Gaussovská prvočísla

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Gaussovská prvočísla"

Transkript

1 Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium Brno, tř. Kt. Jroše 14) Zdvtel ráce: Brno, 2006 Jihomorvský krj

2 Prohlšuji, že jsem ředloženou ráci zrcovl smosttně oužil jen uvedené rmeny literturu. Jkub Oršl V Brně dne

3 Abstrkt Abstrkt Tto ráce oisuje konkrétní část mtemtiky Gussov rvočísl, resektive teorii kolem Gussových celých čísel její zákldní věty. Kromě této roblemtiky řeší některé části teorie čísel (zvláště Legendreovy symboly) komlexní čísl. Gussov celá čísl jsou komlexní čísl s celočíselnou reálnou imginární částí. V této množině můžeme definovt dělitelnost obdobně jko v celých číslech. Pokud se hlouběji onoříme, zjistíme, že Gussov čísl mjí vlstnosti velmi odobné číslům celým, nř. věty o dělitelnosti, největší soleční dělitelé, Euklidův lgoritmus, Bezoutov vět, rozkld n rvočinitele dlší. Z zmínku stojí zvlášt Euklidův lgoritmus, který je běžně zložen n dělení se zbytkem. Náš Euklidův lgoritmus, tk jk je osán v této ráci, je zložen n odobných zákldech, le smotné dělení se zbytkem neoužívá, roto se dělením se zbytkem, které je v Gussových číslech znčně složitější než v celých číslech, nemusíme zbývt. Nším cílem bylo krom dokázání všech zákldních vět i ost tvr Gussových rvočísel (v závislosti n běžných rvočíslech). Dokázání tkového fktu nám zjednoduší hledání Gussových rvočísel, rotože velké množství běžných rvočísel známe. A krom toho nám roblém rozhodnutí, zd dné Gussovo číslo je rvočíslo, řevádí n více řešený roblém o rozhodnutí, zd je celé číslo rvočíslem. Gussov čísl mjí mnoho ultnění v běžné teorii čísel. Velmi jednoduše lze nříkld zst dné číslo jko součet dvou druhých mocnin omocí rozkldu n Gussovy rvočinitele. V závěru ráce tké ukzujeme oužití n jednom konkrétním říkldě z letošního ročníku mtemtické olymiády. 3

4 Obsh Obsh Obsh 4 1. Vybrné kitoly z teorie čísel Kongruence Kvdrtické zbytky Legendreovy symboly Komlexní čísl Zvedení komlexních čísel Absolutní hodnot, goniometrický tvr komlexního čísl Gussov rovin Celá komlexní čísl Dělitelnost v celých komlexních číslech Největší solečný dělitel nejmenší solečný násobek Obdob Euklidov lgoritmu Bezoutovy věty Gussov rvočísl Vlstnosti Gussových rvočísel Tvr Gussových rvočísel Využití Gussových rvočísel Použitá litertur 18 4

5 1. Vybrné kitoly z teorie čísel 1. Vybrné kitoly z teorie čísel V této kitole bychom rádi čtenářovi řiblížili některé kitoly z teorie čísel, které se běžně neučí n střední škole které budeme v dlších kitolách využívt. Všechn obecně známá tvrzení neuvádíme nedokzujeme, můžete je nlézt i s důkzy v [2] Kongruence Def. Říkáme, že je kongruentní s b modulo c rávě tehdy, když b dávjí stejný zbytek o dělení číslem c. Píšeme b (mod c). Vět b (mod m) t Z : = mt + b m ( b) Důkz této věty solu s dlšími vlstnostmi kongruencí nleznete v [2] od strny Kvdrtické zbytky Budeme-li zkoumt zbytky druhých mocnin celých čísel o dělení nějkým číslem n sndno zjistíme, že mohou nbývt jen některých hodnot. Které zbytky můžeme dostt sndno ověříme, dosdíme-li do kongruence všechny možné zbytky umocníme je ostuně n druhou, nříkld druhé mocniny mohou modulo 8 nbývt jen zbytky: (mod 8) (mod 8) Def. Nechť n N. Říkáme, že číslo {0, 1,..., n 1} je kvdrtickým zbytkem modulo n okud existuje celé číslo c tkové, že c 2 (mod n). V očném řídě nzveme číslo kvdrtickým nezbytkem modulo n. Krom modulu 8 jsou zjímvé ještě kvdrtické zbytky všech jednociferných modulů. Čsto se djí využít v úlohách z teorie čísel. Přehledně je udává následující tbulk: 3,4 0,1 7 0,1,2,4 5 0,1,4 8 0,1,4 6 0,1,3,4 9 0,1,4,7 Vět Nechť je liché rvočíslo, k existuje rávě 1 2 nenulových kvdrtických zbytků modulo. Důkz: Všechny nenulové kvdrtické zbytky modulo njdeme tk, že vezmeme čísl 1, 2,..., 1 umocním je n druhou. Uvědomme si, že ltí: x 2 1 x 2 2 (mod ) x 2 1 x (x 1 x 2 )(x 1 + x 2 ) 0 x 1 ±x 2 Tedy kvdráty dvou různých čísel x 1 x 2 z množiny {1, 2,..., 1} dávjí stejný zbytek o dělení rávě tehdy, když x 1 x 2. Můžeme tedy tto čísl rozdělit do dvojic, odle kvdrtického zbytku těchto dvojic je k

