIKY I Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav fyziky CVIČENÍ Z MATEMATIKY I Sbírka příkladů Andrea Kotrlová Opava Obsah Příklady k opakování středoškolské látky. Úprava algebraických

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7. Najděte rovnici tečny ke křivce y x v bodě a. x Tečna je přímka. Přímka se zapisuje jako lineární

Více

Matematika II: Pracovní listy do cvičení

Matematika II: Pracovní listy do cvičení Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí

Více

Základy vyšší matematiky (nejen) pro arboristy

Základy vyšší matematiky (nejen) pro arboristy Základy vyšší matematiky (nejen) pro arboristy Robert Mařík Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body

Prùbìh funkce. d) f(x) = x sin x [rostoucí v R] d) f(x) =ln 1+x [nemá lokální extrém] x = 1 inexní body Urèete, kde je unkce rostoucí a kde klesající: Prùbìh unkce a) () =ln 0; e klesající ; e ; + rostoucí b) () =+ [( ; 0) [ (0; ) klesající ; ( ; ) [ (; +) rostoucí] c) () =e jj [ ( ; 0) rostoucí ; (0; +)

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

1. Přirozená topologie R n

1. Přirozená topologie R n Příklady PŘÍKLADY A CVIČENÍ. Přirozená topologie R n. Dokažte, že čtverec M = {(x, y) R n ; x + y } je kompaktní množina. Řešení: Stačí ukázat, že množina M je uzavřená a ohraničená. Uzavřenost lze dokázat

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Diferenciální a integrální počet funkcí více proměnných

Diferenciální a integrální počet funkcí více proměnných Fakulta strojního inženýrství VUT v Brně 5. června 9 Diferenciální a integrální počet funkcí více proměnných RNDr. Jiří Klaška, Dr. Sbírka řešených příkladů k předmětu Matematika II pro profesní a kombinovanou

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Kružnice, kruh, tečny, obsahy, goniometrické funkce, integrace

Více

Matematika 1. RNDr. Vlasta Krupková, CSc. RNDr. Petr Fuchs, Ph.D. ÚSTAV MATEMATIKY

Matematika 1. RNDr. Vlasta Krupková, CSc. RNDr. Petr Fuchs, Ph.D. ÚSTAV MATEMATIKY Matematika RNDr. Vlasta Krupková, CSc. RNDr. Petr Fuchs, Ph.D. ÚSTAV MATEMATIKY Matematika Obsah Úvod 9. Elementy matematické logiky......................... 0 Výroky......................................

Více

VŠB - Technická univerzita Ostrava. katedra matematiky a deskriptivní geometrie ZÁKLADY MATEMATIKY. pracovní listy. Viktor Dubovský 16.

VŠB - Technická univerzita Ostrava. katedra matematiky a deskriptivní geometrie ZÁKLADY MATEMATIKY. pracovní listy. Viktor Dubovský 16. VŠB - Technická univerzita Ostrava katedra matematiky a deskriptivní geometrie ZÁKLADY MATEMATIKY pracovní listy Viktor Dubovský 16. září 013 Obsah Úvod : Základy matematiky - pracovní listy..........

Více

7.[4body] Jedánautonomnísystém. 8.[4 body] Integrál

7.[4body] Jedánautonomnísystém. 8.[4 body] Integrál Písemná část zkoušky z Inženýrské matematiky, 9.2.20(60 minut) Body Jméno:... 2 3 4 5 6 7 8 První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách..[povinný] Pro mytí autobusů

Více

Matematika 1. RNDr. Petr Fuchs, Ph.D. RNDr. Vlasta Krupková, CSc. ÚSTAV MATEMATIKY

Matematika 1. RNDr. Petr Fuchs, Ph.D. RNDr. Vlasta Krupková, CSc. ÚSTAV MATEMATIKY Matematika RNDr. Petr Fuchs, Ph.D. RNDr. Vlasta Krupková, CSc. ÚSTAV MATEMATIKY Matematika Obsah Úvod 0. Elementy matematické logiky......................... Výroky......................................

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2.

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2. A NUMERICKÉ METODY Fourierova podmínka: f (x) > 0 => rostoucí, f (x) < 0 => klesající, f (x) > 0 => konvexní ᴗ, f (x) < 0 => konkávní ᴖ, f (x) = 0 ᴧ f (x)!= 0 => inflexní bod 1. Řešení nelineárních rovnic:

Více

Zápočtová písemka Řešení

Zápočtová písemka Řešení Zápočtová písemka Řešení 0. května 0. Spočítejte derivaci následujicí funkce podle x a podle ln x: y ln ln ln x )) + ln ln ln 598 )).. Řešení: Tento člen ln ln ln 598 )) sloužil samozřejmě jen k zmatení

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

Z MATEMATIKY. Tomáš Mikulenka. březen 2012

Z MATEMATIKY. Tomáš Mikulenka. březen 2012 VYBRANÉ PARTIE Z MATEMATIKY Tomáš Mikulenka březen 0 Tento výukový materiál vznikl jako součást grantového projektu Gymnázia Kroměříž s názvem Beznákladové ICT pro učitele realizovaného v letech 009 0.

