Genetika chromosomální a molekulární základy dědičnosti

Rozměr: px
Začít zobrazení ze stránky:

Download "Genetika chromosomální a molekulární základy dědičnosti"

Transkript

1 Biologie I enetika chromosomální a molekulární základy dědičnosti Meioza, gamety, rozmnožování Mendelovská dědičnost Chromosomální základy dědičnosti Centrální dogma molekulární biologie

2 Dědičnost Přenos vlastností/predispozic rodičovského organismu na potomky Přenos DN s geny (chromosomální i extrachromosomální) en = základní jednotka dědičnosti, na chromosomu umístněn v lokusu Rozmnožování proces tvorby potomstva (zde ve smyslu celých organismů) Nepohlavní (vegetativní, asexuální) = klony (genetické kopie) např.: 100 µm rodičovský jedinec moeba dělící se mitoticky pupen Mnohobuněčný nezmar (Hydra) množící se pučením (pupen: mitosy, masa buněk se vyvijí v nového jedince oddělení) Pohlavní (generativní, sexuální) Potomek nese [jedinečnou] kombinaci genů získaných od obou rodičů

3 daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings Pohlavní rozmnožování a dědičnost v důsledku náhodné kombinace genů (chromosomů rodičů) při oplození se potomek vzhledem liší od rodičů i sourozenců Homo sapiens sapiens centromera sesterské chromatidy pár homologních chromosomů Somatická buňka rodiče: 46 chromosomů (diploidní; 2n) 2 gonosomy (pohlavní chr.) 44 autosomů (22 párů) Karyotyp soubor chromosomů, rozlišitelné podle tvaru a proužkování (uspořádaný a graficky znázorněný = karyogram) zde muž (46, XY) metafázní chromosomy izolované z leukocytů po barvení (proužky) gameta otec 22 autosomů + gonosom (haploidní; n) gameta matka 22 autosomů + gonosom (haploidní; n) Potomek: 46 chromosomů (2n) 2 gonosomy (pohlavní chr.) 22 párů autosomů

4 daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings Pohlavní rozmnožování a dědičnost Rozmnožovací cyklus živočichů Barvy Haploidní stav (gamety = pohlavní buňky ) Diploidní stav n gameta n gameta 2. pohlaví n MEIOZ OPLOZENÍ splynutí gamet (syngamie, oplození) za vzniku diploidní zygoty Diploidní mnohobuněčný potomek 2n 2n zygota mitoza mitozy, dělení diferenciace

5 Pohlavní rozmnožování a dědičnost Časový nástup meiozy se v životních cyklech různých organismů může lišit: mitoza haploidní mnohobuněčný organismus gamety mitoza meioza oplození Většina hub, někteří prvoci a řasy hlenka (Dictiostelium) zygota haploidní mnohobuněčný organismus (gametofyt) mitoza mitoza spory gamety meioza oplození zygota mitoza diploidní mnohobuněčný organismus (sporofyt) Rostliny a některé řasy daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

6 daptováno z Johnson R.: Biology, 5 th edition 1999; The Mcraw-Hill Comp., Inc. MEIOZ tvorba haploidních buněk rozdělením diplodních pár homologních chromosomů diploidní buňka 2n replikace pár replikovaných homologních chromosomů meiozu předchází replikace chromosomů sesterské chromatidy 2n MEIOZ redukční dělení (redukce počtu chromosomů a separace sesterských chromatid) chromosomy chromatidy n buňky s 1 replikovaným chromosomem separace chromatid n 1 pár homologních chromosomů = 2 možnosti... výsledkem jsou buňky nesoucí jednu sadu původních homologních autosomů (+ gonosom)

7 Meioza I daptováno z Johnson R.: Biology, 5 th edition 1999; The Mcraw-Hill Comp., Inc páry homologních chromosomů = 4 možnosti páry homologních chromosomů homologní páry (není znázorněna replikace) 8 možností meiozy (ne všechny realizovány, 1 meioza = max. 4 buňky/gamety k použití) párů chromosomů = možnosti... Počet možností při haploidním čísle n chromosomů je 2 n. 1. Chromosomy/chromatidy se rozchází nezávisle 2. Oplození je nahodilé (sejde se vždy 1 kombinace každého rodiče) 2 zdroje genetické variability potomků a v meioze je variabilita umocněna ještě dalším způsobem

8 MEIOZ detailnější pohled na dvě po sobě jdoucí dělení Meiozu předchází meiotická interfáze s replikací chromosomů a zdvojením centrosomu Každé dělení během meiosy pak probíhá ve 4 fázích (podobně jako mitoza) 1. profáze 2. metafáze 3. anafáze 4. telofáze První dělení: meioza I (tzv. heterotypické dělení určité odlišnosti od mitozy složitější v profázi) Druhé dělení: meioza II (tzv. homeotypické dělení obdoba mitozy) interkineze období mezi meiozou I a meiozou II

9 1. Profáze I přehled Meioza I Kondenzace chromosomů Mizí jadérka Vznikají kinetochory Párování homologních chromosomů a vznik synapsí (těsný podélný kontakt) Později chromosomové páry patrné jako tetrády (4 prokřížené chromatidy) V překříženích výměna homologických částí nesesterských chromatid (crossing-over) Místo překřížení = chiazma, v tetrádě obvykle několik chiazmat Prodlužování mikrotubulů Oddalování centrosomů (=dělícího vřeténko) Rozpad jaderného obalu Napojování mikrotubulů na kinetochory chiazmata sesterské chromatidy PROFÁZE I centrosom dělící vřeténko tetráda páry homologních chromosomů s vyměněnými úseky nesesterských chromatid daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

10 1. Profáze I může představova více než 90% času trvání meiozy Meioza I 5 stádií: i) Leptotene chromosomy přichyceny k jadernému obalu; homologní poblíž a silně kondenzují ii) Zygotene synapse: tvorba proteinového synaptonemálního komplexu mezi homologními chromosomy Dvojice paralelních chromosomů = bivalent iii) Pachytene homologické části partnerských chromosomů drženy naproti sobě, rozbalení DN, crossing-over iv) Diplotene synaptonemální komplex se rozpadá (chiazmata přetrvávají), chromosomy dekondenzují a jsou transkričně aktivní partnerské homologní chromosomy synapse protilehlé nesesterské chromatidy crossing-over synaptonemální komplex sesterské chromatidy chromosomu chromatidy homologního chromosomu centromera v) Diakineze chromosomy opět kondenzují chiasmata (místa crossing-over) daptováno z Johnson R.: Biology, 5 th edition 1999; The Mcraw-Hill Comp., Inc.

