kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková"

Transkript

1 Kombinatorika Opakovací kurz 2015 Radka Hájková 1) Děti z hudební školy Písnička, mezi nimiž byla i dvojčata Dita a Zita, psaly v rámci hudební nauky písemnou práci z not. Kolik možností oznámkování mohla dvojčata od učitelky obdržet, jestliže víme, že dvojčata nedostala stejnou známku? (Kolik dvojic různých známek připadá v úvahu?) 20

2 2) Ve školní jídelně jsou dnes v nabídce tato jídla: Polévka: slepičí vývar zeleninová Hlavní chod: špagety rizoto guláš Salát: rajčatový zelný Kolik existuje různých obědů, má li každý obsahovat polévku, hlavní jídlo a jeden salát? 12 3) Určete počet všech přirozených dvojciferných čísel, v jejichž dekadickém zápisu se každá číslice vyskytuje nejvýše jednou. 81

3 Kombinatorické pravidlo součinu: Počet všech uspořádaných k tic, jejichž 1. člen lze vybrat n 1 způsoby, druhý člen po výběru prvního n 2 způsoby,, až k tý člen po výběru všech předcházejících členů n k způsoby, je roven n 1 n 2 n k. Kombinatorické pravidlo součtu: Jsou li A 1, A 2,, A n konečné množiny, které mají po řadě p 1, p 2,, p n prvků a jsou li každé dvě disjunktní, pak počet prvků množiny A 1 U A 2 U U A n je roven p 1 + p p n. 4) Čtverec (ozn. A) o straně 3 cm je rozdělen na 9 stejných čtverečků o straně 1 cm. Určete, kolik je v daném čtverci A všech čtverců. 14

4 5) Je dán čtverec ABCD a na jeho každé straně n vnitřních bodů. Určete počet všech trojúhelníků XYZ, jejichž vrcholy leží v daných bodech (4n) a na různých stranách čtverce ABCD. [4n 3 ] 6) Maminka koupila svým 3 dcerám tři různé míče. Kolika způsoby je může mezi dcery rozdělit tak, aby každá dostala právě jeden? [6]

5 7)Z místa A do místa B vedou čtyři různé turistické cesty, z místa B do místa C tři. Určete a) kolika způsoby lze vybrat trasu z A do C, [12] b) kolika způsoby lze vybrat trasu z A do C a zpět, [144] c) kolika způsoby lze vybrat trasu z A do C a zpět tak, že z těchto sedmi cest není žádná použita dvakrát, [72] d) kolika způsoby lze vybrat trasu z A do C a zpět tak, že z těchto sedmi cest je právě jedna použita dvakrát, [60] e) kolika způsoby lze vybrat trasu z A do C a zpět tak, že z těchto sedmi cest jsou právě dvě použity dvakrát. [12] 8) Určete počet všech trojciferných přirozených čísel, v jejichž dekadickém zápisu se každá číslice vyskytuje nejvýše jednou. [648]

6 9) Určete, kolika způsoby lze na šachovnici 8 8 vybrat dvě různobarevná políčka tak, aby obě neležela v téže řadě ani v témže sloupci. [768] 10) Určete počet všech nejvýše trojciferných přirozených čísel, v jejichž dekadickém zápisu se může vyskytovat pouze číslice 1,2,3,4 a každá nejvýše jednou. [40]

7 11) Určete počet všech čtyřciferných přirozených čísel, v jejichž dekadickém zápisu není nula a ze zbývajících devíti číslic se v něm každá vyskytuje nejvýše jednou. [3024] Kolik z těchto čísel je větších než 9 000? [336] Kolik menších než 3 000? [672] 12) Určete počet všech čtyřciferných přirozených čísel, jejichž dekadický zápis je složen z číslic 1,2,3,4,5 (každá z nich se může opakovat), která jsou dělitelná: a) pěti, [125] b) dvěma, [250] c) čtyřmi. [125]