6 1. Vybrné kitoly z teorie čísel Přímým důsledkem věty je tvrzení, že existuje rávě 1 2 kvdrtických nezbytků modulo lichým rvočíslem Legendreovy symboly Ještě si zobecníme definici kvdrtického zbytku ro všechn celá čísl logickým rozšířením: Def. Nechť n Z, k celé číslo nzveme kvdrtický zbytkem modulo n rávě tehdy, když existuje c Z : c 2 (mod n). ( ) Def. Mějme liché rvočíslo celé číslo, k číslo nzýváme Legendreovým symbolem definujeme tkto: ( ) { +1 když je nenulovým kvdrtickým zbytkem modulo = 0 ro 1 když není kvdrtickým zbytkem modulo ( Vět Pokud b (mod ) k Důkz: Zřejmý. ) ( ) = ( Vět (Eulerovo kritérium) Pro kždé celé liché rvočíslo ltí: b ) 1 2 (mod ). Důkz: Příd je jednoduchý, změřím se tedy n říd N SD(, ) = 1. Podle mlé Fermtovy věty ltí: 1 1 (mod ) ( )( 1 2 1) 0 (mod ) Tedy 1 2 ±1. Je-li kvdrtický zbytek k ltí, že existuje c Z tkové, že c 2 tedy 1 2 c 1 1 (oět odle mlé Fermtovy věty), tedy ro kvdrtický zbytek vět ltí. Nvíc žádné jiné číslo kromě 1 2 nenulových kvdrtických zbytků modulo nemůže slňovt , rotože levá strn této kongruence je mnohočlen stuně 1 2 roto má tto rovnice nejvýše 1 2 kořenů modulo. Tedy ro kvdrtické nezbytky ltí: ( ) b Vět Nechť, b Z; je liché rvočíslo, k ltí: = ( ) ( b ) Důkz: Podle věty ltí: (b ) (b) 1 2 = 1 2 b 1 2 ( ) ( ) b A rotože Legendreovy symboly mohou nbývt ouze hodnot( 0, ) 1 ( 1) ( zároveň ) jsou tto čísl nekongruentní modulo, k z této kongruence vylývá rovnost =. Vět Pro kždé rvočíslo tvru 4k + 1 existuje n N tkové, že n Důkz: Stčí dokázt, že číslo 1 je kvdrtický zbytek modulo. Sočteme si symbol: ( ) 1 = ( 1) 1 2 = ( 1) 4k = ( 1) 2k = 1. Proto číslo 1 je kvdrtickým zbytkem modulo. 6 b b

7 2. Komlexní čísl 2. Komlexní čísl V této kitole bychom chtěli čtenáři řiblížit zákldy komlexních čísel Zvedení komlexních čísel Def. Komlexním číslem rozumíme usořádnou dvojici (, b) reálných čísel b. Množinu všech komlexních čísel oznčíme C. N komlexních čísel definujeme relci = : ( 1, 2 ) = (b 1, b 2 ) 1 = b 1 2 = b 2, oerce + (sčítání) (násobení) následujícím zůsobem: ( 1, 2 ) + (b 1, b 2 ) = ( 1 + b 1, 2 + b 2 ), ( 1, 2 ) (b 1, b 2 ) = ( 1 b 1 2 b 2, 1 b b 1 ). Znménko u oerce násobení obvykle vynecháváme. Vět Pro všechn komlexní čísl ( 1, 2 ), (b 1, b 2 ), (c 1, c 2 ) ltí: ( 1, 2 ) + (b 1, b 2 ) = (b 1, b 2 ) + ( 1, 2 ) ( 1, 2 ) + ( (b 1, b 2 ) + (c 1, c 2 ) ) = ( ( 1, 2 ) + (b 1, b 2 ) ) + (c 1, c 2 ) ( 1, 2 ) + (0, 0) = ( 1, 2 ) ( 1, 2 ) + ( 1, 2 ) = (0, 0) ( 1, 2 ) (b 1, b 2 ) = (b 1, b 2 ( 1, 2 ) ( 1, 2 ) ((b 1, b 2 ) (c 1, c 2 ) ) = ( ( 1, 2 ) (b 1, b 2 ) ) (c 1, c 2 ) ( 1, 2 ) (1, 0) = ( 1, 2 ) ( ) ( 1, 2 ) (0, 0) = ( 1, 2 ) 1, 2 = (1, 0) ( 1, 2 ) ((b 1, b 2 ) + (c 1, c 2 ) ) = ( 1, 2 ) (b 1, b 2 ) + ( 1, 2 ) (c 1, c 2 ) Toto tvrzení se sndno dokáže rozesáním využitím vlstností reálných čísel. Zvedeme-li bijekci mezi čísly (, 0) (kde R), zjistíme, že množin komlexních čísel tvru (, 0) má stejné vlstnosti jko množin všech reálných čísel. Proto můžeme tyto dvě množiny rohlásit z totožné budeme sát (, 0) =. Def. Komlexní číslo (0, 1) nzýváme imginární jednotkou, obvykle znčíme i. Vět Kždé komlexní číslo (, b) lze zst jko + bi. Důkz: Vylývá z jednoduchého rozesání komlexního čísl: (, b) = (, 0) + (0, b) = (1, 0) + b (0, 1) = + bi Uvědomme si, že i 2 = (0, 1) (0, 1) = ( 1, 0) = 1. Pk dvě komlexní čísl můžeme násobit jko dvojčleny: ( + bi)(c + di) = c + bci + di + bdi 2 = (c bd) + (bc + d)i Podobně tké můžeme dvě komlexní čísl dělit (resektive hledt číslo inverzní k nějkému nenulovému komlexnímu číslu): 1 + bi = bi ( + bi)( bi) = bi 2 + b 2 = Tento ostu nzýváme usměrňování komlexního zlomku b 2 + b 2 + b 2 i

