9 Viskoelastické modely

Rozměr: px
Začít zobrazení ze stránky:

Download "9 Viskoelastické modely"

Transkript

1 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály reagují na deformaci vždy se zpožděním. Pro sanovení viskoelasické odezvy polymerního maeriálu rozlišujeme dva základní ypy experimenů: relaxace napěí v polymeru s časem při konsanní deformaci a eploě: σ ( ) = E( ) ε (9.1) kríp (ečení), kdy sledujeme změnu deformace polymeru v čase při konsanním napěí a eploě: ε ( ) = D( ) σ (9.2) 9.1 Maxwellův model Relaxaci lineárního polymeru lze kvaliaivně popsa pomocí Maxwellova mechanického modelu znázorněného na Obr.9.1, vořeného ocelovou pružinou s modulem pružnosi E (elasická, hookeovská čás) a písem, ve kerém je kapalina s viskoziou η (viskózní, newonská čás). Teno model popisuje případ oku komplikovaného elasiciou. Obr. 9.1: Maxwellův model Před zaížením (čas ) jsou oba komponeny nedeformovány, v klidu. V čase 1, kdy model skokově zaížíme (zdeformujeme), pružina reaguje okamžiě a proahuje se až do rovnovážného savu, kde servává. Zároveň se začne pohybova pís. Po určié době oba prvky

2 vykazují sejnou deformaci úměrnou zaížení. Po uvolnění zaížení ( 2 ) se pružina vrací okamžiě a zcela do původního savu, pís zůsává zdeformovaný. Po deformačním cyklu zůsává lineární polymer čásečně zdeformován. Míra navrácení do původního, nedeformovaného savu závisí na elasické čási, zaímco nevraná deformace je úměrná viskózní čási viskoelasického maeriálu. Celkové smykové napěí je shodné s napěími v obou čásech: σ = σ s = σ d (9.3) Celková deformace se rovná souču jednolivých deformací pružiny (spring - index s) a písu (dashpo - index d): γ + Po dosazení: = γ s γ d (9.4) dγ d = σ s G + σ η d (9.5) Po zavedení důležié viskoelasické veličiny relaxačního času λ = η/g získáme diferenciální rovnici vyjadřující deformaci ohoo modelu: dγ d G = dτ d + τ λ (9.6) V čase se model nachází v klidovém savu - deformace nulová. V čase 1 zavedeme skokově deformaci γ 1, kerá působí až do času 2, kdy přesává bý polymerní maeriál deformován (Obr. 9.2). Pro relaxaci napěí viskoelasického maeriálu jsou okrajové podmínky modelu následující: v čase je σ = v čase 1 je σ = σ, v čase 1 až 2 je σ = σ() Po inegraci vzahu (9.6) a dosazení okrajových podmínek získáme rovnici Maxwellova modelu: λ e σ ( ) = σ (9.7) Průběh napěťové odezvy (relaxace napěí) se edy nachází mezi dvěma mezními případy: relaxační křivkou ideálně elasické pevné láky a relaxační křivkou ideálně viskózní ekuiny. Relaxační čas vyjadřuje poměr mezi viskózní a elasickou čásí. V čase = : e = γ Ge = γ G λ σ ( ) = σ = σ max (9.8) j. maximálního napěí je dosaženo v okamžiku zaížení, ( = v čase = : λ σ ) = σ e = γ G (9.9)

3 edy za nekonečně dlouhou dobu po ukončení působení deformace sysém dokonale zrelaxuje a hodnoa napěí je rovna nule, ( v čase = λ λ 1 σ λ ) = σ e = γ G e = γ G, 368 (9.1) j. v čase, kerý je roven relaxačnímu času, maeriál zrelaxuje na 36,8 % maximálního napěí. Obr. 9.2: Napěťová odezva viskoelasické láky při relaxačním esu 9.2 Kelvinův model Kelvinův model předsavuje paralerní spojení písu a pružiny (Obr. 9.3), kdy přechod pružiny z nedeformovaného savu do deformovaného je brzděn písem. Bržděná konformační elasicia je u polymerů nejvýznamnější deformační děj.

