Přímková a rovinná soustava sil

Rozměr: px
Začít zobrazení ze stránky:

Download "Přímková a rovinná soustava sil"

Transkript

1 STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel římková a ovinná soustava sil Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá odvěsna ku přeponě sin a a - v postou - v ovině + sin cos sin cos+ S b B a sin+ cos sin+ cos+ A cos přilehlá odvěsna ku přeponě tg cotg cos a tg b b b potilehlá ku přilehlé přilehlá ku potilehlé b 1 cotg a tgβ y ) Síla ( nebo F) - vektoová veličina - působiště velikost oientace +

2 Soustavy sil - přehled Soustavy sil můžeme odělit do následujících skupin: síly působící v jedné přímce ovinný svaek sil obecná soustava sil soustava ovnoběžných sil 3) oklad síly v ovině síla pod úhlem - (k ose ) Možnosti adání velikosti úhlu: Typy řešení silových soustav: Skládání sil 1) Nahaení soustavy sil ) Zušení soustavy sil uvedení do ovnováhy oklad sil Řešení: očetně sestavujeme podmínky ekvivalence nebo ovnováhy Gaficky složkový obaec Znaménková konvence síly působící dopava a dolů jsou kladné moment otáčející poti u chodu hodinových učiček je A +. sin. cos až až-18 až18 + říklad 1 oklad síly pod úhlem na složky v ose a oložte sílu kn 3 na složky a (ekvivalentně nahaďte sílu silami a ).. sin 1kN. cos 173kN oložte sílu kn 6 na složky a a poovnejte s předchoím příkladem.. sin 173kN. cos 1kN říklad oklad síly pod úhlem α na složky v ose a oložte sílu kn α 3 (úhel k ose ) na složky a a poovnejte s předchoími příklady. α

3 4) Statický moment síly k bodu 5) Výpočet statického síly k počátku pomocí složek a síla momentový střed - S ameno síly - M S. [Nm knm] S (kolmé ameno) naménko: poti u chodu hod.uč. je + výsledný účinek na těleso je posun a otáčení M. (naménko podle u otáčení okolo bodu) M. -. (odvoeno po I.kvadant platí obecně) říklad 3a říklad 3b - doma a) Učete statický moment dané síly k počátku. 5kN 3 souřadnice působiště 5m 15m - sílu vykeslete v měřítku v souřadném systému. b) Dokažte odměřením amene Vaignonovu větu že statický moment síly na ameni je stejný jako statický moment jejích složek a na příslušných amenech a. Spočtěte přesnou hodnotu amene. c) osuňte sílu do počátku a přidejte moment tak aby účinek na soustavu ůstal achován Výsledky: a) M -775kNm ( ) b) 1415m (kolmé ameno) c) 775kNm 5kN Učete statický moment dané síly k počátku. 5kN 3 souřadnice působiště - 5m 15m. oovnejte s předcháejícím příkladem poč je statický moment větší?

4 6) Statický moment dvojice sil 7) Výslednice a ovnovážná síla odmínky ekvivalence: (soustava sil je nahaena) dvojice sil - ovnoběžné - opačně oientované - stejně velké Moment dvojice sil: M. [knm] 1. i. i. M i o i. i i. i + M i 3 M výslednice M moment k počátku moment je ke všem bodům v ovině stejný odmínky ovnováhy: i 1. i. (soustava sil je ušena) Zušíme účinek soustavy sil pomocí ovnovážných sil v ose pomocí Zušíme účinek soustavy sil pomocí ovnovážných sil v ose pomocí M i o 3. Zušíme účinek soustavy sil pomocí ovnovážných momentů nebo momentů od ovnovážných sil M i V ovině jsou 3 podmínky ekvivalence a 3 podmínky ovnováhy říklad Ekvivalentně nahaďte dvě obecně působící síly v ovině: F 1 kn 1 3m 1-3m 1 1 F 4kN -m 1m : a) pomocí M b) pomocí M c) pomocí amene 5. Zušte účinek této obecné soustavy sil ovnovážnou sílu vyjádřete pomocí jejích složek v ose a působícím v počátku. říklad 5.1 b) b) pomocí M (odvodit předešlých výsledků) výslednice 4773kN sin / 4437 M 4 knm a) pomocí M V ovině obecně tři podmínky ekvivalence: 1. i 3338 kn. i 341 kn 3. M i i - i i 4kNm M M M

