9 Viskoelastické modely

Rozměr: px
Začít zobrazení ze stránky:

Download "9 Viskoelastické modely"

Transkript

1 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály reagují na deformaci vždy se zpožděním. Pro sanovení viskoelasické odezvy polymerního maeriálu rozlišujeme dva základní ypy experimenů: relaxace napěí v polymeru s časem při konsanní deformaci a eploě: σ ( ) = E( ) ε (9.1) kríp (ečení), kdy sledujeme změnu deformace polymeru v čase při konsanním napěí a eploě: ε ( ) = D( ) σ (9.2) 9.1 Maxwellův model Relaxaci lineárního polymeru lze kvaliaivně popsa pomocí Maxwellova mechanického modelu znázorněného na Obr.9.1, vořeného ocelovou pružinou s modulem pružnosi E (elasická, hookeovská čás) a písem, ve kerém je kapalina s viskoziou η (viskózní, newonská čás). Teno model popisuje případ oku komplikovaného elasiciou. Obr. 9.1: Maxwellův model Před zaížením (čas ) jsou oba komponeny nedeformovány, v klidu. V čase 1, kdy model skokově zaížíme (zdeformujeme), pružina reaguje okamžiě a proahuje se až do rovnovážného savu, kde servává. Zároveň se začne pohybova pís. Po určié době oba prvky

2 vykazují sejnou deformaci úměrnou zaížení. Po uvolnění zaížení ( 2 ) se pružina vrací okamžiě a zcela do původního savu, pís zůsává zdeformovaný. Po deformačním cyklu zůsává lineární polymer čásečně zdeformován. Míra navrácení do původního, nedeformovaného savu závisí na elasické čási, zaímco nevraná deformace je úměrná viskózní čási viskoelasického maeriálu. Celkové smykové napěí je shodné s napěími v obou čásech: σ = σ s = σ d (9.3) Celková deformace se rovná souču jednolivých deformací pružiny (spring - index s) a písu (dashpo - index d): γ + Po dosazení: = γ s γ d (9.4) dγ d = σ s G + σ η d (9.5) Po zavedení důležié viskoelasické veličiny relaxačního času λ = η/g získáme diferenciální rovnici vyjadřující deformaci ohoo modelu: dγ d G = dτ d + τ λ (9.6) V čase se model nachází v klidovém savu - deformace nulová. V čase 1 zavedeme skokově deformaci γ 1, kerá působí až do času 2, kdy přesává bý polymerní maeriál deformován (Obr. 9.2). Pro relaxaci napěí viskoelasického maeriálu jsou okrajové podmínky modelu následující: v čase je σ = v čase 1 je σ = σ, v čase 1 až 2 je σ = σ() Po inegraci vzahu (9.6) a dosazení okrajových podmínek získáme rovnici Maxwellova modelu: λ e σ ( ) = σ (9.7) Průběh napěťové odezvy (relaxace napěí) se edy nachází mezi dvěma mezními případy: relaxační křivkou ideálně elasické pevné láky a relaxační křivkou ideálně viskózní ekuiny. Relaxační čas vyjadřuje poměr mezi viskózní a elasickou čásí. V čase = : e = γ Ge = γ G λ σ ( ) = σ = σ max (9.8) j. maximálního napěí je dosaženo v okamžiku zaížení, ( = v čase = : λ σ ) = σ e = γ G (9.9)

3 edy za nekonečně dlouhou dobu po ukončení působení deformace sysém dokonale zrelaxuje a hodnoa napěí je rovna nule, ( v čase = λ λ 1 σ λ ) = σ e = γ G e = γ G, 368 (9.1) j. v čase, kerý je roven relaxačnímu času, maeriál zrelaxuje na 36,8 % maximálního napěí. Obr. 9.2: Napěťová odezva viskoelasické láky při relaxačním esu 9.2 Kelvinův model Kelvinův model předsavuje paralerní spojení písu a pružiny (Obr. 9.3), kdy přechod pružiny z nedeformovaného savu do deformovaného je brzděn písem. Bržděná konformační elasicia je u polymerů nejvýznamnější deformační děj.