8 2. Komlexní čísl Def. Nechť z = +bi je komlexní číslo. Pk reálné číslo res. b nzýváme reálnou částí čísl z (íšeme R(z) = ) res. imginární částí čísl z (íšeme I(z) = b). Pltí z C : z = R(z) + I(z) i. Dále si uvědomme, že kždé reálné číslo, lze zst jko + 0i, to znmená, že R : R() = I() = 0. Def. Komlexní číslo, které má nulovou reálnou nenulovou imginární část nzýváme ryze imginární číslo. Komlexní číslo, které má nenulovou imginární část k ouze imginární číslo Absolutní hodnot, goniometrický tvr komlexního čísl Def. Nechť z C, z = + bi, k komlexní číslo z = bi nzýváme číslem komlexně sdruženým s číslem. Pltí z = z z R. Sndno ověříme, rotože z R I(z) = 0 I(z) = I(z). Pokud tedy má ltit z = z k I(z) = I(z) = I(z) = 0 nok. Def. Nechť z C, z = + ib k reálné číslo z = 2 + b 2 nzýváme bsolutní hodnotou čísl z. Vět Nechť z C k ltí: z 2 = z z Důkz: Nechť z = + ib, k z = ib z z = ( + ib)( ib) = 2 (ib) 2 = 2 + b 2 = z 2. Vět (goniometrický tvr komlexního čísl) Pro kždé komlexní číslo z existuje reálné číslo ϕ tkové, že ltí: z = z (cos ϕ + i sin ϕ) Důkz: Nechť z = + bi, kde, b R. Pk z = 2 + b 2 rotože ltí < z, k existuje ϕ tkové, že z cos ϕ =. Nvíc ro tkové ϕ ltí z sin ϕ = b, rotože: z 2 = 2 + b 2 z 2 (cos 2 ϕ + sin 2 ϕ) = 2 + b 2 ( z cos ϕ) 2 + ( z sin ϕ) 2 = 2 + b 2 ( z sin ϕ) 2 = b 2 z sin ϕ = b V důkzu jsme nvíc ukázli, jk se tkové číslo ϕ dá njít. Tomuto číslu říkáme rgument čísl z (íšeme rg(z)). Je známo, že tkových čísel je víc, rotože funkce sinus kosinus jsou eriodické mjí eriodu 2π, roto okud nějké číslo ϕ slňuje zdání k i všechn čísl, která dostneme řičtením nebo odečtením násobku 2π jsou tké vyhovující. Proto obvykle hledáme ϕ, které leží v intervlu 0, 2π). Tkové číslo k nzveme hlvním rgumentem čísl z (íšeme Arg(z)). Vět (násobení dělení čísel v goniometrickém tvru) Nechť = (cos ϕ + i sin ϕ) b = b (cos ψ + i sin ψ) jsou dvě komlexní čísl v goniometrickém tvru, k ltí: b = b ( cos (ϕ + ψ) + i sin (ϕ + ψ) ) b = ( ) cos (ϕ ψ) + i sin (ϕ ψ) b Tuto větu sndno dokážeme omocí následujícího lemmtu: 8

9 2. Komlexní čísl Lemm. cos(α + β) + i sin(α + β) = (cos α + i sin α)(cos β + i sin β) Důkz: Podle součtových vzorců ltí: cos(α + β) = cos α cos β sin α sin β = cos α cos β + i 2 sin α sin β sin(α + β) = sin α cos β + cos α sin β Jednoduchým rozesáním k dostáváme: cos(α + β) + i sin(α + β) = cos α cos β + i sin α cos β + i cos α sin β + i 2 sin α sin β = = (cos α + i sin α)(cos β + i sin β) A nyní se můžeme vrátit k důkzu věty 2.2.3: b = (cos ϕ + i sin ϕ) b (cos ψ + i sin ψ) = b ( cos (ϕ + ψ) + i sin(ϕ + ψ) ) (cos ϕ + i sin ϕ) = b b (cos ψ + i sin ψ) = (cos ϕ + i sin ϕ)(cos ψ i sin ψ) b (cos 2 ψ + sin 2 = ψ) = (cos ϕ + i sin ϕ)(cos( ψ) + i sin( ψ)) = b b ( cos(ϕ ψ) + i sin(ϕ ψ) ) Vět (Moivreov vět) Nechť z = z (cos ϕ + i sin ϕ) je goniometrický tvr komlexního čísl z k ro kždé n N ltí: z n = z n (cos nϕ + i sin nϕ) Důkz: Mtemtickou indukcí: I. n = 1 Pltí triviálně. II. Přeokládejme, že z n = z n (cos nϕ + i sin nϕ) k: z n+1 = z n z = z n (cos nϕ + i sin nϕ) z (cos ϕ + i sin ϕ) Což odle ředchozí věty je rávě z n+1( cos(nϕ+ϕ)+i sin(nϕ+ϕ) ) = z n+1( cos(n+1)ϕ+i sin(n+1)ϕ ). Moivreov vět lze zobecnit i ro libovolnou celou mocninu. Stčí si uvědomit, že ro n = 0 ltí z 0 = z 0 (cos 0 + i sin 0) = 1 ro n < 0: z n = ( z 1) n z 1 = 1 z je odle věty 2.2.3: z 1 ( cos( ϕ) + i sin( ϕ) ) nyní už můžeme oužít Moivreovu větu ro řirozené n: z n = ( z 1) n = ( z 1 ) n ( cos( n)( ϕ) + i sin( n)( ϕ) ) = z n (cos nϕ + i sin nϕ) Gussov rovin Komlexní čísl jsou usořádné dvojice čísel reálných, může nám to tedy řiomenout souřdnicový systém v rovině. Můžeme tedy zvést bijekci mezi všemi komlexními čísly všemi body v rovině. Mějme rovinu s krtézským souřdným systémem. Komlexnímu číslu = 1 + i 2 řiřdíme bod A[ 1, 2 ] roviny nok. Tuto rovinu k nzveme Gussovou rovinou. Osu x Gussovy roviny nzveme reálnou osou (znčíme R) osu y imginární (znčíme I). Podle výše uvedené bijekce budeme komlexní číslo nzývt jk komlexním číslem, tk bodem Gussovy roviny. Def. Bod O = 0 + 0i nzveme očátkem Gussovy roviny. 9