5 říklad 5.1 c) c) pomocí amene (odvodit předešlých výsledků) říklad 5. Zušte účinek obecné soustavy sil (přidejte k soustavě ovnovážnou sílu nebo moment) ovnovážnou sílu vyjádřete pomoci složek síly a ovnovážný moment působí v počátku. výslednice 4773 kn 4437 M M. M / 84m Obecně 3 podmínky ovnováhy v ovině: i 1. i. M i o i 1 +. Zušíme účinek soustavy sil pomocí ovnovážné sily v ose Zušíme účinek soustavy sil pomocí ovnovážné sily v ose Zušíme účinek soustavy sil pomocí ovnovážného +. i ( ) + M 3 M + i o 1 1 M 3338kN ( skut. 341 kn ( skut. M 4kNm( skut. říklad 6 ovinná soustava ovnoběžných sil 1 3 5kN -18kN (síly jsou ovnoběžné s osou není třeba psát inde ) 1 m 6m 3 7m (-ové souřadnice počátku ) a) nahaďte soustavu sil jedinou silou (výslednicí ) pocháející počátkem a momentem M b) nahaďte soustavu sil poue jedinou silou výslednicí c) učete polohu výslednice vhledem k síle 1 d) učete polohu výslednice vhledem k síle e) učete ovnovážnou sílu (uší účinek soustavy sil) a její polohu vhledem k počátku říklad 6a) 3 1 5kN -18kN - (síly jsou ovnoběžné s osou není třeba psát inde ) 1 m 6m 3 7m a) nahaďte soustavu sil jedinou silou (výslednicí ) pocháející počátkem a momentem M odmínky ekvivalence: 1. i. i Netřeba počítat všechny síly působí v ose 3. M i o i. i i. i M M 63kNm Výslednéřešení: 8kN

6 říklad 6b) 3 1 5kN -18kN (síly jsou ovnoběžné s osou ) 1 m 6m 3 7m říklad 6c) 3 1 5kN -18kN - (síly jsou ovnoběžné s osou ) 1 m 6m 3 7m b) nahaďte soustavu sil poue jedinou silou (výslednicí) na ameni k počátku Výslednéřešení: 8kN 8kN 788 m M 63kNm M. M / 788m c) poloha výslednice (ameno 1 ) vhledem k síle 1 omocí Vaignonovy věty: i i m 8 ovnice sestavena podle ů otáčení sil okolo působiště síly 1. omocí odvoených vtahů: Výslednéřešení: m kN 1. i kN( skut.. M i 1 i. i i. i M1 M1 i. i ((5 + ( 18) )) 47kNm( ) Nebo: / M1 / M m Tady je potřeba přemýšlet na kteou stanu vykeslit výslednici / / aby působila moment dané velikosti a u. 3 říklad 6d) - úkol 3 1 5kN 18kN (síly jsou ovnoběžné s osou ) 1 m 6m 3 7m (-ové souřadnice ) říklad 6e) - úkol 3 1 5kN -18kN - (všechny síly jsou ovnoběžné s osou není potřeba inde u síly) 1 m 6m 3 7m. d) ovnovážná síla a její poloha vhledem k počátku d) polohu výslednice vhledem k síle Vaignonova věta: i i m m 8kN m 8kN 1. i + odmínky ovnováhy:. i + Netřeba počítat všechny síly působí v ose 3. M i i. i ( i. i +. ) oo na naménka místo dosaení do ovnice le počítat podle u působení síly