4 Obr. 9.3: Kelvinův model Deformace obou prvků je sejná: γ = = γ s γ d (9.11) Napěí se rovná souču napěí v pružině a písu: σ = σ + σ = G γ + η γ s d (9.12) Diferenciální rovnice ohoo modelu má var: dγ G γ + η = σ (9.13) d V čase se model nachází v klidovém savu - deformace nulová. V čase 1 zavedeme skokově napěí σ, keré působí až do času 2 (Obr. 9.4). Pro krípový experimen jsou okrajové podmínky modelu následující: v čase je γ = v čase 1 až 2 je γ = γ() v čase je 2 je γ = γ

5 Obr. 9.4: Deformační odezva viskoelasické láky při krípovém esu Po inegraci vzahu (9.13) a dosazení okrajových podmínek získáme rovnici Kelvinova modelu: λ γ ( ) = γ 1 e (9.14) kde: λ je relaxační čas určující rychlos přechodu z nedeformovaného vzahu do deformovaného; za relaxační čas dosáhne Kelvinův model 63,2 % rovnovážné deformace γ - liminí (rovnovážná) hodnoa deformace daná pouze vlasnosmi pružiny (γ = τ /G). Zpěný kríp (elasické zoavení) nasává v čase 2, kdy přesane působi deformační síla vyvolávající napěí, j. v čase 2 je napěí rovno a deformace odpovídá liminí (rovnovážné) hodnoě γ. Nyní nás zajímá další vývoj deformace v čase delším než 2 : λ γ ( ) = γ e (9.15) Rychlos poklesu deformace je opě určena relaxačním časem.

6 9.3 Tuckeův model Tuckeův model (Obr. 9.5) může bý použi pro popis deformačního chování lineárního amorfního polymerního maeriálu. Obr. 9.5: Tuckeův model Jedná se o říparamerový model, kde jednolivým paramerům lze přisoudi 3 deformační mechanismy lineárního amorfního polymeru: pružina reprezenuje ideálně elasickou deformaci valenčních úhlů, vazeb a mezimolekulových vzdálenosí, Kelvinův model předsavuje zpožděnou elasickou deformaci polymerních klubek, pís koresponduje s nevraným přesunem klubek (ok).

7 Za předpokladu adiivní deformace lze deformační odezvu při krípovém experimenu vyjádři vzahem: 1 1 / λ 1 γ ( ) = σ +.( 1 e ) + (9.16) G1 G2 η 3 Deformační odezva se skládá z odezev ideálně elasické láky, viskoelasické deformace Kelvinova modelu a ideální viskózní kapaliny, jak znázorňuje schemaicky Obr Obr. 9.6: Kríp a zpěný kríp Tuckeova modelu deformačního chování lineární amorfní polymerní láky Průběh zv. krípového modulu pružnosi vyjádřeného poměrem konsanního napěí a časově závislé deformace zobrazuje Obr. 9.7.

8 Obr. 9.7: Časově závislý modul pružnosi Tuckeova modelu deformačního chování

Reologické modely měkkých tkání

Reologické modely měkkých tkání Reologické modely měkkých kání Tomas Mares 1. Úvod Výchozím principem mechaniky měkkých kání (j. kůže, cév, pojivových kání, kání vniřních orgánů, šlach, vazů, chrupavek, sinoviální ekuiny) je reologie.

Více

Přetváření a porušování materiálů

Přetváření a porušování materiálů Převáření a porušování maeriálů Přednášející: Prof. Milan Jirásek, B322, el. 224 354 481, Milan.Jirasek@fsv.cvu.cz konzulace úerý 14:00-15:30, případně kdykoliv jindy dle dohody Sudijní podklady: skripum

Více

Zpracování výsledků dotvarovací zkoušky

Zpracování výsledků dotvarovací zkoušky Zpracování výsledků dovarovací zkoušky 1 6 vývoj deformace za konsanního napěí 5,66 MPa ˆ J doba zaížení [dny] počáek zaížení čas [dny] Naměřené hodnoy funkce poddajnosi J 12 1 / Pa 75 6 45 3 15 doba zaížení

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

FYZIKA I. Pohyb těles po podložce

FYZIKA I. Pohyb těles po podložce VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

Struktura polymerů. Příprava (výroba).struktura vlastnosti. Materiálové inženýrství (Nauka o materiálu) Základní představy: přírodní vs.