4 Obr. 9.3: Kelvinův model Deformace obou prvků je sejná: γ = = γ s γ d (9.11) Napěí se rovná souču napěí v pružině a písu: σ = σ + σ = G γ + η γ s d (9.12) Diferenciální rovnice ohoo modelu má var: dγ G γ + η = σ (9.13) d V čase se model nachází v klidovém savu - deformace nulová. V čase 1 zavedeme skokově napěí σ, keré působí až do času 2 (Obr. 9.4). Pro krípový experimen jsou okrajové podmínky modelu následující: v čase je γ = v čase 1 až 2 je γ = γ() v čase je 2 je γ = γ

5 Obr. 9.4: Deformační odezva viskoelasické láky při krípovém esu Po inegraci vzahu (9.13) a dosazení okrajových podmínek získáme rovnici Kelvinova modelu: λ γ ( ) = γ 1 e (9.14) kde: λ je relaxační čas určující rychlos přechodu z nedeformovaného vzahu do deformovaného; za relaxační čas dosáhne Kelvinův model 63,2 % rovnovážné deformace γ - liminí (rovnovážná) hodnoa deformace daná pouze vlasnosmi pružiny (γ = τ /G). Zpěný kríp (elasické zoavení) nasává v čase 2, kdy přesane působi deformační síla vyvolávající napěí, j. v čase 2 je napěí rovno a deformace odpovídá liminí (rovnovážné) hodnoě γ. Nyní nás zajímá další vývoj deformace v čase delším než 2 : λ γ ( ) = γ e (9.15) Rychlos poklesu deformace je opě určena relaxačním časem.

6 9.3 Tuckeův model Tuckeův model (Obr. 9.5) může bý použi pro popis deformačního chování lineárního amorfního polymerního maeriálu. Obr. 9.5: Tuckeův model Jedná se o říparamerový model, kde jednolivým paramerům lze přisoudi 3 deformační mechanismy lineárního amorfního polymeru: pružina reprezenuje ideálně elasickou deformaci valenčních úhlů, vazeb a mezimolekulových vzdálenosí, Kelvinův model předsavuje zpožděnou elasickou deformaci polymerních klubek, pís koresponduje s nevraným přesunem klubek (ok).

7 Za předpokladu adiivní deformace lze deformační odezvu při krípovém experimenu vyjádři vzahem: 1 1 / λ 1 γ ( ) = σ +.( 1 e ) + (9.16) G1 G2 η 3 Deformační odezva se skládá z odezev ideálně elasické láky, viskoelasické deformace Kelvinova modelu a ideální viskózní kapaliny, jak znázorňuje schemaicky Obr Obr. 9.6: Kríp a zpěný kríp Tuckeova modelu deformačního chování lineární amorfní polymerní láky Průběh zv. krípového modulu pružnosi vyjádřeného poměrem konsanního napěí a časově závislé deformace zobrazuje Obr. 9.7.

8 Obr. 9.7: Časově závislý modul pružnosi Tuckeova modelu deformačního chování

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K 1. KAPITOLA TEPELNÉ VLASTNOSTI Tepelné vlasnosi maeriálů jsou charakerizovány pomocí epelných konsan jako měrné eplo, eploní a epelná vodivos, lineární a objemová rozažnos. U polymerních maeriálů má eploa

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin.

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin. Tabulky únosnosi varovaných / rapézových plechů z hliníku a jeho sliin. Obsah: Úvod Základní pojmy Příklad použií abulek Vysvělivky 4 5 6 Tvarovaný plech KOB 00 7 Trapézové plechy z Al a jeho sliin KOB

Více

ecosyn -plast Šroub pro termoplasty

ecosyn -plast Šroub pro termoplasty ecosyn -plas Šroub pro ermoplasy Bossard ecosyn -plas Šroub pro ermoplasy Velká únosnos Velká procesní únosnos Vysoká bezpečnos při spojování I v rámci každodenního živoa: Všude je zapořebí závi vhodný