8 Zavedení pojmu n! = n (n 1) (n 2) (pro každé přirozené číslo n) 4! = 24 n! = n (n 1)! 0! = 1 Výsledek: 13)S připomínkami k navrhovanému zákonu chce v parlamentě vystoupit 6 poslanců A, B, C, D, E, F. Určete počet: a) všech možných pořadí jejich vystoupení, [720] b) všech pořadí, v nichž vystupuje A po E, [360] c) všech pořadí, v nichž vystupuje A ihned po E. [120]

9 Permutace bez opakování Permutace z n prvků je každá uspořádaná n tice sestavená z těchto prvků tak, že každý prvek se v ní vyskytuje právě jednou. Ozn.: P(n) 14) Kolika způsoby může 12 členů organizace zvolit ze svého středu předsedu, místopředsedu, kulturního referenta a sportovního referenta? [11 880]

10 Variace bez opakování k členná variace z n prvků ( ) je každá uspořádaná k tice sestavená z těchto prvků tak, že každý prvek se v ní vyskytuje nejvýše jednou. Ozn.: V(k,n) 15)Kolika způsoby můžeme rozdat mezi 10 dětí 4 různé míče tak, aby každý měl nanejvýš jeden? [5 040]

11 16) U výtahu, do něhož můžou nastoupit nejvýše tři osoby, stojí 5 osob. Označme je A, B, C, D, E. Kolik je všech různých trojic osob, které mohou do výtahu nastoupit? (Všechny trojice napište). [10] 17) Ve skladu je 8výrobků, mezi nimi jsou 2 vadné. Kolika způsoby z nich můžeme vybrat kolekci 3 výrobků, aby a) všechny byly dobré, [20] b) byl právě jeden vadný, [30] c) byl nejvýš jeden vadný? [50]

12 Kombinace bez opakování k členná kombinace z n prvků ( ) je každá neuspořádaná k tice sestavená z těchto prvků tak, že každý prvek se v ní vyskytuje nejvýše jednou. Ozn.: K(k,n) Zavedení kombinačního čísla Pro všechna celá nezáporná čísla n, k, k n, je Určuje nám počet k prvkových podmnožin n prvkové množiny.

13 18) Je dán pravidelný pětiúhelník KLMNO. Kolik různých trojúhelníků je určeno těmito body? [10] 19) Určete, kolika způsoby je možno ze 7 mužů vybrat šestičlennou skupinu, v níž jsou: a) právě dvě ženy b)aspoň dvě ženy 20) Určete, kolika způsoby je možno ze 20 osob vybrat 10, požadujeme li, aby mezi vybranými nebyl pan A. [92378]

14 Variace s opakováním k členná variace s opakováním z n prvků ( ) je každá uspořádaná k tice sestavená z těchto prvků tak, že každý prvek se v ní vyskytuje nejvýše k krát. Ozn.: V'(k,n) 21) Určete počet všech trojciferných přirozených čísel. [900]

15 22) Platební karta má 4 místný PIN. Kolik existuje různých kódů? [10000] Permutace s opakováním k členná permutace s opak z n prvků ( ) je každá uspořádaná k tice sestavená z těchto n prvků tak, že se v ní každý prvek vyskytuje alespoň jednou. Ozn.: P' (k 1, k 2,, k n )

16 23) Určete počet všech deseticiferných přirozených čísel, jejichž ciferný součet je roven třem. Kolik z nich je sudých? [55, 46] Kombinace s opakováním k členná kombinace s opakováním z n prvků ( ) je každá neuspořádaná k tice sestavená z těchto n prvků tak, že každý prvek se v ní vyskytuje nejvýše k krát. Ozn.: K'(k,n)

17 24) V sáčku jsou bílé, modré a zelené kuličky. Kolika způsoby lze vybrat 5 kuliček, jestliže v sáčku je a) pět kuliček každé barvy? b) 5 bílých, 4 modré a 4 zelené kuličky? [a) 21, b) 19] Pascalův trojúhelník je schéma, které dobře znázorňuje některé vlastnosti kombinačních čísel