11 2. Metafáze I Kinetochorové mikrotubuly jednoho pólu dělícího vřeténka napojeny k jednomu chromosomu z páru (na jednu stranu centromery) chiazmata se posouvají ke koncům chromosomů = terminální chiazmata (umožňuje oddálení centromer a usnadňuje správné napojení mikrotubulů) Tetrády seřazeny v metafázní destičce Meioza I PROFÁZE I METFÁZE I NFÁZE I centromera (s kinetochorem) astrosféra (živočišná buňka) chiazmata nekinetochorové mikrotubuly napojené kinetochorové mikrotubuly metafázní destička daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

12 3. nafáze I Meioza I Separace homologních chromosomů (zanikají tetrády) Každý chromosom (dvě sesterské chromatidy) transportován k opačnému pólu PROFÁZE I METFÁZE I sesterské chromatidy (zůstávají spojeny) NFÁZE I I homologní chromosomy daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

13 Meiosis I TELOFÁZE I a CYTOKINEZE Meioza I Chromosomy pokračují v rozestupu a dosahují pólů Každý chromosom je stále tvořen dvěmi sesterským chromatidami U některých druhů dekondenzace chromosomů, tvrba jádra i jadérka Cytokineze obvykle probíhá souřasně a tvoří se dvě haplodní buňky Zivočišné buňky: zaškrcení Rostlinné buňky: fragmosplast Žádný z chromosomů se již nereplikuje 3. zdroj genetické variability potomků 3. Crossing-over mohl vyměnit části chromatid = sesterské chromatidy již nejsou geneticky identické Meioza II zaškrcení Meioza II daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

14 Meioza II je velmi podobná mitoze Tvorba dělího aparátu Chromosomy (dvě sesterské chromatidy) kondenzované Sesterské chromatidy odděleny a transportovány k pólům TELOFÁZE I CYTOKINEZE PROFÁZE II METFÁZE II NFÁZE II TELOFÁZE II zaškrcení separace sesterských chromatid Chromosomy (chromatidy) na opačných pólech Rozpad dělícího aparátu, tvoří se jádra Chromosomy despiralizují + jadérka CYTOKINEZE Všechny sesterské chromatidy správně napojeny na kinetochorové mikrotubuly Sesterské chromatidy na metafázní destičce Výsledek 4 dceřinné buňky geneticky odlišné mezi sebou a i od mateřské buňky daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

15 Mendelelovská dědičnost daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings regor Johann Mendel (*1822 in Hynčice 1884 in Brno) mnich (od 1843) a později opat (od 1868) v augistiánském kláštěře sv. Tomáše v Brně od r se zbýval křížením hrachu (Pisum sativum), dostupný v řadě odrůd 1865 práce Versuche über Pflanzen-Hybride vcelku bez povšimnutí, znovu objevena 1900 Hugo de Vries (NL) Erich von Tschermak () Carl Correns (D) Křížil čisté (homozygotní) linie (P, F 0 ); takové křížení označováno hybridizace Křížil hybridy F 1 (1. filiální generace) F 2, v níž byl poměr forem znaku z P = 3:1

16 důležité termíny: enom kompletní genetický materiál daného organismu lely alternativní formy téhož genu (dvě alely v diploidním organismu) Homozygot pár identických alel (čistá linie) Heterozygot dvě rozdílné alely jednoho genu alela pro fialové květy lokus pro barvu květu alela pro bílé květy pár homologních chromosomů daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings enotyp soubor všech alel v organismu Fenotyp fyzické a fyziologické rysy (znaky) organismu

17 Mendelův model dědičnosti pro dvě alely jednoho genu Mendelelovská dědičnost homozygotní P vzhled: genotyp: gamety: homozygotní linie nesoucí dominantní alelu (P), která se na rozdíl od recesivní alely (p) projeví ( dominantní je funční ) hybridizace generace F 1 vzhled: genotyp: gamety: generace F 2 samičí F 1 samčí F 1 1. Zákon o uniformitě generace F 1 při vzájemném křížení dvou homozygotů jsou potomci genotypově i fenotypově jednotní křížení tzv. monohybridů (jedinců u kterých sledujeme 1 znak) 2. Zákon o jednoduchých štěpných poměrech v F 2 při křížení heterozygotů F 1 může být potomkovi předána každá ze dvou alel se stejnou pravděpodobností nezávislá segregace alel daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings fenotypový štěpný poměr 3:1

18 Punnettův čtverec spemie daptováno z Johnson R.: Biology, 5 th edition 1999; The Mcraw-Hill Comp., Inc. Punnettův čtverec Mendelelovská dědičnost Heterozygotní rodiče s nepřirostlým lalůčkem (determinováno dominantní alelou E) Rodiče Ee Ee amety: možnost E = ½ možnost e = ½ E vajíčka e E Šance zdědit genotypy EE Ee EE =½ ½=¼ Ee =½ ½=¼ e ee =½ ½=¼ Ee potomci e e ee =½ ½=¼ Pravděpodobnost u novorozence 75% nepřirostlý a 25% přirostlý lalůček (3:1) lely E = nepřirostlý lalůček e = přirostlý lalůček 3 1 Fenotypy nepřirostlý lalůček přirostlý lalůček

19 rodokmen Testovací (zpětné) křížení odhalení genotypu křížením s homozygotem v recesivním stavu v případě lalůčků raději Mendelelovská dědičnost Rozbor rodokmenu hybrid F 1 homozygot P dominantní fenotyp; neznámý genotyp (možno PP nebo Pp) recesivní fenotyp; známý genotyp pp pro možnost PP bude fenotyp fialový květ pro možnost Pp 50% fialový květ 50% bílý květ přirostlý lalůček nepřirostlý lalůček pro analýzu rizik u nemocí děděných jako jednoduché mendelovské znaky daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

20 daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings neúplná dominance homozygotní P červená C R C R gamety bílá C W C W C R : alela barva červená C w : alela barva bílá generace F 1 růžová C R C W jen 1 alela C R gamety samičí F 1 samčí F 1 generace F 2 genotyp F 1 se projeví v F 2 Štepný poměr 1:2:1 (není třeba zpětné křížení)