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS

Více

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny 0. Charakeriiky pohonů ve vlaní pořebě elekrárny pořebiče ve V.. ají yo charakeriické vlanoi: Příkon Záběrný oen Doba rvání rozběhu Hlavní okruhy pořebičů klaické konvenční epelné elekrárny jou:. Zauhlování

Více

Výroba a užití elektrické energie

Výroba a užití elektrické energie Výroba a užií elekrické energie Tepelné elekrárny Příklad 1 Vypočíeje epelnou bilanci a dílčí účinnosi epelné elekrárny s kondenzační urbínou dle schémau naznačeného na obr. 1. Sesave Sankeyův diagram

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

Popis regulátoru pro řízení směšovacích ventilů a TUV

Popis regulátoru pro řízení směšovacích ventilů a TUV Popis reguláoru pro řízení směšovacích venilů a TUV Reguláor je určen pro ekviermní řízení opení jak v rodinných domcích, ak i pro věší koelny. Umožňuje regulaci jednoho směšovacího okruhu, přípravu TUV

Více

Výkonová nabíječka olověných akumulátorů

Výkonová nabíječka olověných akumulátorů Rok / Year: Svazek / Volume: Číslo / Number: 211 13 2 Výkonová nabíječka olověných akumuláorů Power charger of lead-acid accumulaors Josef Kadlec, Miroslav Paočka, Dalibor Červinka, Pavel Vorel xkadle22@feec.vubr.cz,

Více

Průtok. (vznik, klasifikace, měření)

Průtok. (vznik, klasifikace, měření) Průok (vznik, klasifikace, měření) Průok objemový - V m 3 s (neslačielné kapaliny) hmonosní - m (slačielné ekuiny, poluany, ) m kg s Při proudění směsí (např. hydrodoprava) důležiý průok jednolivých složek

Více

Schöck Isokorb typ KST

Schöck Isokorb typ KST Schöck Isokorb yp Obsah Srana Základní uspořádání a ypy přípojů 194-195 Pohledy/rozměry 196-199 Dimenzační abulky 200 Ohybová uhos přípoje/pokyny pro návrh 201 Dilaování/únavová odolnos 202-203 Konsrukční

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY - 54-10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY (V.LYSENKO) Základní princip analogově - číslicového převodu Analogové (spojié) y se v nich ransformují (převádí) do číslicové formy. Vsupní spojiý (analogový) doby

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 Vniřní jednoka pro sysém epelných čerpadel vzduch-voda EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1 EKHBRD014ACY1

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní

Více

Úloha VI.3... pracovní pohovor

Úloha VI.3... pracovní pohovor Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro

Více

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů Vlastnosti a zkoušení materiálů Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Základními vlastnosti pevných látek jsou KRYSTALICKÉ A AMORFNÍ LÁTKY Jak vzniká pevná látka z kapaliny Krystalické látky se vyznačují uspořádáním Dělíme je na 2 základní

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut. 21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC

Více

ROTORŮ TURBOSOUSTROJÍ

ROTORŮ TURBOSOUSTROJÍ ZJIŠŤOVÁNÍ PŘÍČIN ZVÝŠENÝCH VIBRACÍ ROTORŮ TURBOSOUSTROJÍ Prof Ing Miroslav Balda, DrSc Úsav ermomechaniky AVČR + Západočeská univerzia Veleslavínova 11, 301 14 Plzeň, el: 019-7236584, fax: 019-7220787,

Více

Nejjednodušší, tzv. bang-bang regulace

Nejjednodušší, tzv. bang-bang regulace Regulace a ovládání Regulace soustavy S se od ovládání liší přítomností zpětné vazby, která dává informaci o stavu soustavy regulátoru R, který podle toho upravuje akční zásah do soustavy, aby bylo dosaženo