10 Následující obrázek ukzuje geometrický význm některých vlstností kolexních čísel. 2. Komlexní čísl I z = + ib O z Arg (z) b R Otočení kolem očátku Def. Zobrzení f : C C, f(z) = z, kde C je tkové komlexní číslo, které lze zst ve tvru = cos α + i sin α, nzveme otočením kolem očátku o úhel α. Toto otočení je zřejmě shodné s otočením, jk je známe z lnimetrie, neboť: z = z (cos ϕ + i sin ϕ) z = z (cos ϕ + i sin ϕ) (cos α + i sin α) = z ( cos(ϕ + α) + i sin(ϕ + α) ) I f(z) = z z ϕ + α α ϕ O R Otočení o ± π 2 je vlstně násobení číslem ±i, o π (neboli středová souměrnost) je násobení číslem 1. Obdobně se djí definovt i dlší zobrzení, která známe z lnimetrie. 10

11 3. Celá komlexní čísl 3. Celá komlexní čísl Def. Množinu všech komlexních čísel +ib tkových, že, b Z, nzýváme množinou všech komlexních celých čísel nebo tké množinou všech Gussových celých čísel (tuto množinu budeme znčit Z[i]). Celá komlexní čísl jsou rozšířením celých čísel, nebo tké zúžením komlexních Dělitelnost v celých komlexních číslech Množin Z[i] je uzvřená vůči oercím +,. Obdobně jk celá čísl všk není uzvřená vůči oerci /, nříkld: 1 + i (1 + i)(2 + i) = 2 i (2 i)(2 + i) = 1 + 3i = i Z[i] Proto má, obdobně jko v celých číslech, smysl definovt dělitelnost. Def. Pro, b Z[i] říkáme, že b rávě tehdy, když existuje c Z[i] tkové, že c = b. Vět (Zákldní vlstnosti dělitelnosti) Pro všechn, b, c Z[i] ltí: b b c = c ( ) b c = b + c b c ( ) c 0 = ( b c bc) ( ) b b 0 = b ( ) Důkz: Tvrzení 1 ž 3 se sndno dokáže rozesáním z definice obdobně jko v celých číslech. Podrobněji se budeme věnovt čtvrtému tvrzení, rotože se liší od běžné teorie čísel v celých číslech. Jestliže b, k existuje c tkové, že c = b, tedy odle věty (2.2.3) ltí i c = b. A rotože b 0 k i c 0, b = 0 c = 0. Protože c > 0 c Z[i], k c 1. Z toho lyne, že b. V řirozených číslech je dělitelnost nejjednoduší, rotože kždé číslo n (vyjm jedničky) má rávě dv nevlstní dělitele (tj. tkové, které vždy musí mít) to jsou 1 n. V celých číslech se nám situce komlikuje číslo n má čtyři nevlstní dělitele: 1, 1, n n (smozřejmě kromě čísel 1 1, která mjí ouze dv). V komlexních číslech je situce ještě složitější nevlstních dělitelů čísl n {1, i, 1, i} je rovnou osm: 1, i, 1, i, n, in, n in Největší solečný dělitel nejmenší solečný násobek Def. Solečným dělitelem komlexních celých čísel b nzveme tkové c Z[i], že c c b. Kždá dvě čísl mjí solečné dělitele čísl 1, i, 1 i. Tto čísl mjí v množině Z[i] stejné ostvení, jko číslo 1 v množině N, roto je budeme nzývt jednotkmi definujeme množinu U = {1, i, 1, i} obecně budeme znčit její rvek u. Násobení číslem u neovlivní dělitelnost, rotože u 1 U u 2 U : u 1 u 2 = 1. A nvíc Z[i], U : u u. Def. Čísl b nzveme shodnými rávě tehdy, když u U : = ub. Nechť b jsou dvě shodná čísl k zřejmě ltí: c Z[i] : c c b c b c. Pokud budeme mluvit o jednoznčnosti vzhledem k dělitelnosti, budeme vždy mluvit o shodnosti tkových čísel. 11