Struktura polymerů. Příprava (výroba).struktura vlastnosti. Materiálové inženýrství (Nauka o materiálu) Základní představy: přírodní vs. Struktura polymerů Základní představy: přírodní vs. syntetické V.Švorčík, vaclav.svorcik@vscht.cz celulóza přírodní kaučuk Příprava (výroba).struktura vlastnosti Materiálové inženýrství (Nauka o materiálu)

Více

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu

Více

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K 1. KAPITOLA TEPELNÉ VLASTNOSTI Tepelné vlasnosi maeriálů jsou charakerizovány pomocí epelných konsan jako měrné eplo, eploní a epelná vodivos, lineární a objemová rozažnos. U polymerních maeriálů má eploa

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin.

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin. Tabulky únosnosi varovaných / rapézových plechů z hliníku a jeho sliin. Obsah: Úvod Základní pojmy Příklad použií abulek Vysvělivky 4 5 6 Tvarovaný plech KOB 00 7 Trapézové plechy z Al a jeho sliin KOB

Více

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru Asabilní obvod s reálnými operačními zesilovači Josef PUNČOCHÁŘ Kaedra eoreické elekroechniky Fakula elekroechnicky a informaiky Vysoká škola báňská - Technická universia Osrava ř. 17 lisopadu 15, 708

Více

ecosyn -plast Šroub pro termoplasty

ecosyn -plast Šroub pro termoplasty ecosyn -plas Šroub pro ermoplasy Bossard ecosyn -plas Šroub pro ermoplasy Velká únosnos Velká procesní únosnos Vysoká bezpečnos při spojování I v rámci každodenního živoa: Všude je zapořebí závi vhodný

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny 0. Charakeriiky pohonů ve vlaní pořebě elekrárny pořebiče ve V.. ají yo charakeriické vlanoi: Příkon Záběrný oen Doba rvání rozběhu Hlavní okruhy pořebičů klaické konvenční epelné elekrárny jou:. Zauhlování

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Výroba a užití elektrické energie

Výroba a užití elektrické energie Výroba a užií elekrické energie Tepelné elekrárny Příklad 1 Vypočíeje epelnou bilanci a dílčí účinnosi epelné elekrárny s kondenzační urbínou dle schémau naznačeného na obr. 1. Sesave Sankeyův diagram

Více

ZÁKLADY REOLOGIE. Reologie - nauka o tokových a deformačních vlastnostech makromolekulárních

ZÁKLADY REOLOGIE. Reologie - nauka o tokových a deformačních vlastnostech makromolekulárních ZÁKLADY REOLOGIE Reologie - nauka o tokových a deformačních vlastnostech makromolekulárních látek Znalost reologických vlastností - nutná při všech zpracovatelských postupech Pro tok a deformaci polymerů

Více

Popis regulátoru pro řízení směšovacích ventilů a TUV

Popis regulátoru pro řízení směšovacích ventilů a TUV Popis reguláoru pro řízení směšovacích venilů a TUV Reguláor je určen pro ekviermní řízení opení jak v rodinných domcích, ak i pro věší koelny. Umožňuje regulaci jednoho směšovacího okruhu, přípravu TUV

Více

Výkonová nabíječka olověných akumulátorů

Výkonová nabíječka olověných akumulátorů Rok / Year: Svazek / Volume: Číslo / Number: 211 13 2 Výkonová nabíječka olověných akumuláorů Power charger of lead-acid accumulaors Josef Kadlec, Miroslav Paočka, Dalibor Červinka, Pavel Vorel xkadle22@feec.vubr.cz,

Více

Průtok. (vznik, klasifikace, měření)

Průtok. (vznik, klasifikace, měření) Průok (vznik, klasifikace, měření) Průok objemový - V m 3 s (neslačielné kapaliny) hmonosní - m (slačielné ekuiny, poluany, ) m kg s Při proudění směsí (např. hydrodoprava) důležiý průok jednolivých složek

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

Fyzikální praktikum II - úloha č. 4

Fyzikální praktikum II - úloha č. 4 Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Schöck Isokorb typ KST