Více

MATEMATIKA 1. Sbírka úloh ÚSTAV MATEMATIKY

MATEMATIKA 1. Sbírka úloh ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika. Tato sbírka je doplněním tetu Fuchs, Krupkova: Matematika.

Více

Matematika II Aplikace derivací

Matematika II Aplikace derivací Matematika II Aplikace derivací RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Derivace slo¾ené funkce Vìta o derivaci slo¾ené funkce.

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

GYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8.

GYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8. GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 006 Petr NEJTEK, 8.A Prohlášení Prohlašujeme, že jsme seminární práci na téma: Grafy funkcí

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Matematický software MAPLE slouží ke zpracování matematických problémů pomocí jednoduchého

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

Skripta do matematiky k maturitě 31 60

Skripta do matematiky k maturitě 31 60 Skripta do matematiky k maturitě 3 60 IgMen igmen.wz.cz 008 Obsah 3 Exponenciální funkce, exponencionální rovnice...4 3. Exponenciální funkce...4 3. Exponenciální rovnice...5 3 Logaritmické funkce, logaritmus,

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

R - koeficienty polynomu, a n. =b i. ; i=0,1... n

R - koeficienty polynomu, a n. =b i. ; i=0,1... n Elementární funkce Základními elementárními funkcemi nazýváme funkce mocninné, exponenciální, logaritmické, goniometrické a cyklometrické. Elementární funkcí nazveme každou funkci, která je vytvořena ze

Více

Tématické celky { kontrolní otázky.

Tématické celky { kontrolní otázky. Tématické celky kontrolní otázky. Základy teorie pravdìpodobnosti..pravdìpodobnostní míra základní pojmy... Vysvìtlete pojem náhody, náhodného pokusu, náhodného jevu a jeho mno- ¾inovou interpretaci. Popi¹te

Více

Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov

Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov Protokol SADA DUM Číslo sady DUM: VY_4_INOVACE_MA_ Název sady DUM: Funkce a rovnice I. Název a adresa školy: Střední průmyslová škola, Hronov, Hostovského 90, 549 3 Hronov Registrační číslo projektu: Číslo

Více

Prbh funkce Jaroslav Reichl, 2006

Prbh funkce Jaroslav Reichl, 2006 rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad

Více

7) Intervaly konvexnosti a konkávnosti. 8) Inflexe, inflexní body grafu funkce. 9) Asymptoty grafu funkce. 10) Sestrojení grafu funkce.

7) Intervaly konvexnosti a konkávnosti. 8) Inflexe, inflexní body grafu funkce. 9) Asymptoty grafu funkce. 10) Sestrojení grafu funkce. Přednáška č. 12 Vyšetřování průběhu funkce a užití extrémů funkcí Jiří Fišer 11. prosince 2009 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 12 11. prosince 2009 1 / 18 Průběh funkce O vyšetřování

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Repetitorium matematiky (soubor testů) KMA/P113

Repetitorium matematiky (soubor testů) KMA/P113 Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta Repetitorium matematiky (soubor testů) KMA/P Lenka Součková Ústí nad Labem 0 Obor: Klíčová slova: Anotace: Fyzika (dvouoborové studium),

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje.

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje. Číslo projektu Škola Autor Číslo materiálu Název Téma hodiny Předmět Ročník/y/ Anotace CZ.1.07/1.5.00/34.0394 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Mgr. Renata

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu.

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu. Inženýrská matematika Robert Mařík Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

MATEMATIKA ZIMNÍ SEMESTR 2008/2009 Autor: Mati neučitel.

MATEMATIKA ZIMNÍ SEMESTR 2008/2009 Autor: Mati neučitel. MATEMATIKA ZIMNÍ SEMESTR 008/009 Autor: Mati neučitel. Kdo se matiku pilně učil, a jen si není jistý zadanými příklady, tomu stačí ty kousky podbarvené oranžově. Kdo najde nějakou mou chybu, o které ještě

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Učební text k přednášce UFY008

Učební text k přednášce UFY008 Lom hranolem lámavé stěny lámavá hrana lámavý úhel ϕ deviace δ úhel, o který je po výstupu z hranolu vychýlen světelný paprsek ležící v rovině kolmé k lámavé hraně (v tzv. hlavním řezu hranolu), který

Více

1.1.3 Práce s kalkulátorem

1.1.3 Práce s kalkulátorem .. Práce s kalkulátorem Výrazy zadáváme do kalkulačky pokud možno vcelku, pozor na závorky a čísla ve jmenovateli u zlomků. Př. : Spočti na kalkulačce s maximální možnou přesností a bez zapisování mezivýsledků:

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více