12 3. Celá komlexní čísl Přímým důsledkem věty je tvrzení:, b Z[i] : b b b jsou shodná. Def. Největším solečným dělitelem komlexních celých čísel b nzveme tkové c Z[i], že c je dělitelné kždým solečným dělitelem čísel b. Budeme znčit c = N SD(, b). Def. Solečným násobkem komlexních celých čísel b nzveme tkové c Z[i], že c b c. Kždá dvě čísl, b mjí solečné násobky nř. čísl b, ib, b, ib. A nvíc, okud je nějké číslo c solečným násobkem čísel b k i libovolný násobek čísl c je solečným násobkem čísel b. Def. Nejmenším solečným násobkem komlexních celých čísel b nzveme tkové c Z[i], že c dělí libovolný solečný násobek čísel b. Budeme znčit c = N SN (, b). Nříkld solečným násobkem čísel i je číslo 4 2i, neboť 4 2i = 2 (2 i) = (3 + i)(1 i). Dlší solečný násobek je číslo 10 = 2 5 = (3 + i)(3 i). Všimněte si, že 4 2i dělí 10 jejich odíl je 2 + i. Číslo 4 2i je totiž nejmenším solečným násobkem čísel i. Protože i nok nejmenším (odle bsolutní hodnoty) dlším možným násobkem čísl 3 + i je rávě 4 2i, omocí věty sndno ukážeme, že nejmenší solečný násobek je mimo jiné tké nejmenší odle bsolutní hodnoty. Jejich solečným dělitelem je nř. číslo 1 + i, rotože 2 = (1 + i)(1 i) 3 + i = (1 + i)(2 i). A nvíc je toto číslo i jejich největším solečným dělitelem, rotože číslo 2 je dělitelné ouze jednotkovými násobky čísel 1, 1 + i 2. A rotože i i. Obdobně jko u nejmenšího solečného násobku i největší solečný dělitel je největší odle bsolutní hodnoty Obdob Euklidov lgoritmu Bezoutovy věty V těto kitole ukážeme, jk se dá njít největší solečný dělitel tké jeho jednoznčnost. Euklidův lgoritmus Hledejme N SD(, b), kde, b Z[i]. Bez újmy n obecnosti můžeme ředokládt, že b. Uvžujme čísl ub ro kždé u U. Předstvíme-li si tto čísl jko vektory v Gussově rovině, k jsou dvojice b, ib; ib, b; b, ib ib, b dvojicemi n sebe kolmých vektorů čísl b, ib, b, ib tvoří vrcholy čtverce, který má střed v očátku (viz obrázek). Vektor k svírá s jedním z těchto čísel úhel α π 4 (sndno ukážeme omocí Dirichletov rinciu). Uvžuji-li trojúhelník, který má jeden vnitřní úhel menší nebo roven π 4, k strn roti tomuto úhlu je určitě krtší než nejdelší strn tohoto trojúhelníku (nř. ze sinové věty, z ředokldu, že funkce sinus je rostoucí n intervlu ) 0, π 2 ). Proto můžeme říct, že existuje tkové u U, že ub <. I b ib O ib R b Čísl b ub mjí stejného největšího solečného dělitele jko čísl b, rotože: d Z[i], d b : d d ub Zvolíme 1, b 1 = b, ub tk, by znovu ltilo b 1 1. A okujeme ostu tk dlouho, dokud jedno z čísel nevyjde nul. To se zcel jistě stne, rotože bsolutní hodnoty 1, b 1 klesjí mohou nbývt jen 12

13 3. Celá komlexní čísl některých diskrétních hodnot (druhá mocnin je vždy nezáorné celé číslo). Proto se dříve nebo ozději dostnu k číslu 0. Největším solečným dělitelem nuly nenulového čísl b n je číslo b n, rotože nul je dělitelná libovolným z Z[i]. Tkové b n k je i největším solečným dělitelem čísel b. Vět (Bezoutov vět), b Z[i] k, l Z[i] : k + lb = N SD(, b) Důkz: Vylývá z Euklidov lgoritmu, budeme-li ostuovt v očném ořdí. Vyjádříme N SD(, b) nejdříve jko n + ub n k z n, resektive b n, budeme doszovt z ředchozích vzthů. Budeme-li ostuovt dál, z kždé rovnice jsme schoni sočítt dlší (jeden) člen. A o konečném očtu kroků se dostneme k vyjádření největšího solečného dělitele omocí čísel b. Všichni soleční dělitelé jsou o dvou shodná čísl. Toto tvrzení můžeme dokázt sorem. Předokládejme, že existuje tková d 1, d 2 Z[i], že d 1 d 2 nebo d 2 d 1 zároveň jsou obě největším solečným dělitelem b. Proto d 1 d 2 jsou soleční dělitelé nvíc největší soleční dělitelé čísel, b. Musí tedy ltit, že d 1 i d 2 se dělí nvzájem sor. Tímto jsme ukázli jednoznčnost největšího solečného dělitele. Def. Čísl, b Z[i], ro která N SD(, b) U, nzýváme nesoudělná. Vět Nechť, b, c Z[i] N SD(, b) U k ltí: bc = c. Důkz: Podle věty existují čísl k, l Z[i] u U tková, že u N SD(, b) = 1 = k + lb. Vynásobíme-li tuto rovnost číslem c, dostáváme c = kc + lbc rotože kc lbc ( bc) tk musí dělit i jejich součet, tedy c. 13