21 daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings 3. Zákon o čistotě a plné kombinovatelnosti vloh vlohy pro znaky a vlastnosti se přenášejí z generace na generaci v čisté formě a vzájemně se nemísí (nezávislá segregace alel) sledujeme 2 znaky současně (oba s možností dominance): Mendelelovská dědičnost křížení tzv. dihybridů (sledujeme 2 znaky) homozygotní P gamety gamety generace F 1 samičí F 1 samčí F 1 generace F 2 štěpný poměr 3:1 jako u jednoho znaku nebyl pozorován žluté, kulaté zelené, kulaté žluté, scvrklé alely segregují nezávisle zelené, scvrklé fenotypový štěpný poměr 9:3:3:1 (zpětné křížení s yyrr poměr 1:1:1:1)

22 Mendelelovská dědičnost štěpný poměr platí, pokud jsou geny na různých chromosomech B B b a dihybrid abb B a B b a a b a b b B B metafáze I dvě možnosti uspořádání chromosomů B B a a b b b b a a B B metafáze II B a b a b b b a B a B B ab b ab možné gamety alely mendelovsky rozděleny daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

23 Chromosomální základ dědičnosti Drosophila melanogaster sameček samička homozygotní P XY XX vajíčka spermie Thomas Hunt Morgan ( ) generace F 1 divoký typ mutant Fenotypy po křížení F 1 všichni červené oči F 2 červené:bílé = 3:1 (štěpný poměr odpovídá mendelovské dědíčnosti) LE: bílé oči pouze u samečků znak vázaný na chromosom X generace F 2 vajíčka spermie daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

24 Vazba vloh / genů na libovolném chromosomu další Morganův experiment: homozygotní P divoký typ šedé tělo, normální křídla dihybrid F 1 šedé tělo, normální křídla ZPĚTNÉ KŘÍŽENÍ dvojitý mutant černé tělo, zakrnělá křídla dvojitý mutant černé tělo, zakrnělá křídla Znaky: barva těla a vývoj křídel lely: b + : normální šedé tělo b : černé tělo (black) vg + : normální křídla vg : zakrnělá (vestingal) křídla rodiče v zpětném křížení fenotyp tělo / křídla šedé / normální černé / zakrnělá šedé / zakrnělá černé / normální potomstvo po zpětném křížení většina potomků nebo očekávání: nezávyslá segregace rodičovský fen. rekombinovaný fen. Převahu rodičovských fenotypů vysvětluje vazba genů na jednom chromosomu. SKUTEČNOST: ale proč pak není poměr 1:1:0:0? daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

25 ZPĚTNÉ KŘÍŽENÍ dihybrid F 1 šedé tělo, normální křídla replikace dvojitý mutant černé tělo, zakrnělá křídla Rekombinantní fenotypy jsou důsledkem crossing-over 83% 17% { { Fenotypy (tělo - křídla): 1. gray normal šedé normální 2. Black vestingal černé zakrnělá 3. ray vestingal šedé zakrnělá 4. Black normal černý normální gamety potomci křížení vajíčko spermie MEIOZ I a crossing-over MEIOZ II separace chromatid rodičovský fenotyp rekombinantní chromosomy rekombinovaný fenotyp vajíčko MEIOZ I a II crossing-over neutrální spermie Frekvence rekombinace (391 / 2300) x 100 = 17% daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

26 Morganovy zákony 1. eny jsou lineárně uspořádány v chromosomech. 2. eny jednoho chromosomu tvoří vazebnou skupinu. Počet vazebných skupin = počet párů homologních chromosomů 3. Mezi geny homologického páru chromosomů může probíhat genová výměna prostřednictvím crossing-over. Frekvence crossing over je přímo úměrná vzdálenosti genů. chromosom frekvence rekombinace případ třech genů na chromosomu II b, vg a cn (cinnabar, rumělka) fenotyp cn: světlejší oči než Frekvence rekombinací: 9% pro cn a b 9,5% pro cn a vg 17% b a vg divoký typ daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings Vzdálenější geny větší šance, že mezi nimi proběhne crossing-over

27 Mendelelovská dědičnost štěpný poměr platí, pokud jsou geny na různých chromosomech a jedním genem je determinován jeden fenotyp neovlivněný prostředím B b a dihybrid abb B a B b a a b a b b B B metafáze I dvě možnosti uspořádání chromosomů B B a a b b b b a a B B metafáze II B B a b a b b b a B a B B ab b ab možné gamety alely mendelovsky rozděleny daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

28 Pleiotropie en ovlivní více než jeden fenotypový znak jedince Případ fenylketourie: - gen pro fenylalanin hydroxylasu na autosomu - mutace = recesivní alela; autosomálně recesivní onemocnění - porucha přeměny aminokyseliny fenylalaninu na tyrosin Fenotypové projevy: - mentální retardace, epileptické záchvaty - bledá pleť, modré oči, světlé vlasy (nedostatek tyrosinu pro tvorbu melaninu) - časté ekzémy a vyrážky Kodominance vícealelové systémy vs 2n Případ dědičnosti krevních skupin: 3 alely pro dědičnost krevních skupin: lela I - antigen na povrchu erythrocytů - protilátky proti B v séru (anti-b) lela I B - antigen B na povrchu erythrocytů - protilátky proti v séru (anti-) lela i - erythrocyt bez antigenu nebo B - v séru protilátky proti i B - 6 možných genotypů - fenotypy krevní skupina, B, B nebo 0 I a I B jsou vůči sobě kodominantní I a I B jsou vůči alele i dominantní krevní skupina genotypy sérum erythrocyty po přidání séra krevních skupin ve sloupci daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

29 Polygenní dědičnost Účinky více genů na jednu fenotypovou vlastnost Fenotyp je dán součtem účinků genů (aditivní, kumulativní efekt) Pozn. pro znaky, měnící se v populaci plynule = znaky kvantitativní vělikost těla, barva kůže (rozdíl proti kvalitativním znakům = diskrétní znaky např. krevní skupina) Vliv prostředí na fenotyp norma reakce = různost fenotypů, které mohou vzniknout z jediného genotypu vlivem vnějšího prostředí norma reakce nulová např. krevní skupiny, barva květu hrachu norma reakce nenulová např. barva květu hortenzie zásaditá půda kyselá enové interakce Na sledovaném kvalitativním znaku se podílí více než jeden gen lely dominantní a recesivní

30 daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings Mendelelovská dědičnost homozygotní P gamety gamety generace F 1 samičí F 1 samčí F 1 generace F 2 štěpný poměr 3:1 jako u jednoho znaku nebyl pozorován žluté, kulaté zelené, kulaté žluté, scvrklé alely segregují nezávisle zelené, scvrklé fenotypový štěpný poměr 9:3:3:1 (zpětné křížení s yyrr poměr 1:1:1:1)