Více

HAWLE-OPTIFIL AUTOMATICKÝ SAMOČISTÍCÍ FILTR

HAWLE-OPTIFIL AUTOMATICKÝ SAMOČISTÍCÍ FILTR HAWLE-OPTIFIL AUTOMATICKÝ SAMOČISTÍCÍ FILTR HAWLE. MADE FOR GENERATIONS. HAWLE-OPTIFIL AUTOMATICKÝ SAMOČISTÍCÍ FILTR HAWLE-OPTIFIL je plně auomaický filrační sysém fungující na pricipu povrchové, hloubkové

Více

pro napojení ocelových nosníků velkého průřezu na ocelovou konstrukci (s více než dvěma moduly)

pro napojení ocelových nosníků velkého průřezu na ocelovou konstrukci (s více než dvěma moduly) Schöck Isokorb Moduly pro napojení ocelových nosníků velkého průřezu na ocelovou konsrukci (s více než dvěma moduly) 190 Schöck Isokorb yp (= 1 ZST Modul + 1 QST Modul) pro napojení volně vyložených ocelových

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

Oceňování finančních investic

Oceňování finančních investic Oceňování finančních invesic A. Dluhopisy (bondy, obligace). Klasifikace obligací a) podle kupónu - konvenční obligace (sraigh, plain vanilla, bulle bond) vyplácí pravidelný (roční, pololení) kupón po

Více

BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA

BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA FUNKCE ŠLACH A VAZŮ Šlachy: spojují sval a kost přenos svalové síly na kost nebo chrupavku uložení elastické energie Vazy: spojují kosti stabilizace kloubu vymezení

Více

Řetězení stálých cen v národních účtech

Řetězení stálých cen v národních účtech Řeězení sálých cen v národních účech Michal Široký msiroky@gw.czso.cz Odbor čvrleních národních účů Na adesáém 8, 00 82 Praha 0 Řeězení sálých cen Podsaa řeězení Výhody a nevýhody řeězení Neadiivia objemů

Více

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní

Více

7. CVIČENÍ - 1 - Témata:

7. CVIČENÍ - 1 - Témata: České vsoké čení echnické v Praze Fakla informačních echnologií Kaedra číslicového návrh Doc.Ing. Kaeřina Hniová, CSc. Kaeřina Hniová POZNÁMKY 7. CVIČENÍ Témaa: 7. Nespojié regláor 7.1Nespojié regláor

Více

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl?

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Zkušební stroj pro zkoušky mechanických vlastností materiálů na Ústavu fyziky materiálů AV ČR, v. v. i. Pružnost (elasticita) Z fyzikálního

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ Auoři: Ing. Radek Jandora, Honeywell spol s r.o. HTS CZ o.z., e-mail: radek.jandora@honeywell.com Anoace: V ovládacím mechanismu

Více

1.12.2009. Reaktor s exotermní reakcí. Reaktor s exotermní reakcí. Proč řídit provoz zařízení. Bezpečnost chemických výrob N111001

1.12.2009. Reaktor s exotermní reakcí. Reaktor s exotermní reakcí. Proč řídit provoz zařízení. Bezpečnost chemických výrob N111001 .2.29 Bezpečnos hemikýh výrob N Základní pojmy z regulae a řízení proesů Per Zámosný mísnos: A-72a el.: 4222 e-mail: per.zamosny@vsh.z Účel regulae Základní pojmy Dynamiké modely regulačníh obvodů Reakor

Více

STANOVENÍ PEVNOSTI V TAHU U MĚKKÝCH OBALOVÝCH FÓLIÍ

STANOVENÍ PEVNOSTI V TAHU U MĚKKÝCH OBALOVÝCH FÓLIÍ STANOVENÍ PEVNOSTI V TAHU U MĚKKÝCH OBALOVÝCH FÓLIÍ 1. Úvod Pevnost v tahu je jednou ze základních mechanických vlastností obalových materiálů, charakterizujících jejich odolnost vůči mechanickému namáhání,

Více

2. Molekulová stavba pevných látek

2. Molekulová stavba pevných látek 2. Molekulová stavba pevných látek 2.1 Vznik tuhého tělesa krystalizace Při přeměně kapaliny v tuhou látku vzniknou nejprve krystalizační jádra, v nichž nastává tuhnutí kapaliny. Ochlazování kapaliny se