18 25) Vyjádřete jediným kombinačním číslem: Binomická věta Pro všechna čísla a, b a kaž přirozené číslo n platí: k tý člen binomického rozvoj Př. Vypočtěte užitím binomické v (1,01) 4

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

Kombinatorika, základní kombinatorická pravidla, pravidlo součtu, pravidlo součinu

Kombinatorika, základní kombinatorická pravidla, pravidlo součtu, pravidlo součinu Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN

Více

VARIACE BEZ OPAKOVÁNÍ

VARIACE BEZ OPAKOVÁNÍ VARIACE BEZ OPAKOVÁNÍ (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? Analogicky odvoďte obecné řešení.

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Mgr. Marcela Sandnerová

Mgr. Marcela Sandnerová Mgr. Marcela Sandnerová Základní kombinatorická pravidla Kombinatorické pravidlo součinu Kombinatorické pravidlo součtu Kombinatorické pravidlo součinu Příklad 1 Kolika způsoby si může Pavel připravit

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor002 Vypracoval(a),

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6.

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. ROČNÍK Zadání úloh Autorka úloh: Mgr. Lucie Filipenská Katedra didaktiky

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 62. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Čtvercová tabulka je rozdělena na 16 16 políček. Kobylka se po ní pohybuje dvěma směry: vpravo nebo dolů, přičemž střídá skoky

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

Pravděpodobnost a statistika pro SŠ

Pravděpodobnost a statistika pro SŠ Pravděpodobnost a statistika pro SŠ RNDr. Blanka Šedivá, Ph.D., katedra matematiky, Fakulta aplikovaných věd Západočeské univerzity v Plzni sediva@kma.zcu.cz 28. března 2012 Počátky teorie pravděpodobnosti

Více

2. Dělitelnost přirozených čísel

2. Dělitelnost přirozených čísel 2. Dělitelnost přirozených čísel 6. ročník - 2. Dělitelnost přirozených čísel Číslo 4 756 můžeme rozložit 4 756 = 4. 1 000 + 7. 100 + 5. 10 + 6 Obdobně : čtyřciferné číslo můžeme zapsat ve tvaru a bcd

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení MTEMTIK 5 M5PZD15C0T01 DIDKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60 minut.

Více

Čísla Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov

Čísla Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov Protokol SADA DUM Číslo sady DUM: Název sady DUM: Název a adresa školy: Registrační číslo projektu: Číslo a název šablony: Obor vzdělávání: Tématická oblast ŠVP: Předmět a ročník: Autor: Použitá literatura:

Více

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

9.1.1 Základní kombinatorická pravidla I

9.1.1 Základní kombinatorická pravidla I 9.. Základní kombinatorická pravidla I Předpoklady: Př. : Ve třídě je 7 děvčat a 3 kluků. Kolik máme možností jak vybrat dvojici klukholka, která bude mít projev na maturitním plese? Vybíráme ze 7 holek

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

DĚLITEL A NÁSOBEK DIGITÁLNÍ UČEBNÍ MATERIÁL VY_32_INOVACE_TR_01-20_MA-6. autor Hana Trundová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE

DĚLITEL A NÁSOBEK DIGITÁLNÍ UČEBNÍ MATERIÁL VY_32_INOVACE_TR_01-20_MA-6. autor Hana Trundová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 DĚLITEL

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

PŘIJÍMACÍ ZKOUŠKY II.termín 23.dubna 2014

PŘIJÍMACÍ ZKOUŠKY II.termín 23.dubna 2014 MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítáme vás u přijímacích zkoušek z matematiky a přejeme hodně úspěchů při řešení zadaných úloh. Příklady můžete řešit v libovolném pořadí.