7 říklad 7 - síly pocháející společným bodem - úkol Učete výslednici a ovnovážnou sílu ovinného svaku sil. 1 5kN; 3kN; 3 kn; 4 4kN ; 1 ; ; 4 6 1) Učete složky výslednice. V ovině u papsku sil poue dvě podmínky ekvivalence (součtové silové): 1. i 485 kn. i -719 kn Vykeslete v souřadném systému (vpavo nahoře) ponáte do kteého kvadantu směřuje výslednice ) Dopočtěte výslednici akeslete do obáku podívejte se kam výslednice směřuje (do kteého kvadantu) 3) Učete ostý úhel kteý svíá výslednice např. s osou ostý + Výsledky: 498kN sin / ostý ) Dopočtěte velikost úhlu od kladného u osy podle u výslednice (příslušného kvadantu) ) Na ákladě nalosti polohy výslednice učete i ovnovážnou sílu a akeslete do obáku. Můžete kusit spočítat novu jako samostatný úkol a použít podmínky ovnováhy. 6) Nakeslete složkový obaec vynačte na něm výslednici i ovnovážnou sílu říklad 8 soustava obecných sil v ovině - úkol 1 36kN 15kN 3 kn; m 1-15m; -5m 4m; 3 3m 3 48m a) nahaďte soustavu sil jedinou silou (výslednicí) a učete její polohu vhledem k počátku ( d) b) učete ovnovážnou sílu ( uší účinek soustavy sil) a její polohu vhledem k počátku ( d) c) Nakeslete složkový obaec vynačte na něm výslednici i ovnovážnou sílu Výsledky: 444kN d 993 m d 3 3

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

1.7.2 Moment síly vzhledem k ose otáčení

1.7.2 Moment síly vzhledem k ose otáčení .7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá

Více

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Moment síly, spojité zatížení

Moment síly, spojité zatížení oment síly, spojité zatížení Pet Šidlof TECHNICKÁ UNIVERZITA V LIBERCI akulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ES CZ.1.07/2.2.00/07.0247 Reflexe požadavků

Více

F - Mechanika tuhého tělesa

F - Mechanika tuhého tělesa F - Mechanika tuhého tělesa Učební text pro studenty dálkového studia a shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Vzorové příklady - 2.cvičení

Vzorové příklady - 2.cvičení Vorové příklady - cvičení Vorový příklad Vypočtěte velikost síly, potřebné k naddvihnutí poklopu, hradícího výpust nádrže s vodou obráek Hloubka vody v nádrži h =,0 m, a = 0,5 m, = 60º, tíha poklopu G

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SR 1 Pavel Padevět ITŘÍ SÍY PRUTU ITŘÍ SÍY PRUTU Put (nosník) konstukční vek u něhož délka načně řevládá nad dalšími dvěma oměy. Při řešení tyto vky modelujeme jejich střednicí čáou tvořenou sojnicí těžišť

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky.

Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky. 5 Vektor II Předpoklad: 4 Umíme už vektor sčítat, teď zkusíme opačnou operací rozklad vektoru na složk Př : Na obrázku je nakreslena síla Nakresli do obrázku síl a tak, ab platilo = + Kolik má úloha řešení?

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

Z hlediska pružnosti a pevnosti si lze stav napjatosti

Z hlediska pružnosti a pevnosti si lze stav napjatosti S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 1 7/4.1 T Y P Y N A P J A T O S T I A T R A N S F O R M A C E N A P J A T O S T I Pojmem napjatost roumíme stav určitého bodu tělesa, který

Více

Statika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč.

Statika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. 1. přednáška Úvod & Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 22. února 2016 Konzultační hodiny Ing. Miroslav Vokáč, Ph.D. Kloknerův ústav, ČVUT v Praze Šolínova 7 166 08

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

DYNAMIKA HMOTNÉHO BODU

DYNAMIKA HMOTNÉHO BODU DYNAMIKA HMOTNÉHO BODU Součást Newtonovské klasická mechanika (v

Více

Statika tuhého tělesa Statika soustav těles

Statika tuhého tělesa Statika soustav těles Statika tuhého tělesa Statika soustav těles Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Technická mechanika - Statika

Technická mechanika - Statika Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

vzhledem k ose kolmé na osu geometrickou a procházející hmotným středem válce. c) kužel o poloměru R, výšce h, hmotnosti m

vzhledem k ose kolmé na osu geometrickou a procházející hmotným středem válce. c) kužel o poloměru R, výšce h, hmotnosti m 8. Mechanika tuhého tělesa 8.. Základní poznatky Souřadnice x 0, y 0, z 0 hmotného středu tuhého tělesa x = x dm m ( m) 0, y = y dm m ( m) 0, z = z dm m ( m) 0. Poznámka těžiště tuhého tělesa má v homogenním

Více

Diferenciální počet funkcí více reálných proměnných PŘÍKLAD 1. Nalezněte funkční předpis kvadratické formy F( z1, z2, z = A.