Více

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Indexy základní, řeězové a empo přírůsku Aleš Drobník srana 1 7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU V kapiole Indexy při časovém srovnání jsme si řekli: Časové srovnání vzniká, srovnáme-li jednu

Více

( ) = [m 3 /s] (3) S pr. Ing. Roman Vavřička, Ph.D. Postup:

( ) = [m 3 /s] (3) S pr. Ing. Roman Vavřička, Ph.D. Postup: ČVUT v Praze, Fakula srojní Úsav echniky prosředí Posup: ) Výpoče pořebného hmonosního a objemového průoku eplonosné láky vody z kalorimerické rovnice A) HMOTNOSTNÍ PRŮTOK Q m c [W] () ( ) m kde: Q c [kg/s]

Více

ZAMEL Sp. z o.o. ul. Zielona 27, 43-200 Pszczyna, Poland tel. +48 (32) 210 46 65, fax +48 (32) 210 80 04 www.zamelcet.com, e-mail: marketing@zamel.

ZAMEL Sp. z o.o. ul. Zielona 27, 43-200 Pszczyna, Poland tel. +48 (32) 210 46 65, fax +48 (32) 210 80 04 www.zamelcet.com, e-mail: marketing@zamel. ČAOVÉ RELÉ PCM-07/ NÁVOD K OBLZE ZAMEL p. z o.o. ul. Zielona 27, 43-200 Pszczyna, Poland el. +48 (32) 210 46 65, fax +48 (32) 210 80 04 www.zamelce.com, e-mail: markeing@zamel.pl POPI Vícefunkční časové

Více

Jakost, spolehlivost a teorie obnovy

Jakost, spolehlivost a teorie obnovy Jakos, spolehlivos a eorie obnovy opimální inerval obnovy, seskupování obnov, zráy z nedodržení normaivu Jakos, spolehlivos a obnova srojů Jakos vyjadřuje supeň splnění požadavků souborem inherenních znaků.

Více

TLUMIČE TORSNÍHO KMITÁNÍ SILIKONOVÉ TLUMIČE

TLUMIČE TORSNÍHO KMITÁNÍ SILIKONOVÉ TLUMIČE TLUMIČE TORSNÍHO KMITÁNÍ Připojují se orsní sousavě v mísě nejvěší orsní výhyly, j. na volném oni liového hřídele. V prinipu se jedná o přídavný orní sysém na eliminai orsníh výhyle. Dělíme je na: Třeí..mění

Více

Úloha 12.1.1 Zadání Vypočtěte spotřebu energie pro větrání zadané budovy (tedy energii pro zvlhčování, odvlhčování a dopravu vzduchu)

Úloha 12.1.1 Zadání Vypočtěte spotřebu energie pro větrání zadané budovy (tedy energii pro zvlhčování, odvlhčování a dopravu vzduchu) 100+1 příklad z echniky osředí 12.1 Energeická náročnos věracích sysémů. Klasifikace ENB Úloha 12.1.1 Vypočěe spořebu energie o věrání zadané budovy (edy energii o zvlhčování, odvlhčování a doavu vzduchu

Více

Popis obvodu U2407B. Funkce integrovaného obvodu U2407B

Popis obvodu U2407B. Funkce integrovaného obvodu U2407B ASICenrum s.r.o. Novodvorská 994, 142 21 Praha 4 Tel. (02) 4404 3478, Fax: (02) 472 2164, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = Popis obvodu U2407B

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský sociální fond Praha & EU: Invesujeme do vaší budoucnosi Ekonomika podniku Kaedra ekonomiky, manažersví a humaniních věd Fakula elekroechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Kriéria efekivnosi

Více

4.5.8 Elektromagnetická indukce

4.5.8 Elektromagnetická indukce 4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 důležiý jev sojící v samých základech moderní civilizace všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali žádný ekonomicky možný

Více

Protipožární obklad ocelových konstrukcí

Protipožární obklad ocelových konstrukcí Technický průvoce Proipožární obkla ocelových konsrukcí Úvo Ocel je anorganický maeriál a lze jí ey bez zvlášních zkoušek zařai mezi nehořlavé maeriály. Při přímém působení ohně vlivem vysokých eplo (nárůs

Více

Bipolární tranzistor jako

Bipolární tranzistor jako Elekronické součásky - laboraorní cvičení 1 Bipolární ranzisor jako Úkol: 1. Bipolární ranzisor jako řízený odpor (spínač) ověření činnosi. 2. Unipolární ranzisor jako řízený odpor (spínač) ověření činnosi.