31 enové interakce interakce bez změny štěpných poměrů 9:3:3:1 reciproká interakce oba geny se projevují samostatně, interakce až na úrovni fenotypu x x Barva plodu papriky: lely: R červený pigment NO r červený pigment NE Cl rozklad chlorofylu NO cl rozklad chlorofylu NE (pomlčky v obr. = jakákoliv alela) objevují se fenotypy, které nebyly u rodičovských rostlin (P1 nebo P2) (pomlčka = jakákoliv alelu) výsledek zpětného křížení s rrclcl je 1:1:1:1 Převzato z Nečásek a kol. Obecná genetika. SPN Praha 1979

32 enové interakce dominantní epistaze dominantní alela epistatického genu potlačí projev hypostatického genu (obdoba dominance) Barva květů jiřiny: lely: Y žlutý pigment NO I pigment slonová kost NO y a i pigment NE štěpný poměr v F 2 12:3:1 přítomnost žlutého pigmentu překryje barvu slonové kosti výsledek zpětného křížení s yyii je 2:1:1 Převzato z Nečásek a kol. Obecná genetika. SPN Praha 1979

33 enové interakce recesivní epistaze gen v homozygotně recesivní stavu potlačí/neumožní projev alely druhého genu Barva květů šalvěje: lely: P / p červený pigment NO / NE / a methylace červeného pigmentu = fialová NO / NE štěpný poměr v F 2 9:3:4 výsledek zpětného křížení s ppaa je 1:1:2 Převzato z Nečásek a kol. Obecná genetika. SPN Praha 1979

34 enové interakce komplementarita alespoň jedna dominantní alela obou genů Barva květů hrachoru: lely: C a R červený pigment NO produkt C je stále bezbarvý štěpný poměr v F 2 9:7 výsledek zpětného křížení s ccrr je 1:3 Převzato z Nečásek a kol. Obecná genetika. SPN Praha 1979

35 enové interakce inhibice dominantní alela inhibitoru zamezí projevu druhého genu (inhibitor sám jiný projev nemá) Barva peří kura domácího: lely: C / c červený melanin NO / NE I / i inhibice depozice melaninu v keratinu peří NO / NE štěpný poměr v F 2 13:3 výsledek zpětného křížení s ccii je 3:1 Převzato z Nečásek a kol. Obecná genetika. SPN Praha 1979

36 enové interakce duplicita (nekumulativní) dva geny téhož účinku a postačuje jedna dominantní alela Tvar šešule kokošky patuší tobolky: lely: T1 nebo T2 zajistí normální tvar t1 a t2 v homozygotně recesivním stavu špičatý tvar štěpný poměr v F 2 15:1 výsledek zpětného křížení s ccii je 3:1 Převzato z Nečásek a kol. Obecná genetika. SPN Praha 1979

37 Polygenní dědičnost Zjednodušený model polygenní dědičnosti barvy kůže: 3 geny: - alely, B, C tmavá kůže (v obr. černé tečky bez rozlišení alel) - alely a, b, c světlá kůže - vztah neúplné dominance například zbarvení abbcc = Bbcc (v obr. bílé tečky bez rozlišení alel) barvu kůže ovlivní i vlivy prostředí ( spojitá ausova křivka) daptováno z Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

38 + rrn & trn Centrální dogma molekulární biologie 5' 3' replikace C C C C DN T C C T 3' 5' transkripce templátový řetězev (pro transkriptci) 5' 3' mrn C C C C translace codon 1 codon 2 codon 3 O O O N C C N C N C C polypeptid R 1 R 2 R 3 Serin sparagin Prolin

39 P P P P P P Replikace je semikonzervativní Každý řetězec původní dvojšroubovice slouží jako templát (matrice) pro syntézu nového komplementárního vlákna DN polymerasa připojí další nukleotid na 3 uhlík (-OH) ribosy 1 nukleotidu předchozího. O OH 4 C C H H 1 H H C C 3 2 OH H 5 konec C T C 3 konec templátový řetězec C lagging strand 2 5 konec nový řetězec 7 6 P P P P P 3 konec 4 DN ligasa 5 3 leading strand primer RN DN se rozbalí a dojde k oddělení vláken Nový řetězec syntetizován na základě komplementarity bazí 3 Replikaci katalyzuje DN polymerasa Okazakiho fragment (v počátku replikace vyžaduje primer RN poskytující 3 OH ribosy) původní řetězec (templát) DN polymerasa 3 DN polymerasa helikasa rozbaluje dsdn = replikační vidlice původní DN 5 3 Nerozbalené dvojšroubovice DN oblast probíhající replikace T C C T T C C T Nové řetězce jsou syntetizovány jako Vedoucí řetězec (leading strand): kontinuální molekula Opožďující se řetězec (lagging s.): diskontinuální syntéza krátkých DN (Okazakiho fragmenty); pro dokončení celého vlákna - degradace primerů RN, dosyntetizování DN a spojení (ligace) 5' T C T C C T T C oblast dokončené replikace C T 3' C T C T T T C nový řetězec C původní řetězec

40 Replikace: Prokaryota versus Eukaryota jeden počátek replikace na cirkulárním chromosomu jedna replikační bublina rostoucí oběma směry mnoho počátků replikace na lineárním chromosomu replikační vidlice rostou oběma směry a tvoří replikační bublinu po setkání vidlic/bublin jsou nové řetězce kovalentně spojeny počátek replikace replikační vidlice parentální řetězec replikace probíhá oběma směry nový řetězec replikace ukončena replikační bublina 2 nové duplexy DN

41 Transkripce 5' enetická informace je přepsána (transkribována) do sekvence RN Přepis začíná sestavením komplexu RN polymerasy na promotoru genu a oddělením vláken DN (promotor: specifická sekvence před přepisovanou oblastí) Přepis končí terminací transkripce (specifické sekvence nebo proteinové faktory) Transkripce genu není nahodilá - konstitutivní stálá (housekeeping geny) nebo může netemplátový řetezec DN C C T T 3 ' C C T C T C templátový řetězec DN RN polymerasa RN (transcript) 5' - podléhat indukci - podléhat represi 3' RN může být dále procesována (upravena)