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Základní provize v systému MLM ZetClub

Základní provize v systému MLM ZetClub Základní provize v systému MLM ZetClub Každý prodejce může pod sebou zaregistrovat dalšího prodejce, ten zas dalšího atd. Každý prodejce, tedy může být buď zaregistrován přímo pod firmou, nebo má nad sebou

Více

Polévka Polévka Polévka. Polévka květáková Polévka květáková Polévka květáková

Polévka Polévka Polévka. Polévka květáková Polévka květáková Polévka květáková pátek čtvrtek středa úterý pondělí VYPLŇTE VAŠE JMÉNO A ADRESU: Den Oběd RACIONÁLNÍ Dieta DIABETICKÁ Dieta ŠETŘÍCÍ 6.10. květáková květáková květáková 1. 3. 4. Vepřová pečeně franfurtská, Vepřová pečeně

Více

Maturitní okruhy z matematiky pro školní rok 2005-2006

Maturitní okruhy z matematiky pro školní rok 2005-2006 MATURITA 005-006 Gymnázium V.Hlavatého, Louny, Poděbradova 66 0.9.005 Maturitní okruhy z matematiky pro školní rok 005-006 Třída 8.A/8,.A/ V.Zlatohlávek, B. Naer. Úpravy výrazů v matematice.... Rovnice

Více

Finále SOUBOR OTÁZEK. ročník

Finále SOUBOR OTÁZEK. ročník Finále SOUBOR OTÁZEK 6. ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotllivé kontinenty na naší planetě ještě rozdělené,

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

ÚLOHY VYUŽÍVAJÍCÍ DIRICHLETŮV PRINCIP

ÚLOHY VYUŽÍVAJÍCÍ DIRICHLETŮV PRINCIP ÚLOHY VYUŽÍVAJÍCÍ DIRICHLETŮV PRINCIP Doc. PhDr. Marta Volfová, CSc., Katedra matematiky Název úloh byl zvolen podle významného německého matematika G. L. Dirichleta (1805 59). Dirichletův princip pomáhá

Více

SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY

SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY V široce otevřených úlohách 2 7 zapisujte celý postup řešení. 1 Vypočtěte, kolikrát kratší je časový interval sekund oproti časovému intervalu minuty. úzce otevřená 6krát

Více

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Neotvírej, dokud nedostaneš pokyn od zadávajícího! 6. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní 4, 186 Praha 8 tel.: 24 75 555 fax: 24 75 55 e-mail: scio@scio.cz

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

I. označení digitálního učebního materiálu: VY_32_INOVACE_MA.6.021

I. označení digitálního učebního materiálu: VY_32_INOVACE_MA.6.021 Základní škola a Mateřská škola G. A. Lindnera Rožďalovice projekt EUškola pro život, registrační číslo CZ.1.07/1.4.00/21.1977 Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013

Více

DOVEDNOSTI V MATEMATICE

DOVEDNOSTI V MATEMATICE Hodnocení výsledků vzdělávání žáků 9. tříd ZŠ 2006 MA1ACZZ906DT DOVEDNOSTI V MATEMATICE didaktický test A Testový sešit obsahuje 13 úloh. Na řešení úloh máte 40 minut. Všechny odpovědi pište do záznamového

Více

Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda.

Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda. m_1_vyrok_priklady 6.5.011 1/9 m_1_vyrok_priklady 6.5.011 /9 Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda. A: Číslo 6 je dělitelné 5-ti. (nepravda)

Více

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete!