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Měření výkonnosti údržby prostřednictvím ukazatelů efektivnosti

Měření výkonnosti údržby prostřednictvím ukazatelů efektivnosti Měření výkonnosi údržby prosřednicvím ukazaelů efekivnosi Zdeněk Aleš, Václav Legá, Vladimír Jurča 1. Sledování efekiviy ve výrobní organizaci S rozvojem vědy a echniky je spojena řada požadavků kladených

Více

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

Hlavní body. Úvod do nauky o kmitech Harmonické kmity Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Mechanické upevnění solárních zařízení na průmyslové střechy Bezpečné - Přizpůsobivé - Rychlé. Světová novinka SOL-R

Mechanické upevnění solárních zařízení na průmyslové střechy Bezpečné - Přizpůsobivé - Rychlé. Světová novinka SOL-R Mechanické upevnění solárních zařízení na průmyslové sřechy Bezpečné - Přizpůsobivé - Rychlé Svěová novinka SOL-R SOL-R nejpřizpůsobivější upevňovací sysém pro monáž solárních zařízení na průmyslové sřechy

Více

Hodnoty pro trubkový vazník předpokládají styčníky s průniky trubek, v jiných případech budou vzpěrné délky stejné jako pro úhelníkové vazníky.

Hodnoty pro trubkový vazník předpokládají styčníky s průniky trubek, v jiných případech budou vzpěrné délky stejné jako pro úhelníkové vazníky. 5. Vazník posuek pruů 5. Vzpěrné élky Tab.: Vzpěrné élky pruů příhraových vazníků Úhelníkový vazník v rovině vzálenos uzlů Horní pás z roviny vzálenos vaznic vzálenos svislého zužení Dolní pás z roviny

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Betonářská výztuž svařování: základní, návazné a rušené normy. J. Šmejkal a J. Procházka

Betonářská výztuž svařování: základní, návazné a rušené normy. J. Šmejkal a J. Procházka Beonářská výzuž svařování: základní, návazné a rušené normy J. Šmejkal a J. Procházka ISO EN ČSN ČSN EN 1992-1 Navrhování beonových konsrukcí ČSN EN 10080 Ocel pro výzuž do beonu Svařielná žebírková beonářská

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Prů r v ů od o c d e e T -ex e kur u z r í Pe P t e r t a a M e M n e y n ja j r a ov o á 18.12.2010

Prů r v ů od o c d e e T -ex e kur u z r í Pe P t e r t a a M e M n e y n ja j r a ov o á 18.12.2010 Průvodce T-exkurzí Petra Menyjarová 18.12.2010 Krátce o T-exkurzích T-exkurze je součástí projektu Vzdělání a rozvoj talentované mládeže JMK. Jsou určeny pro studenty středních škol se zájmem o přírodní

Více

2.1 POHYB 2.2 POLOHA A POSUNUTÍ

2.1 POHYB 2.2 POLOHA A POSUNUTÍ 2 P ÌmoËar pohyb V roce 1977 vyvo ila Kiy OíNeilov rekord v z vodech dragser. Dos hla ehdy rychlosi 628,85 km/h za pouh ch 3,72 s. Jin rekord ohoo ypu zaznamenal v roce 1958 Eli Beeding ml. p i jìzdï na

Více

Příklad 4 Ohýbaný nosník - napětí

Příklad 4 Ohýbaný nosník - napětí Příklad 4 Oýaný nosník - napěí Teorie Prosý o, rovinný o Při prosé ou je průře naáán oový oene oáčející kole jedné lavníc os servačnosi průřeu, ovkle os. oen se načí neo jeno. Běžněji je ožné se seka s