Diferenciální počet funkcí více reálných proměnných PŘÍKLAD 1. Nalezněte funkční předpis kvadratické formy F( z1, z2, z = A. Diferenciální počet funkcí více reálných proměnných -6- KVADRATICKÉ FORMY PŘÍKLAD Naleněte funkční předpis kvadratické formy F(, ) adané maticí A 4 Pro obecnou kvadratickou formu dvou proměnných platí

Více

Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např.

Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např. : 4 2 R 1 1 R 2 0,8 R 3 : 8 0 R 1 1 R 2 0,8 R 3 : 2 1 R 1 2 R 2 0 R 3 [2 1 0,8 ] 0 1 0,8 1 2 0 A Vbrané metod řešení soustav rovnic Podmínk rovnováh či ekvivalence vedou často na soustavu rovnic, např.

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

Petr Kopelec. Elektronická cvičebnice. Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic

Petr Kopelec. Elektronická cvičebnice. Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic Elektronická cvičebnice Petr Kopelec Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Základní úlohy statiky... 3 2 Určení síly v rovině...

Více

STATIKA Fakulta strojní, prezenční forma, středisko Šumperk

STATIKA Fakulta strojní, prezenční forma, středisko Šumperk STATIKA 2013 Fakulta strojní, prezenční forma, středisko Šumperk Př. 1. Určete výslednici silové soustavy se společným působištěm (její velikost a směr). Př. 2. Určete výslednici silové soustavy se společným

Více

Mechanika - síla. Zápisy do sešitu

Mechanika - síla. Zápisy do sešitu Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_07_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_07_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 11. 2012 Číslo DUM: VY_32_INOVACE_07_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA I STATIKA

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA I STATIKA STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA I STATIKA Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

ZÁKLADY ROBOTIKY Transformace souřadnic

ZÁKLADY ROBOTIKY Transformace souřadnic ÁKLD OOIK ansfomace souřadnic Ing. Josef Čenohoský, h.d. ECHNICKÁ UNIVEI V LIECI Fakulta mechatoniky, infomatiky a mezioboových studií ento mateiál vznikl v ámci pojektu ESF C..7/2.2./7.247, kteý je spolufinancován

Více

PODÉLNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ - 1. FÁZE LONGITUDINAL STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS - 1

PODÉLNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ - 1. FÁZE LONGITUDINAL STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS - 1 Ročník 5., Číslo III., listopad 00 PODÉLNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ -. FÁZE LONGITUDINAL STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS - Leopold Habovský Anotace:

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

Dynamika tuhého tělesa

Dynamika tuhého tělesa Dnaika tuhého tělesa Pet Šidlof ECHNCKÁ UNVERZA V LBERC Fakulta echatonik, infoatik a eioboových studií ento ateiál vnikl v áci pojektu ESF CZ..7/../7.47 Reflexe požadavků půslu na výuku v oblasti autoatického

Více

Normálová napětí v prutech namáhaných na ohyb

Normálová napětí v prutech namáhaných na ohyb Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené

Více

Výslednice, rovnováha silové soustavy.

Výslednice, rovnováha silové soustavy. Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Trivium z optiky Vlnění

Trivium z optiky Vlnění Tivium z optiky 7 1 Vlnění V této kapitole shnujeme základní pojmy a poznatky o vlnění na přímce a v postou Odvolávat se na ně budeme často v kapitolách následujících věnujte poto vyložené látce náležitou

Více

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka)

OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) A) Výklad: Posuvné účinky: Ze studia posuvných účinků síly jsme zjistili: změny rychlosti nebo směru posuvného pohybu tělesa závisejí na tom, jak velká síla

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

Cvičebnice stavební mechaniky

Cvičebnice stavební mechaniky Cvičebnice stavební mechaniky Ing. Karla Labudová. vydání Tato příručka vznikla za finanční podpory Evropského sociálního fondu a rozpočtu České republiky. Obsah Síly působící v jednom paprsku 7. Dvě síly

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

4.3.4 Základní goniometrické vzorce I

4.3.4 Základní goniometrické vzorce I .. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0;

Více

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast:

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast: Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra

Více

4.3.3 Základní goniometrické vzorce I

4.3.3 Základní goniometrické vzorce I 4.. Základní goniometrické vzorce I Předpoklady: 40 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Planimetrie. Přímka a její části

Planimetrie. Přímka a její části Planimetie Přímka a její části Bod - značí se velkými tiskacími písmeny - bod ozděluje přímku na dvě opačné polooviny Přímka - značí se malými písmeny latinské abecedy nebo AB, AB - přímka je dána dvěma

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku

Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.