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete! Tento seminář pro Vás připravuje vzdělávací agentura Kurzy-Fido.cz...s námi TSP zvládnete! Řešení páté série (27.4.2009) 13. Hlavní myšlenka: efektivní porovnávání zlomků a desetinných čísel Postup: V

Více

I. kolo kategorie Z5

I. kolo kategorie Z5 Z5 I 1 64. ročník Matematické olympiády I. kolo kategorie Z5 Chlapcimezisebouměniliznámky,kuličkyamíčky.Za8kuličekje10známek,za 4 míčky je 15 známek. Kolik kuliček je za jeden míček? (M. Krejčová) Z5 I

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

1. VÝROKOVÁ LOGIKA. a) b) c) d) e) f) g) h) i) j) k) l)

1. VÝROKOVÁ LOGIKA. a) b) c) d) e) f) g) h) i) j) k) l) 1. VÝROKOVÁ LOGIKA 1. Negujte výroky s kvantifikátory, výroky g j a jejich negace zapište i symbolicky a) Alespoň 5 dnů bude pršet. b) Úloha má právě 2 řešení. c) Žádný z předmětů mě nebaví. d) Nejvýše

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Pro zasedání, jednání, semináře, školící akce, soukromé nebo firemní oslavy Vám můžeme nabídnout 4 místnosti s kapacitou až 50 osob.

Pro zasedání, jednání, semináře, školící akce, soukromé nebo firemní oslavy Vám můžeme nabídnout 4 místnosti s kapacitou až 50 osob. Setkání & Akce 1 /7 Pro zasedání, jednání, semináře, školící akce, soukromé nebo firemní oslavy Vám můžeme nabídnout 4 místnosti s kapacitou až 50 osob. Všechny místnosti jsou tiché, vybavené individuálně

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

5. Didaktické testy jako jeden z nástrojů diagnostiky

5. Didaktické testy jako jeden z nástrojů diagnostiky 5. Didaktické testy jako jeden z nástrojů diagnostiky Didaktické testy jako jeden z nástrojů diagnostiky V procedurách získávání informací pro hodnocení žáků se u nás stále častěji objevují didaktické

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu

Více

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 Maturitní zkouška se skládá ze společné části a profilové části. 1. Společná část maturitní zkoušky Dvě povinné zkoušky a) český jazyk a literatura b) cizí jazyk

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 9. ročník (1. 6. úloha)

Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013 pro 9. ročník (1. 6. úloha) Základní škola a Mateřská škola G. A. Lindnera Rožďalovice projekt EUškola pro život, registrační číslo CZ.1.07/1.4.00/21.1977 Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2012/2013

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Hodnocení soutěžních úloh

Hodnocení soutěžních úloh Hodnocení soutěžních úloh Superciferný součet Koeficient 1 Kategorie mládež Soutěž v programování 24. ročník Krajské kolo 2009/2010 15. až 17. dubna 2010 Vaší úlohou je vytvořit program, který spočítá

Více

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo:

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: 1. Toník se dopravuje ze školy domů autobusem číslo 176, který jezdí vždy v celou hodinu a pak dále po každých 15 minutách. Dnes dorazil Toník

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

O náhodě a pravděpodobnosti

O náhodě a pravděpodobnosti O náhodě a pravděpodobnosti 10. kapitola. Ještě jednou honička na šachovnici a kvočny na vejcích neboli Bernoulliovo schéma In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček (illustrator):

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

URČITÝ INTEGRÁL OBSAH PLOCHY ROVINNÉHO OBRAZCE OHRANIČENÉHO ZADANÝMI KŘIVKAMI

URČITÝ INTEGRÁL OBSAH PLOCHY ROVINNÉHO OBRAZCE OHRANIČENÉHO ZADANÝMI KŘIVKAMI URČITÝ INTEGRÁL OBSAH PLOCHY ROVINNÉHO OBRAZCE OHRANIČENÉHO ZADANÝMI KŘIVKAMI Co je kýženým výsledkem je zřejmé ze zadání obsah, respektive obsah jistého obrazce omezeného zadanými křivkami který je samozřejmě

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Numerace v oboru 0 6 Manipulace s předměty, třídění předmětů do skupin. Počítání

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3 Záznamový arch Název školy: Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.2499 Číslo a název šablony klíčové aktivity: III/2 Inovace

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více