Více

Řasový test toxicity

Řasový test toxicity Laboraorní návod č. Úsav hemie ohrany prosředí, VŠCHT v Praze Řasový es oxiiy. Účel Řasové esy oxiiy slouží k esování možnýh oxikýh účinků láek a vzorků na vodní produeny. Zelené řasy paří do skupiny neévnaýh

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

Pilové pásy PILOUS MaxTech

Pilové pásy PILOUS MaxTech Pilové pásy PILOUS MaxTech Originální pilové pásy, vyráběné nejmodernější echnologií z nejkvalinějších německých maeriálů, za přísného dodržování veškerých předepsaných výrobních a konrolních posupů. Zaručují

Více

PROCESY V TECHNICE BUDOV cvičení 9, 10

PROCESY V TECHNICE BUDOV cvičení 9, 10 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV cvičení 9, 10 Hana Charváová, Dagmar Janáčová Zlín 2013 Teno sudijní maeriál vznikl za finanční podpory Evropského

Více

MECHANIKA HORNIN A ZEMIN

MECHANIKA HORNIN A ZEMIN MECHANIKA HORNIN A ZEMIN podklady k přednáškám doc. Ing. Kořínek Robert, CSc. Místnost: C 314 Telefon: 597 321 942 E-mail: robert.korinek@vsb.cz Internetové stránky: fast10.vsb.cz/korinek Konsolidace zemin

Více

Seznam parametrů Vydání 04/03. sinamics SINAMICS G110

Seznam parametrů Vydání 04/03. sinamics SINAMICS G110 Seznam paramerů Vydání 04/0 sinamics SINAMICS G110 Dokumenace k výrobku SINAMICS G110 Příručka pro začínající uživaele Příručka pro začínající uživaele si klade za cíl umožni uživaelům rychlý přísup

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs

Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs N V E S T C E D O R O Z V O J E V Z D Ě L Á V Á N Í Operační progra: Název oblas podpory: Název projek: Vzdělávání pro konkrenceschopnos Zvyšování kvaly ve vzdělávání novace a vyvoření odborných exů pro

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY

INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY Jana Soukopová Anoace Příspěvek obsahuje dílčí výsledky provedené analýzy výdajů na ochranu živoního prosředí z

Více

Vybrané metody statistické regulace procesu pro autokorelovaná data

Vybrané metody statistické regulace procesu pro autokorelovaná data XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

REGULACE. Akční členy. Měřicí a řídicí technika přednášky LS 2006/07. Blokové schéma regulačního obvodu MRT-07-P4 1 / 13.

REGULACE. Akční členy. Měřicí a řídicí technika přednášky LS 2006/07. Blokové schéma regulačního obvodu MRT-07-P4 1 / 13. Měřicí a řídicí chnika přdnášky LS 26/7 REGULACE (pokračoání) přnosoé csy akční člny rguláory rgulační pochod Blokoé schéma rgulačního obodu z u rguloaná sousaa y akční čln měřicí čln úsřdní čln rguláoru

Více

ZÁKLADY ŘÍZENÍ ENERGETICKÝCH STROJŮ

ZÁKLADY ŘÍZENÍ ENERGETICKÝCH STROJŮ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 1. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZÁKLADY ŘÍZENÍ ENERGETICKÝCH STROJŮ

Více

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém

Více

21.5 Členění v závislosti na objemu výroby

21.5 Členění v závislosti na objemu výroby Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

ALTERNATIVNÍ ZDROJE ENERGIE

ALTERNATIVNÍ ZDROJE ENERGIE ALTERNATIVNÍ ZDROJE ENERGIE Ing. Tomáš Mauška, Ph.D. Praha 2010 Evropský sociální fond Praha & EU: Invesujeme do vaší budoucnosi Obsah 1. Solární epelné sousavy... 4 1.1. Sluneční energie... 4 1.1.1. Původ...

Více