42 Transkripce do sekvence mrn: Prokaryota mrn je v podstatě připravena na translaci bez prav možnost kontinuální polycistronní mrn: transkripce operonu (tandemně uspořádané kódující sekvence několika proteinů pod kontrolou jednoho promotoru) versus Eukaryota Pre-mRN obsahuje kódující sekvence (exony) a intervenující nekódující sekvence (introny) Transkript je dále vybaven nekódovanými nukleotidy (na 3 konci nukletidem tvořícím čepičku a na 5 konci je modifikován polyadenylací Introny jsou vystřiženy (sestřih RN, splicing) a exony spojeny v kontinuální kódující řetězec introns occuring in between exons are to be excised through RN splicing Se střih probíhá v jádře, katalyzován nukleoproteinovým komplexem (spliceosomem) DN exon exon intron intron transkripce exon exon exon exon pre-mrn 5' intron intron 3' exon exon exon 5' 3' čepička intron intron poly- spliceosome exon exon exon 5' 3' čepička poly- jádro intron RN sestřih pre-mrn 5' mrn 3' čepička poly- cytoplasma jaderný pór

43 Translace na ribosomu prerekvizity: ribosomy, mrn, trn, energie, aminokyseliny a info o jejich pozici mrn 5' amino kyselina 3 antikodon 5 kodon vodíkové můstky molekula trn má 2 vazebná místa: 3' báze 3. báze U C báze U C UUU fenylalanin UUC fenylalanin UU leucin UU leucin CUU leucin CUC leucin CU leucin CU leucin UU isoleucin UC isoleucin U isoleucin U (start) methionin UU valin UC valin U valin U valin antikodon (H-vazby, komplementarita) místo pro vazbu aminokyseliny (kovaletní vazba) UCU serin UCC serin UC serin UC serin CCU prolin CCC prolin CC prolin CC prolin CU threonin CC threonin C threonin C threonin CU alanin CC alanin C alanin C alanin UU tyrosin UC tyrosin U stop U stop CU histidin CC histidin C glutamin C glutamin U asparagin C asparagin lysin lysin U aspartát C aspartát glutamát glutamát UU cystein UU cystein U stop U tryptofan CU arginin CC arginine C arginin C arginin U serin C serin arginin arginin U glycin C glycin glycin glycin U C U C U C U C kodon tvořen 3 bázemi 64 možných kombinací: 3 kodony jako info pro STOP translaci 61 jako info o identitě připojované aminokyseliny

44 5' methionin Met trn mrn místo E místo P místo 3 stádia translace sp la Trp Val lu U U U terminační (uvolňovací) faktory 5' stop codon 3' malá velká podjednotka ribosomu 3' Met U C U Ribosom přeložil mrn až po STOP není trn váží se terminační faktory 3 Malá podjednotka ribosomu váže mrn; iniciační trn (pro Met) se váže na iniciační Kodon U. 5' 3' start kodon Připojuje se velká ribosomální podjednotka; iniciační trn vázána v místě P; místo připraveno pro vazbu další trn. 5 Uvolňovací faktor štěpí vazbu mezi polypeptidem a poslední trn protein uvolněn. 1. Iniciace (první kodon obvykle U) 3. Terminace 2. Elongace Met peptidová vazba Ser la Trp Val asp C U antikodon Met trn Ser la Trp Val sp Met Ser la Trp Val sp Met další peptidová vazba Ser la Trp Val sp Thr C U U C 3 6 C U U C U C 3 C U U C U C 6 3 U C U C C C Dvě trns jsou na 3 4 Do místa přichází ribosomu současně Tvoří se trn aminokyselina (místo P a ) peptidová vazba Posun mrn a prázdná trn opouští ribosom z místa E (uvolněno místo )

45 enová exprese u eukaryot

Biologie I. 7. přednáška. Základy genetiky

Biologie I. 7. přednáška. Základy genetiky Biologie I 7. přednáška Základy genetiky Pohlavní rozmnožování a dědičnost Dědičnost přenos vlastností/predispozic rodičovského organismu na potomky přenos DNA s geny (chromosomální i extrachromosomální)

Více

Chromosomy a karyotyp člověka

Chromosomy a karyotyp člověka Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Mendelovská genetika - Základy přenosové genetiky Základy genetiky Gregor (Johann)

Více

Základní pravidla dědičnosti

Základní pravidla dědičnosti Mendelova genetika v příkladech Základní pravidla dědičnosti Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Mendelovy zákony dědičnosti

Více

Translace (druhý krok genové exprese)

Translace (druhý krok genové exprese) Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace

Více

DUM č. 2 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 2 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 2 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: meióza-redukční dělení jádra, význam, princip,

Více

Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra

Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger

Více

Karyokineze. Amitóza. Mitóza. Meióza. Dělení jádra. Předchází dělení buňky Dochází k rozdělení genetické informace u mateřské buňky.

Karyokineze. Amitóza. Mitóza. Meióza. Dělení jádra. Předchází dělení buňky Dochází k rozdělení genetické informace u mateřské buňky. Karyokineze Dělení jádra Předchází dělení buňky Dochází k rozdělení genetické informace u mateřské buňky Druhy karyokineze Amitóza Mitóza Meióza Amitóza Přímé dělení jádra Genetická informace je rozdělena

Více

MENDELOVSKÁ DĚDIČNOST

MENDELOVSKÁ DĚDIČNOST MENDELOVSKÁ DĚDIČNOST Gen Část molekuly DNA nesoucí genetickou informaci pro syntézu specifického proteinu (strukturní gen) nebo pro syntézu RNA Různě dlouhá sekvence nukleotidů Jednotka funkce Genotyp

Více

Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU

Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU BUNĚČNÝ CYKLUS Buněčné dělení Cykliny a na cyklinech závislé proteinkinázy (Cyclin- Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího systému buněčného cyklu 8 cyklinů

Více

Mendelistická genetika

Mendelistická genetika Mendelistická genetika Základní pracovní metodou je křížení křížení = vzájemné oplozování organizmů s různými genotypy Základní pojmy Gen úsek DNA se specifickou funkcí. Strukturní gen úsek DNA nesoucí

Více

Obecná genetika a zákonitosti dědičnosti. KBI / GENE Mgr. Zbyněk Houdek

Obecná genetika a zákonitosti dědičnosti. KBI / GENE Mgr. Zbyněk Houdek Obecná genetika a zákonitosti dědičnosti KBI / GENE Mgr. Zbyněk Houdek Důležité pojmy obecné genetiky Homozygotní genotyp kdy je fenotypová vlastnost genotypově podmíněna uplatněním páru funkčně zcela

Více

Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací

Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci

Více

Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra

Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základy genetiky 2a Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základní genetické pojmy: GEN - úsek DNA molekuly, který svojí primární strukturou určuje primární strukturu jiné makromolekuly

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy Genetiky

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Základy Genetiky "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy Genetiky ROSTLINNÁ BUŇKA aaaaaaaa jádro mitochondrie chromatin (DNA) aaaaaaaa aaaaaaa aaaaaaaa aaaaaaaa plastid

Více

Degenerace genetického kódu

Degenerace genetického kódu AJ: degeneracy x degeneration CJ: degenerace x degenerace Degenerace genetického kódu Genetický kód je degenerovaný, resp. redundantní, což znamená, že dva či více kodonů může kódovat jednu a tutéž aminokyselinu.