Schöck Isokorb typ KST Schöck Isokorb yp Obsah Srana Základní uspořádání a ypy přípojů 194-195 Pohledy/rozměry 196-199 Dimenzační abulky 200 Ohybová uhos přípoje/pokyny pro návrh 201 Dilaování/únavová odolnos 202-203 Konsrukční

Více

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY - 54-10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY (V.LYSENKO) Základní princip analogově - číslicového převodu Analogové (spojié) y se v nich ransformují (převádí) do číslicové formy. Vsupní spojiý (analogový) doby

Více

3B Přechodné děje v obvodech RC a RLC

3B Přechodné děje v obvodech RC a RLC 3B Přechodné děje v obvodech a íl úlohy Prohloubi eoreické znalosi o přechodných dějích na a obvodu. Ukáza možnos měření paramerů přechodných dějů v ěcho obvodech. U obvodu 2. řádu () demonsrova vliv lumicího

Více

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena Ploché výrobky válcované za epla z ocelí s vyšší mezí kluzu pro váření za sudena ČSN EN 10149-1 Obecné echnické dodací podmínky Dodací podmínky pro ermomechanicky válcované Podle ČSN EN 10149-12-2013 ČSN

Více

LindabCoverline. Tabulky únosností. Pokyny k montáži trapézových plechů Lindab

LindabCoverline. Tabulky únosností. Pokyny k montáži trapézových plechů Lindab LindabCoverline Tabulky únosnosí Pokyny k monáži rapézových plechů Lindab abulky únosnosi rapézových plechů Úvod Přípusné plošné zaížení je určeno v souladu s normou ČSN P ENV 1993-1-3 Navrhování ocelových

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci

Více

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 Vniřní jednoka pro sysém epelných čerpadel vzduch-voda EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1 EKHBRD014ACY1

Více

Úloha VI.3... pracovní pohovor

Úloha VI.3... pracovní pohovor Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 - Úvod Michael Šebek Auomaické řízení 2016 Evroský sociální fond Praha & EU: Invesujeme do vaší budoucnosi 23-2-16 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo)

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka Analýza časových řad Klasický přísup k analýze ČŘ dekompozice časové řady - rozklad ČŘ na složky charakerizující různé druhy pohybů v ČŘ, keré umíme popsa a kvanifikova rend periodické kolísání cyklické

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut. 21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC

Více

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů Vlastnosti a zkoušení materiálů Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

ROTORŮ TURBOSOUSTROJÍ

ROTORŮ TURBOSOUSTROJÍ ZJIŠŤOVÁNÍ PŘÍČIN ZVÝŠENÝCH VIBRACÍ ROTORŮ TURBOSOUSTROJÍ Prof Ing Miroslav Balda, DrSc Úsav ermomechaniky AVČR + Západočeská univerzia Veleslavínova 11, 301 14 Plzeň, el: 019-7236584, fax: 019-7220787,

Více

Nejjednodušší, tzv. bang-bang regulace

Nejjednodušší, tzv. bang-bang regulace Regulace a ovládání Regulace soustavy S se od ovládání liší přítomností zpětné vazby, která dává informaci o stavu soustavy regulátoru R, který podle toho upravuje akční zásah do soustavy, aby bylo dosaženo

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ

DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ Úvod PLASTICITA DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ I. Návrh konstrukce z "mezního stavu Zahrnuje relativně malá plastická přetvoření často stejného řádu jako jsou souběžná elastická přetvoření. Analýza

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Modely simulánních rovnic Problém idenifikace srukurních simulánních rovnic Cvičení Zuzana Dlouhá Modely simulánních rovnic (MSR) eisence vzájemných vazeb mezi proměnnými v modelu,

Více

pro napojení ocelových nosníků velkého průřezu na ocelovou konstrukci (s více než dvěma moduly)

pro napojení ocelových nosníků velkého průřezu na ocelovou konstrukci (s více než dvěma moduly) Schöck Isokorb Moduly pro napojení ocelových nosníků velkého průřezu na ocelovou konsrukci (s více než dvěma moduly) 190 Schöck Isokorb yp (= 1 ZST Modul + 1 QST Modul) pro napojení volně vyložených ocelových