Více

GONIOMETRIE A TRIGONOMETRIE

GONIOMETRIE A TRIGONOMETRIE GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu

Více

6 Pohyb částic v magnetickém poli

6 Pohyb částic v magnetickém poli Pohb částic v magnetickém poli V této části si ukážeme, jak homogenní magnetické pole ovlivňuje pohb částic. Soustavu souřadnic volíme vžd tak, ab vektor magnetickéindukce Bsměřovalposměruos (obr.).. Lorentova

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 10. 2012 Číslo DUM: VY_32_INOVACE_01_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 10. 2012 Číslo DUM: VY_32_INOVACE_01_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 10. 2012 Číslo DUM: VY_32_INOVACE_01_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá. TRIN_STT_P11.doc STTIK - SOUOR PŘNÁŠK 11. Prutové soustavy, základní pojmy, metody řešení. Teoreticky je PRUTOVÁ SOUSTV definována jako soustava složená z tuhých prutů, které jsou navzájem spojeny ideálními

Více

3. Silové působení na hmotné objekty

3. Silové působení na hmotné objekty SÍL OENT SÍLY - 10-3. Silové ůsobení na hmotné objekty 3.1 Síla a její osuvné účinky V této kaitole si oíšeme vlastnosti silových účinků ůsobících na konstrukce a reálné mechanické soustavy. Zavedeme kvantitativní

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Nejprve určíme posouvající sílu. Pokud postupujeme zprava, zjistíme, že zde nepůsobí žádné silové účinky, píšeme proto:

Nejprve určíme posouvající sílu. Pokud postupujeme zprava, zjistíme, že zde nepůsobí žádné silové účinky, píšeme proto: Řešte daný nosník: a,m, b,m, c,m, F = 5kN, kn bychom nal kompletně slové účnky působící na nosník, nejprve vyšetříme reakce v uloženích. Reakc určíme například momentové podmínky rovnováhy k bodu. Fb =

Více

Moment síly Statická rovnováha

Moment síly Statická rovnováha Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově

Více

Kinematika tuhého tělesa

Kinematika tuhého tělesa Kinematika tuhého tělesa Pet Šidlof TECHNICKÁ UNIVERZITA V LIERCI Fakulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ESF CZ.1.07/2.2.00/07.0247 Reflexe požadavků

Více

7.1.2 Kartézské soustavy souřadnic II

7.1.2 Kartézské soustavy souřadnic II 7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice Několik dalších ukázek: Eponenciální rovnice. Řešte v R: a) 5 +. 5 - = 5 - b) 5 9 4 c) 7 + = 5 d) = e) + + = f) 6 4 = g) 4 8.. 9 9 S : a) na každé straně rovnice musí být základ 5, aby se pak základy mohly

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

SOUŘADNICE BODU, VZDÁLENOST BODŮ

SOUŘADNICE BODU, VZDÁLENOST BODŮ Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose

Více

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející

Více

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 4. ŘÍJNA 202 Název zpracovaného celku: PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Příhradové konstrukce jsou sestaveny

Více

VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE

VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je

Více

TŘENÍ A PASIVNÍ ODPORY

TŘENÍ A PASIVNÍ ODPORY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

III Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208

III Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208 4..0 Rychlé určování hodnot funkcí sinus a cosinus Předpoklady: 40, 408 Pedagogická poznámka: Tato kapitola nepřináší nic nového. Sám autor si myslí, že by bylo lepší, kdyby si studenti metodu rychlého

Více

Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné

Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné Přijímací zkouška do. ročníku OPF z matematiky (00) A Příklad. Určete definiční oboovnice a rovnici řešte. n + n =. + D : n N n = b b +

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

Radián je středový úhel, který přísluší na jednotkové kružnici oblouku délky 1.

Radián je středový úhel, který přísluší na jednotkové kružnici oblouku délky 1. Goniometrické funkce Velikost úhlu v míře stupňové a v míře obloukové Vjadřujeme-li úhl v míře stupňové, je jednotkou stupeň ( ), jestliže v míře obloukové, je jednotkou radián (rad). Ve stupňové míře

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více