14 4. Gussov rvočísl 4. Gussov rvočísl Def. Číslo z Z[i], které má ouze nevlstní dělitele, nzveme rvočíslem v komlexních celých číslech nebo tké Gussovým rvočíslem. Protože se ndále budeme zbývt i běžnými rvočísly, uřesníme ještě trochu názvosloví. budeme-li mluvit o běžném rvočísle, máme tím n mysli rvočíslo v Z (tj. tkové kldné číslo, které má rávě dv kldné dělitele). V druhém řídě rvočíslo v Z[i] budeme vždy nzývt Gussovo rvočíslo nebo jen rvočíslo. Množinu všech běžných rvočísel budeme znčit P množinu všech Gussových rvočísel P G. Některá Gussov rvočísl: 1 + i, 1 i, 1 i, 1 + i, 3, 3i, 3, 3i, 2 + i, 2 i, Vlstnosti Gussových rvočísel Pokud, k N SD(, ) U, rotože kdyby to tk nebylo N SD(, ) bylo nějké d k ltí d tj. d {1, i, 1, i,,, i, i}. A rotože, k d dostáváme to, co jsme chtěli. Vět Číslo Z[i] je Gussovo rvočíslo rávě tehdy, když, b Z[i] : b = b. Důkz: Nejdříve dokážeme imlikci zlev dorv: Rozebereme dv řídy: k je imlikce triviálně slněn. Pokud k N SD(, ) U roto ro, b ltí vět tj. b. Nyní budeme ředokládt, že ro nějké Z[i] ltí, b Z[i] : b = b. Důkz ovedeme sorem: ředokládejme, že existuje nějké d tk, že d je vlstní dělitel čísl. Proto existuje c Z[i] tkové, že c d = nvíc c, d U, tk nedělí ni c ni d, le dělí jejich součin dostáváme sor. Tím dostáváme ekvivlentní odmínku rvočíselnosti tké velmi důležitou vlstnost rvočísel. Vět (Vět o rozkldu čísl n rvočísl) Kždé Gussovo celé číslo různé od jednotky od nuly lze nst jko součin Gussových rvočísel. Důkz: Větu budeme dokzovt indukcí vzhledem k druhé mocnině bsolutní hodnoty. Mějme číslo nechť je jeho bsolutní hodnot. I. 2 = 2 Tuto odmínku slňují čísl 1 + i, 1 i jejich u-násobky. Tto čísl jsou rvočísl roto je netřeb rozkládt. II. Předokládejme, že všechn čísl s druhou mocninou bsolutní hodnoty menší než 2 jdou rozložit n součin rvočísel. Číslo buď je rvočíslem, k je rozkld jsný, nebo není rvočíslem, k existuje nějký jeho vlstní dělitel d odíl c tk, by cd =. Nvíc c i d je menší než tkže ro ně ltí indukční ředokld, roto i číslo umíme rozložit n součin rvočísel. Vět Existuje nekonečně mnoho Gussových rvočísel. Důkz: Sorem. Předokládejme, že existuje konečně mnoho Gussových rvočísel. Oznčme je 1, 2,..., k, kde k N. Uvžujme číslo = k + 1. Toto číslo není dělitelné žádným rvočíslem, okud by tomu bylo jink, k i 1, 2,..., k : i = i k, dostáváme i 1, což je sor. Ale odle ředchozí věty číslo lze rozložit n rvočinitele = sor Tvr Gussových rvočísel Vět Číslo z Z[i] je Gussovým rvočíslem rávě tehdy, když nbývá jednoho z těchto tvrů: 14

15 4. Gussov rvočísl { + ib z = 2 + b 2 je běžné rvočíslo, b 0 u u U je běžné rvočíslo, které nelze zst jko součet dvou kvdrátů Důkz: Rozdělíme si roblém n dv řídy: I. z = + ib, b 0 II. z = u, u U. I. z = + bi: Uvžme číslo zz Z jeho rozkld n běžná rvočísl. Pk z dělí jedno z těchto rvočísel. Nechť je toto rvočíslo x = z, x = c + id. Pltí = xz = (c bd) + i(d + bc) roto: d + bc = 0 d = bc b = c d Poslední úrvu si můžeme dovolit, rotože, b 0 0 roto i c, d 0. Zlomek b je v zákldním tvru, rotože kdyby nebyl existovlo by nějké celé k k b, le tkové k dělí i z, což je sor s rvočíselností čísl z. Proto ltí: k Z : c = k d = kb. zx = k b ( kb) = A rotože 2 + b 2 2 (z P G ) k k = 1 tj. = z 2. k( 2 + b 2 ) = Ještě druhou imlikci: Mějme běžné rvočíslo = 2 + b 2. Pk = ( + ib)( ib). Uvžujme nějké Gussovo rvočíslo z ± ib k i z tj. z = ± ib. Proto čísl ± ib jsou Gussovská rvočísl. II. Pokud z = u, k mohu místo z uvžovt, co se týče dělitelnosti. A rotože neexistuje žádné číslo, které má nulovou reálnou nebo imginární část dělí číslo (z důvodu, že je obyčejné rvočíslo), jediné číslo, které by mohlo dělit je Gussovo rvočíslo ředchozího tvru, le to by muselo být součtem dvou kvdrátů sor. Všechny úvhy se djí i obrátit, roto je vět dokázán. Vět Kždé běžné rvočíslo tvru 4k + 1 lze zst jko součet dvou kvdrátů. Důkz: Podle věty ltí, že kždé tkové rvočíslo dělí nějké n Uvžujme rozkld čísl n = (n + i)(n i). Jk n + i tk n i nemůže být dělitelné žádným Gussovým rvočíslem tvru u, kde je běžné rvočíslo (které nelze zst jko součet dvou druhých mocnin) u U, rotože k by bylo dělitelné i rvočíslem tedy n±i Z[i]: n ± i = n ± 1 i Z[i] = 1 Z což je sor. Čísl n ± i jsou tedy dělitelná ouze Gussovými rvočísly z tkovými, že z 2 je běžné rvočíslo. Tkže v rozkldu čísl n n Gussovy rvočinitele se nchází jen tto rvočísl, nvíc ke kždému je tm i komlexně sdružené, rotože okud z (n ± i) k z (n i). Když vynásobíme dvě komlexně sdružená rvočísl, vyjde nám běžné rvočíslo, které lze zst jko součet dvou druhých mocnin. Tedy n je dělitelné ouze rvočísly, které lze zst jko součet dvou druhých mocnin. Mějme rvočíslo tvru 4k + 1 (k Z), k dělí n lze ho tedy zst jko součin dvou druhých mocnin. Lemm. Běžné rvočíslo lze zst jko součet dvou kvdrátů rávě tehdy když není tvru 4k + 3. Důkz: Prvočísl tvru 4k neexistují. Prvočísl tvru 4k + 1 jdou zst jko součet dvou kvdrátů odle věty Tvru 4k + 2 je ouze dvojk 2 = A číslo tvru 4k + 3 nelze zst jko součet dvou kvdrátů, rotože kvdrtické zbytky modulo 4 jsou 0 1. A žádným součtem dvou z těchto čísel nedostneme 3. 15