Více

Nauka o dědičnosti a proměnlivosti

Nauka o dědičnosti a proměnlivosti Nauka o dědičnosti a proměnlivosti Genetika Dědičnost na úrovni nukleových kyselin molekulární buněk organismů populací Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci Dědičnost znaků

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Inovace studia molekulární. a buněčné biologie

Inovace studia molekulární. a buněčné biologie Inovace studia molekulární I n v e s t i c e d o r o z v o j e v z d ě l á v á n í a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.

Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu. Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové

Více

44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů

44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál

Více

8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů

8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů Buněč ěčné dělení BUNĚČ ĚČNÝ CYKLUS ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU cykliny a na cyklinech závislé proteinkinázy (Cyclin-Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího

Více

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D. Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec

Více

GENETIKA. dědičnost x proměnlivost

GENETIKA. dědičnost x proměnlivost GENETIKA dědičnost x proměnlivost Dědičnost Schopnost organismů přenášet genetickou informaci z rodičovské generace na generaci potomků. identická dvojčata Variabilita (proměnlivost) Schopnost organismů

Více

Cvičení č. 8. KBI/GENE Mgr. Zbyněk Houdek

Cvičení č. 8. KBI/GENE Mgr. Zbyněk Houdek Cvičení č. 8 KBI/GENE Mgr. Zbyněk Houdek Genové interakce Vzájemný vztah mezi geny nebo formami existence genů alelami. Jeden znak je ovládán alelami působícími na více lokusech. Nebo je to uplatnění 2

Více

Mitóza, meióza a buněčný cyklus. Milan Dundr

Mitóza, meióza a buněčný cyklus. Milan Dundr Mitóza, meióza a buněčný cyklus Milan Dundr Rozmnožování eukaryotických buněk Mitóza (mitosis) Mitóza dělení (nepřímé) tělních (somatických) buněk 1 jádro s2n (diploidním počtem) chromozómů (dvouchromatidových)

Více

Crossing-over. over. synaptonemální komplex

Crossing-over. over. synaptonemální komplex Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových

Více

Souhrnný test - genetika

Souhrnný test - genetika Souhrnný test - genetika 1. Molekuly DNA a RNA se shodují v tom, že a) jsou nositelé genetické informace, b) jsou tvořeny dvěma polynukleotidovými řetězci,, c) jsou tvořeny řetězci vzájemně spojených nukleotidů,

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Základy genetiky, základní pojmy "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,

Více

Genetika zvířat - MENDELU

Genetika zvířat - MENDELU Genetika zvířat Gregor Mendel a jeho experimenty Gregor Johann Mendel (1822-1884) se narodil v Heinzendorfu, nynějších Hynčicích. Během období, v kterém Mendel vyvíjel svou teorii dědičnosti, byl knězem

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Téma / kapitola Prameny 8. třída (pro 3. 9. třídy)

Více

GENETIKA Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální dědičnost

GENETIKA Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální dědičnost GENETIKA vědecké studium dědičnosti a jejich variant studium kontinuity života ve vztahu ke konečné délce života individuálních organismů Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

Slovníček genetických pojmů

Slovníček genetických pojmů Slovníček genetických pojmů A Adenin 6-aminopurin; purinová báze, přítomná v DNA i RNA AIDS Acquired immunodeficiency syndrome syndrom získané imunodeficience, způsobený virem HIV (Human immunodeficiency

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu

Více

Molekulárn. rní. biologie Struktura DNA a RNA

Molekulárn. rní. biologie Struktura DNA a RNA Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace

Více

GENETIKA. zkoumá dědičnost a proměnlivost organismů

GENETIKA. zkoumá dědičnost a proměnlivost organismů GENETIKA zkoumá dědičnost a proměnlivost organismů Dědičnost: schopnost organismů uchovávat informace o své struktuře a funkčních schopnostech a předávat je svým potomkům Proměnlivost (variabilita) je

Více

Rozdíly mezi prokaryotní a eukaryotní buňkou. methanobacterium, halococcus,...

Rozdíly mezi prokaryotní a eukaryotní buňkou. methanobacterium, halococcus,... Dělení buňky Biologie člení živé organizmy do dvou hlavních kategorií: prokaryotní a eukaryotní organizmy. Na základě srovnání 16S rrna se zjistilo, že na naší planetě jsou 3 hlavní nadříše buněčných forem:

Více

Mendelistická genetika

Mendelistická genetika Mendelistická genetika Distribuce genetické informace Základní studijní a pracovní metodou v genetice je křížení (hybridizace), kterým rozumíme vzájemné oplozování jedinců s různými genotypy. Do konce

Více

Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů

Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů Vazba genů Crossing-over V průběhu profáze I meiózy Princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem Synaptonemální komplex Zlomy a nová spojení chromatinových řetězců

Více

Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny

Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU

Více

Rozmnožování buněk Vertikální přenos GI. KBI / GENE Mgr. Zbyněk Houdek

Rozmnožování buněk Vertikální přenos GI. KBI / GENE Mgr. Zbyněk Houdek Rozmnožování buněk Vertikální přenos GI KBI / GENE Mgr. Zbyněk Houdek Buněčný cyklus Buňky vznikají z bb. a jedinou možnou cestou, jak vytvořit více bb. je jejich dělením. Vertikální přenos GI: B. (mateřská)

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Eva Strnadová. Dostupné z Metodického portálu www.rvp.cz ;

Více

Úvod do obecné genetiky

Úvod do obecné genetiky Úvod do obecné genetiky GENETIKA studuje zákonitosti dědičnosti a proměnlivosti živých organismů GENETIKA dědičnost - schopnost uchovávat soubor dědičných informací a předávat je nezměněný potomkům GENETIKA