Více

4. Kroucení prutů Otevřené a uzavřené průřezy, prosté a vázané kroucení, interakce, přístup podle Eurokódu.

4. Kroucení prutů Otevřené a uzavřené průřezy, prosté a vázané kroucení, interakce, přístup podle Eurokódu. 4. Kroucení pruů Oevřené a uzavřené průřezy, prosé a vázané kroucení, inerakce, přísup podle Eurokódu. Obvyklé je pružné řešení (plasické nelineární řešení - např. Srelbická) Podle Eurokódu lze kombinova

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Základními vlastnosti pevných látek jsou KRYSTALICKÉ A AMORFNÍ LÁTKY Jak vzniká pevná látka z kapaliny Krystalické látky se vyznačují uspořádáním Dělíme je na 2 základní

Více

Oceňování finančních investic

Oceňování finančních investic Oceňování finančních invesic A. Dluhopisy (bondy, obligace). Klasifikace obligací a) podle kupónu - konvenční obligace (sraigh, plain vanilla, bulle bond) vyplácí pravidelný (roční, pololení) kupón po

Více

11. Dynamika Úvod do dynamiky

11. Dynamika Úvod do dynamiky 11. Dynamika 1 11.1 Úvod do dynamiky Dynamika je částí mechaniky, která se zabývá studiem pohybu hmotných bodů a těles při působení sil. V dynamice se řeší takové případy, kdy síly působící na dokonale

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí

Více

Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích

Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích Výpočy eploní bilance a chlazení na výkonových spínacích prvcích Úvod Při provozu polovodičového měniče vzniká na výkonových řídicích prvcích zráový výkon. volňuje se ve ormě epla, keré se musí odvés z

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

7. CVIČENÍ - 1 - Témata:

7. CVIČENÍ - 1 - Témata: České vsoké čení echnické v Praze Fakla informačních echnologií Kaedra číslicového návrh Doc.Ing. Kaeřina Hniová, CSc. Kaeřina Hniová POZNÁMKY 7. CVIČENÍ Témaa: 7. Nespojié regláor 7.1Nespojié regláor

Více

Práce, výkon, energie

Práce, výkon, energie Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie

Více

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ Auoři: Ing. Radek Jandora, Honeywell spol s r.o. HTS CZ o.z., e-mail: radek.jandora@honeywell.com Anoace: V ovládacím mechanismu

Více

Řetězení stálých cen v národních účtech

Řetězení stálých cen v národních účtech Řeězení sálých cen v národních účech Michal Široký msiroky@gw.czso.cz Odbor čvrleních národních účů Na adesáém 8, 00 82 Praha 0 Řeězení sálých cen Podsaa řeězení Výhody a nevýhody řeězení Neadiivia objemů

Více

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém

Více

1.12.2009. Reaktor s exotermní reakcí. Reaktor s exotermní reakcí. Proč řídit provoz zařízení. Bezpečnost chemických výrob N111001

1.12.2009. Reaktor s exotermní reakcí. Reaktor s exotermní reakcí. Proč řídit provoz zařízení. Bezpečnost chemických výrob N111001 .2.29 Bezpečnos hemikýh výrob N Základní pojmy z regulae a řízení proesů Per Zámosný mísnos: A-72a el.: 4222 e-mail: per.zamosny@vsh.z Účel regulae Základní pojmy Dynamiké modely regulačníh obvodů Reakor

Více

HAWLE-OPTIFIL AUTOMATICKÝ SAMOČISTÍCÍ FILTR

HAWLE-OPTIFIL AUTOMATICKÝ SAMOČISTÍCÍ FILTR HAWLE-OPTIFIL AUTOMATICKÝ SAMOČISTÍCÍ FILTR HAWLE. MADE FOR GENERATIONS. HAWLE-OPTIFIL AUTOMATICKÝ SAMOČISTÍCÍ FILTR HAWLE-OPTIFIL je plně auomaický filrační sysém fungující na pricipu povrchové, hloubkové

Více

Mechanické upevnění solárních zařízení na průmyslové střechy Bezpečné - Přizpůsobivé - Rychlé. Světová novinka SOL-R

Mechanické upevnění solárních zařízení na průmyslové střechy Bezpečné - Přizpůsobivé - Rychlé. Světová novinka SOL-R Mechanické upevnění solárních zařízení na průmyslové sřechy Bezpečné - Přizpůsobivé - Rychlé Svěová novinka SOL-R SOL-R nejpřizpůsobivější upevňovací sysém pro monáž solárních zařízení na průmyslové sřechy