16 Větu lze tedy ekvivlentně formulovt tkto: Číslo z Z[i] je Gussovým rvočíslem rávě tehdy, když je jednoho z těchto tvrů: { + ib z = 2 + b 2 =, kde je běžné rvočíslo tvru 4k + 1, nebo 2 u u U je běžné rvočíslo tvru 4k Gussov rvočísl 4.3. Využití Gussových rvočísel Gussov rvočísl mjí mnohé využtí v běžné teorii čísel, ro ukázku zde uvádíme větu: Vět Celé číslo, které lze zst jko součin dvou čísel b, c tkových, že je lze zst jko součet dvou kvdrátů, lze zst jko součet dvou kvdrátů. Důkz: Nechť b = b b 2 2 c = c c 2 2. Pk ltí: = b c = (b b 2 2)(c c 2 2) = (b 1 + ib 2 )(b 1 ib 2 )(c 1 + ic 2 )(c 1 ic 2 ) = = ( (b 1 + ib 2 )(c 1 + ic 2 ) )( (b 1 ib 2 )(c 1 ic 2 ) ) Což je součin dvou komlexně sdružených čísel z = x + iy z = x iy: = zz = x 2 + y 2. A jeden říkld: Příkld: (Mtemtická olymiád 55. roč. A-I-6) Njděte všechny usořádné dvojice (x, y) řirozených čísel, ro něž ltí x 2 + y 2 = 2005(x y). Řešení: Nejdříve si zdnou rovnici urvíme vynásobíme čtyřmi. ( x 2005 ) 2 ( + y ) 2 = Rozložíme si číslo n Gussov rvočísl: (2x 2005) 2 + (2y ) 2 = = (1 + i)(1 i)(2 + i) 2 (2 i) 2 (20 + i) 2 (20 i) 2 Snžíme se vyjádřit číslo jko součet dvou kvdrátů, neboli jko součin dvou komlexně sdružených Gussových čísel. Aby nějká dvě čísl byl komlexně sdružená musí se v jejich rozkldu n rvočísl ncházet komlexně sdružená čísl. Proto rozdělíme rvočinitele čísl do komlexně sdružených dvojic z kždé vybereme jedno číslo. Vybrná čísl k vynásobíme dostneme tkové číslo + ib, že 2 + b 2 = Tzn. nemusíme ni očítt druhý součin, b co víc, všechn čísl tvru u ( + ib), kde u U, nám djí stejné dvojice druhých mocnin. Proto si můžeme očítání velmi urychlit. Uvědomíme si, že 1 + i = i (1 i) tkže výběr v dvojici 1 + i, 1 i nebude mít n výsledek efekt. Dále si můžeme ještě jedno číslo zvolit z konstntní, rotože jink bychom ke všem součinům dostli i komlexně sdružená čísl. Bude nám stčit sočítt jen šest součinů: (1 + i)(2 + i)(2 + i)(20 + i)(20 + i) = i (1 + i)(2 + i)(2 i)(20 + i)(20 + i) = i (1 + i)(2 + i)(2 + i)(20 + i)(20 i) = i (1 + i)(2 + i)(2 i)(20 + i)(20 i) = i (1 + i)(2 + i)(2 + i)(20 i)(20 i) = i (1 + i)(2 + i)(2 i)(20 i)(20 i) = i 16

17 4. Gussov rvočísl Všechny neusořádné dvojice řirozených čísel (, b) tkových, že 2 + b 2 = jsou tedy: (119, 2833), (401, 2807), (679, 2753), (1795, 2195), (2005, 2005) N dvojici (2005, 2005) můžeme s klidem v duši zomenout, rotože víme, že y je řirozené tedy y Tto nerovnost nám tké říká, které číslo z dvojice řiřdíme k y které k x. Dále nesmíme zomenout, že číslo x může být i záorné k nám zbude jen doočítt řešení. Úloh má celkem osm řešení: (x, y) { (1062, 414), (943, 414), (105, 95), (1900, 95), (663, 374), (1342, 374), (802, 401), (1203, 401) } 17

18 Použitá litertur Použitá litertur [1] Prof. RNDr. Miloš Ráb, DrSc.: Komlexní čísl v elementární mtemtice, Msrykov univerzit, Brno, 1997; ISBN X [2] RNDr. Jiří Hermn, Ph.D., Doc. RNDr. Rdn Kučer, CSc., Doc. RNDr. Jromír Šimš, CSc.: Metody řešení mtemtických úloh I, Msrykov univerzit, Brno, 2001; ISBN [3] Eric W. Weisstein: Gussin Prime, From MthWorld A Wolfrm Web Resource htt://mthworld.wolfrm.com/gussinprime.html [4] Eric W. Weisstein: Gussin Integer, From MthWorld A Wolfrm Web Resource htt://mthworld.wolfrm.com/gussininteger.html [5] Mrtin Klzr: Introduction in Number Theory, htt:// [6] 55. ročník Mtemtické olymiády: Úlohy domácí části I. kol ktegorie A, htt:// rvmo/mo/55/55i.df 18