Více

Struktura a funkce nukleových kyselin

Struktura a funkce nukleových kyselin Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební

Více

http://www.accessexcellence.org/ab/gg/chromosome.html

http://www.accessexcellence.org/ab/gg/chromosome.html 3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické

Více

Genetika na úrovni mnohobuněčného organizmu

Genetika na úrovni mnohobuněčného organizmu Genetika na úrovni mnohobuněčného organizmu Přenos genetické informace při rozmnožování Nepohlavní rozmnožování: - nový jedinec vzniká ze somatické buňky nebo ze souboru somatických buněk jednoho rodičovského

Více

Schopnost organismů UCHOVÁVAT a PŘEDÁVAT soubor informací o fyziologických a morfologických (částečně i psychických) vlastnostech daného jedince

Schopnost organismů UCHOVÁVAT a PŘEDÁVAT soubor informací o fyziologických a morfologických (částečně i psychických) vlastnostech daného jedince Genetika Genetika - věda studující dědičnost a variabilitu organismů - jako samostatná věda vznikla na počátku 20. století - základy položil J.G. Mendel již v druhé polovině 19. století DĚDIČNOST Schopnost

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,

Více

Molekulární genetika, mutace. Mendelismus

Molekulární genetika, mutace. Mendelismus Molekulární genetika, mutace 1) Napište komplementární řetězec k uvedenému řetězci DNA: 5 CGTACGGTTCGATGCACTGTACTGC 3. 2) Napište sekvenci vlákna mrna vzniklé transkripcí molekuly DNA, pokud templátem

Více

Genetika BIOLOGICKÉ VĚDY EVA ZÁVODNÁ

Genetika BIOLOGICKÉ VĚDY EVA ZÁVODNÁ BIOLOGICKÉ VĚDY EVA ZÁVODNÁ Genetika - věda studující dědičnost a variabilitu organismů - jako samostatná věda vznikla na počátku 20. století - základy položil J.G. Mendel již v druhé polovině 19. století

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 KBB/ZGEN Základy genetiky Dana Šafářová KBB/ZGEN Základy genetiky Rozsah: 2+1

Více

Základní genetické pojmy

Základní genetické pojmy Základní genetické pojmy Genetika Věda o dědičnosti a proměnlivosti organismů Používá především pokusné metody (např. křížení). K vyhodnocování používá statistické metody. Variabilita v rámci druhu Francouzský

Více

Deoxyribonukleová kyselina (DNA)

Deoxyribonukleová kyselina (DNA) Genetika Dědičností rozumíme schopnost rodičů předávat své vlastnosti potomkům a zachovat tak rozličnost druhů v přírodě. Dědičností a proměnlivostí jedinců se zabývá vědní obor genetika. Základní jednotkou

Více

Molekulární genetika (Molekulární základy dědičnosti)

Molekulární genetika (Molekulární základy dědičnosti) Molekulární genetika (Molekulární základy dědičnosti) Struktura nukleové kyseliny Cukerná pentóza: 2-deoxy-D-ribóza D-ribóza Fosfátový zbytek: PO 4 3- Purin Pyrimidin Dusíkatá báze Adenin Guanin Tymin

Více

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním 1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny

Více

Působení genů. Gen. Znak

Působení genů. Gen. Znak Genové interakce Působení genů Gen Znak Dědičnost Potomek získává predispozice k vlastnostem z rodičovské buňky nebo organismu. Vlastnosti přenášené do další generace nemusí být zcela totožné s vlastnostmi

Více

- Zákl. metodou studia organismů je křížení (hybridizace)- rozmn. dvou vybraných jedinců, umožnuje vytváření nových odrůd rostlin a živočichů

- Zákl. metodou studia organismů je křížení (hybridizace)- rozmn. dvou vybraných jedinců, umožnuje vytváření nových odrůd rostlin a živočichů Otázka: Základní zákonitosti dědičnosti Předmět: Biologie Přidal(a): Kateřina P. - Zákl. zákonitosti dědičnosti zformuloval Johann Gregor Mendel - Na základě svých pokusů křížením hrachu- popsal a vysvětlil

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Molekulární genetika (Molekulární základy dědičnosti) 0 Gen - historie 1909 Johanssen

Více

Genetické určení pohlaví

Genetické určení pohlaví Přehled GMH Seminář z biologie Genetika 2 kvalitativní znaky Genetické určení pohlaví Téma se týká pohlavně se rozmnožujících organismů s odděleným pohlavím (gonochoristů), tedy dvoudomých rostlin, většiny

Více

Genetika mnohobuněčných organismů

Genetika mnohobuněčných organismů Genetika mnohobuněčných organismů Metody studia dědičnosti mnohobuněčných organismů 1. Hybridizační metoda představuje systém křížení, který umožňuje v řadě generací vznikajících pohlavní cestou zjišťovat

Více

-zakladatelem je Johan Gregor Mendel ( ), který se narodil v Hynčicích na Moravě

-zakladatelem je Johan Gregor Mendel ( ), který se narodil v Hynčicích na Moravě Otázka: Genetika I Předmět: Biologie Přidal(a): Paris -věda, která se zabývá dědičností a proměnlivostí -zakladatelem je Johan Gregor Mendel (1822 1884), který se narodil v Hynčicích na Moravě 1. MOLEKULÁRNÍ

Více

Geny p řevážně nepůsobí izolovan ě izolovan ale, v kontextu s okolním prostředím (vnitřním i vnějším) ě a v souladu souladu s ostatními g eny geny.

Geny p řevážně nepůsobí izolovan ě izolovan ale, v kontextu s okolním prostředím (vnitřním i vnějším) ě a v souladu souladu s ostatními g eny geny. Genové interakce Geny převážně nepůsobí izolovaně, ale v kontextu s okolním prostředím (vnitřním i vnějším) a v souladu s ostatními geny. Genové interakce -intraalelické -interalelické A a intraalelické

Více

Nukleové kyseliny Replikace Transkripce translace

Nukleové kyseliny Replikace Transkripce translace Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Základy genetiky - Alelové a Genové interakce Intra-alelické interakce = Interakce

Více

Mitóza a buněčný cyklus

Mitóza a buněčný cyklus Mitóza a buněčný cyklus Něco o chromosomech - Chromosom = 1 molekula DNA + navázané proteiny -V diploidní buňce jsou od každého chromosomu 2 kopie (= homologní chromosomy) - Homologní chromosomy nesou

Více

Genové interakce Modifikace mendelovských poměrů

Genové interakce Modifikace mendelovských poměrů Modifikace mendelovských poměrů Z Mendelových experimentů vyplynuly nejjednodušší principy přenosu genetické informace, kdy jsou geny umístěny na homologních chromozomech, které segregují jeden od druhého

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.