Více

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22 Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI Jaroslav Krucký, PMB 22 SYMBOLY Řecká písmena θ: kontaktní úhel. σ: napětí. ε: zatížení. ν: Poissonův koeficient. λ: vlnová délka. γ: povrchová

Více

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

2. Molekulová stavba pevných látek

2. Molekulová stavba pevných látek 2. Molekulová stavba pevných látek 2.1 Vznik tuhého tělesa krystalizace Při přeměně kapaliny v tuhou látku vzniknou nejprve krystalizační jádra, v nichž nastává tuhnutí kapaliny. Ochlazování kapaliny se

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT Φd Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT KRUT KRUHOVÝCH PRŮŘEZŮ Součást je namáhána na krut

Více

ZAMEL Sp. z o.o. ul. Zielona 27, 43-200 Pszczyna, Poland tel. +48 (32) 210 46 65, fax +48 (32) 210 80 04 www.zamelcet.com, e-mail: marketing@zamel.

ZAMEL Sp. z o.o. ul. Zielona 27, 43-200 Pszczyna, Poland tel. +48 (32) 210 46 65, fax +48 (32) 210 80 04 www.zamelcet.com, e-mail: marketing@zamel. ČAOVÉ RELÉ PCM-07/ NÁVOD K OBLZE ZAMEL p. z o.o. ul. Zielona 27, 43-200 Pszczyna, Poland el. +48 (32) 210 46 65, fax +48 (32) 210 80 04 www.zamelce.com, e-mail: markeing@zamel.pl POPI Vícefunkční časové

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

TLUMIČE TORSNÍHO KMITÁNÍ SILIKONOVÉ TLUMIČE

TLUMIČE TORSNÍHO KMITÁNÍ SILIKONOVÉ TLUMIČE TLUMIČE TORSNÍHO KMITÁNÍ Připojují se orsní sousavě v mísě nejvěší orsní výhyly, j. na volném oni liového hřídele. V prinipu se jedná o přídavný orní sysém na eliminai orsníh výhyle. Dělíme je na: Třeí..mění

Více

( ) = [m 3 /s] (3) S pr. Ing. Roman Vavřička, Ph.D. Postup:

( ) = [m 3 /s] (3) S pr. Ing. Roman Vavřička, Ph.D. Postup: ČVUT v Praze, Fakula srojní Úsav echniky prosředí Posup: ) Výpoče pořebného hmonosního a objemového průoku eplonosné láky vody z kalorimerické rovnice A) HMOTNOSTNÍ PRŮTOK Q m c [W] () ( ) m kde: Q c [kg/s]

Více

Úloha 12.1.1 Zadání Vypočtěte spotřebu energie pro větrání zadané budovy (tedy energii pro zvlhčování, odvlhčování a dopravu vzduchu)

Úloha 12.1.1 Zadání Vypočtěte spotřebu energie pro větrání zadané budovy (tedy energii pro zvlhčování, odvlhčování a dopravu vzduchu) 100+1 příklad z echniky osředí 12.1 Energeická náročnos věracích sysémů. Klasifikace ENB Úloha 12.1.1 Vypočěe spořebu energie o věrání zadané budovy (edy energii o zvlhčování, odvlhčování a doavu vzduchu

Více

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA

BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA FUNKCE ŠLACH A VAZŮ Šlachy: spojují sval a kost přenos svalové síly na kost nebo chrupavku uložení elastické energie Vazy: spojují kosti stabilizace kloubu vymezení

Více

Jakost, spolehlivost a teorie obnovy

Jakost, spolehlivost a teorie obnovy Jakos, spolehlivos a eorie obnovy opimální inerval obnovy, seskupování obnov, zráy z nedodržení normaivu Jakos, spolehlivos a obnova srojů Jakos vyjadřuje supeň splnění požadavků souborem inherenních znaků.

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský sociální fond Praha & EU: Invesujeme do vaší budoucnosi Ekonomika podniku Kaedra ekonomiky, manažersví a humaniních věd Fakula elekroechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Kriéria efekivnosi

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více