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou MATMATIKA (NJN) PRO KRAJINÁŘ A NÁBYTKÁŘ Robert Mřík 26. říjn 2012 KAT. MATMATIKY FAKULTA LSNICKÁ A DŘVAŘSKÁ MNDLOVA UNIVRZITA V BRNĚ -mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik ABSTRAKT. Předkládný

Více

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná čísl C komplení čísl: { + jy :, y R}, j R \ Q ircionální čísl, π, e, ) Tvrzení Mezi kždými dvěm

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz Příručk k portálu Ktlog sociálních služeb v Ústeckém krji socilnisluzby.kr-ustecky.cz Uživtelská příručk k portálu socilnisluzby.kr-ustecky.cz 0 BrusTech s.r.o. Všechn práv vyhrzen. Žádná část této publikce

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie čísel a úvod do šifrování RNDr. Zbyněk Šír, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school Technická univerzit v Liberci FAKULTA PŘÍRODOVĚDNĚHUMANITNÍ A PEDAGOGICKÁ Ktedr: Studijní progrm: Studijní obor: Ktedr mtemtiky didktiky mtemtiky N750 Učitelství pro zákldní školy Učitelství fyziky pro.

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

53. ročník matematické olympiády. q = 65

53. ročník matematické olympiády. q = 65 53. ročník matematické olympiády! 1. V rovině je dán obdélník ABCD, kde AB = a < b = BC. Na jeho straně BC eistuje bod K a na straně CD bod L tak, že daný obdélník je úsečkami AK, KL a LA rozdělen na čtyři

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

Jakub Opršal. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Jakub Opršal. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. TEORIE ČÍSEL MNOHOČLENŮ A MNOHOČLENY V TEORII ČÍSEL Jakub Opršal Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Hilbertův prostor. Kapitola 5. 5.1 Základní vlastnosti

Hilbertův prostor. Kapitola 5. 5.1 Základní vlastnosti Kpitol 5 Hilbertův prostor 5.1 Zákldní vlstnosti Historická poznámk 5.1.1. Prostor X se sklárním součinem je strukturou n lineárnímprostorus nejsilnějšími xiomy.jetonormovnýlineárníprostor,vněmžje norm

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 62. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Čtvercová tabulka je rozdělena na 16 16 políček. Kobylka se po ní pohybuje dvěma směry: vpravo nebo dolů, přičemž střídá skoky

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

5. ročník, 2015 / 2016 Mezinárodní korespondeční seminář iks

5. ročník, 2015 / 2016 Mezinárodní korespondeční seminář iks Řešení 1. série Úloha N1. Existuje nekonečná posloupnost přirozených čísel a 1, a 2,... taková, že a i a a j jsou nesoudělná právě když i j = 1? Řešení. Označme {r i } posloupnost všech prvočísel seřazených

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

Základní poznatky z matematiky

Základní poznatky z matematiky Zákldní pozntky z mtemtiky Obsh. Zákldní pozntky z mtemtiky.... Číselné obory..... Celá čísl..... Reálná čísl.... Odmocniny.... Mocniny... 5.. Mocniny se zákldem 0... 5.. Mocniny s přirozeným mocnitelem...

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

Seriál TeoriečíselI. Jak seriál číst? Dohoda. Úvod

Seriál TeoriečíselI. Jak seriál číst? Dohoda. Úvod Seriál TeoriečíselI Počínaje 17. ročníkem robíhá každý rok v PraSátku seriál na okračování. Jde o výklad nějakého odvětví matematiky, se kterým se na střední škole s velkou ravděodobností setkáš jenvomezenémířečivůbecne,alekteréjeřestomožnévyložittak,abybylostředoškolákům

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete!

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete! Tento seminář pro Vás připravuje vzdělávací agentura Kurzy-Fido.cz...s námi TSP zvládnete! Řešení páté série (27.4.2009) 13. Hlavní myšlenka: efektivní porovnávání zlomků a desetinných čísel Postup: V

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

PŘEDSTAVENÍ APLIKACE SMARTSELLING

PŘEDSTAVENÍ APLIKACE SMARTSELLING PŘEDSTAVENÍ APLIKACE SMARTSELLING CO JE TO SMARTSELLING SmartSelling je první kompletní nástroj n[ českém [ slovenském trhu, který pod jednou střechou spojuje všechny nezbytné nástroje moderního online

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík Zákldy vyšší mtemtiky(nejen) pro rboristy Robert Mřík 2.září2014 Ústv mtemtiky lesnická dřevřská fkult Mendelov univerzit v Brně E-mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik Podpořeno projektem

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

SPS SPRÁVA NEMOVITOSTÍ

SPS SPRÁVA NEMOVITOSTÍ SMLOUVA O REZERVACI POZEMKU A SMLOUVA O BUDOUCÍ SMLOUVĚ O DÍLO Níže uvedeného dne, měsíce roku uzvřeli: 1. EURO DEVELOPMENT JESENICE, s.r.o., IČ 282 44 451, se sídlem Ječná 550/1, Prh 2, PSČ 120 00, zpsná

Více

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více