Více

GENETICKÁ INFORMACE - U buněčných organismů je genetická informace uložena na CHROMOZOMECH v buněčném jádře - Chromozom je tvořen stočeným vláknem chr

GENETICKÁ INFORMACE - U buněčných organismů je genetická informace uložena na CHROMOZOMECH v buněčném jádře - Chromozom je tvořen stočeným vláknem chr GENETIKA VĚDA, KTERÁ SE ZABÝVÁ PROJEVY DĚDIČNOSTI A PROMĚNLIVOSTI Klíčové pojmy: CHROMOZOM, ALELA, GEN, MITÓZA, MEIÓZA, GENOTYP, FENOTYP, ÚPLNÁ DOMINANCE, NEÚPLNÁ DOMINANCE, KODOMINANCE, HETEROZYGOT, HOMOZYGOT

Více

DUM č. 1 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 1 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 1 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Charakteristika buněčného cyklu eukaryot

Více

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA). Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Registrační číslo projektu: CZ.1.07/1.5.00/34.0649 Výukový materiál zpracován v rámci projektu EU peníze školám Název školy: Střední zdravotnická škola a Obchodní akademie, Rumburk, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Více

Základní pravidla dědičnosti - Mendelovy a Morganovy zákony

Základní pravidla dědičnosti - Mendelovy a Morganovy zákony Obecná genetika Základní pravidla dědičnosti - Mendelovy a Morganovy zákony Ing. Roman LONGAUER, CSc. Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je

Více

BIO: Genetika. Mgr. Zbyněk Houdek

BIO: Genetika. Mgr. Zbyněk Houdek BIO: Genetika Mgr. Zbyněk Houdek Nukleové kyseliny Nukleové kyseliny = DNA, RNA - nositelky dědičné informace. Přenos dědičných znaků na potomstvo. Kódují bílkoviny. Nukleotidy - základní stavební jednotky.

Více

Nukleové kyseliny. DeoxyriboNucleic li Acid

Nukleové kyseliny. DeoxyriboNucleic li Acid Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/..00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG) Tento

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

REPRODUKCE A ONTOGENEZE Od spermie s vajíčkem až po zralého jedince. Co bylo dřív? Slepice nebo vejce?

REPRODUKCE A ONTOGENEZE Od spermie s vajíčkem až po zralého jedince. Co bylo dřív? Slepice nebo vejce? REPRODUKCE A ONTOGENEZE Od spermie s vajíčkem až po zralého jedince Co bylo dřív? Slepice nebo vejce? Rozmnožování Rozmnožování (reprodukce) může být nepohlavní (vegetativní, asexuální) pohlavní (sexuální;

Více

Molekulární genetika. DNA = deoxyribonukleová kyselina. RNA = ribonukleová kyselina

Molekulární genetika. DNA = deoxyribonukleová kyselina. RNA = ribonukleová kyselina Přehled GMH Seminář z biologie GENETIKA Molekulární genetika Základní dogma molekulární biologie Základním nosičem genetické informace je molekula DNA. Tato molekula se může replikovat (kopírovat). Informace

Více

Mutace, Mendelovy zákony, dědičnost autosomální a gonosomální. Mgr. Hříbková Hana Biologický ústav LF MU Kamenice 5, Brno 625 00 hribkova@med.muni.

Mutace, Mendelovy zákony, dědičnost autosomální a gonosomální. Mgr. Hříbková Hana Biologický ústav LF MU Kamenice 5, Brno 625 00 hribkova@med.muni. Mutace, Mendelovy zákony, dědičnost autosomální a gonosomální Mgr. Hříbková Hana Biologický ústav LF MU Kamenice 5, Brno 625 00 hribkova@med.muni.cz Mutace Mutace - náhodná změna v genomu organismu - spontánní

Více

Nukleové kyseliny Replikace Transkripce translace

Nukleové kyseliny Replikace Transkripce translace Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,

Více

Úvod do studia biologie. Základy molekulární genetiky

Úvod do studia biologie. Základy molekulární genetiky Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor

Více

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného

Více

Genetika přehled zkouškových otázek:

Genetika přehled zkouškových otázek: Genetika přehled zkouškových otázek: 1) Uveďte Mendelovy zákony (pravidla) dědičnosti, podmínky platnosti Mendelových zákonů. 2) Popište genetický zápis (mendelistický čtverec) monohybridního křížení u

Více

BUŇEČNÝ CYKLUS A JEHO KONTROLA

BUŇEČNÝ CYKLUS A JEHO KONTROLA BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené

Více

ší šířen VAZEBNÁ ANALÝZA Vazba genů

ší šířen VAZEBNÁ ANALÝZA Vazba genů VAZEBNÁ ANALÝZA Vazba genů Americký genetik Thomas Morgan při genetických pokusech s octomilkami (Drosophila melanogaster) popsal zákonitosti o umístění genů na chromosomech, které existují až do současnosti

Více

Centrální dogma molekulární biologie

Centrální dogma molekulární biologie řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových

Více

Biosyntéza a metabolismus bílkovin

Biosyntéza a metabolismus bílkovin Bílkoviny Biosyntéza a metabolismus bílkovin lavní stavební materiál buněk a tkání Prakticky jediný zdroj dusíku pro heterotrofní organismy eexistují zásobní bílkoviny nutný dostatečný přísun v potravě

Více

Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Mgr. Siřínková Petra březen 2009 Mendelovy zákony JOHANN GREGOR MENDEL Narodil se 20. července 1822 v

Více

Eukaryotická buňka. Stavba. - hlavní rozdíly:

Eukaryotická buňka. Stavba. - hlavní rozdíly: Eukaryotická buňka - hlavní rozdíly: rostlinná buňka živočišná buňka buňka hub buněčná stěna ano (celulóza) ne ano (chitin) vakuoly ano ne (prvoci ano) ano lysozomy ne ano ne zásobní látka škrob glykogen

Více

13. Genová vazba a genová interakce

13. Genová vazba a genová interakce 13. Genová vazba a genová interakce o Chromosomová teorie dědičnosti o Bateson a Morgan, chromosomová mapa o Typy genových interakcí Chromosomová teorie dědičnosi Roku 1903 William Sutton pozoroval meiózu

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.

Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti

Více

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura

Více