Procesy paralelně komunikujících gramatických systé mů

Rozměr: px
Začít zobrazení ze stránky:

Download "Procesy paralelně komunikujících gramatických systé mů"

Transkript

1 Procesy paralelně komunkuících gramatckých systé mů Pokroč lá témata z teoretckénformatky á věrečný proekt Autor: Ivan chwarz Abstrakt: Tato prá ce se zabý vá paralelně komunkuícím gramatcký m systé my (PCG) a to zemé na popsem paralelního chová ní a komunkace těchto gramatcký ch systé mů. Procesy PCG sou defnová ny pomocí výskytový ch sítí s konflkty, které zachycuí paralelní chová ní PCG. V druhé čá st e uká zá no, že procesy bezkonflktních PCG se daí generovat pomocí Petrho sítí a byl popsá n algortmus, ak takovou síť pro daný PCG vytvořt.

2 Ú vod V klascké teor formá lních azyků a automatů sou prostředky pro modelová ní vý početních systé mů (gramatky a automaty) centralzované ho charakteru, vý počet e prová děn edním centrá lním mechansmem. V dnešní době e však nevětší důraz kladen na paralelní a dstrbuované systé my, proto v teor formá lních azyků vznkaí prostředky pro pops pomů ako e komunkace, synchronzace, paralelní běh, atd. Jedním z nch sou paralelně komunkuící gramatcké systémy [] (PCG). PCG stupně n s můžeme představt ako skupnu n klascký ch gramatk pracuících paralelně. Každá gramatka začín á ze své ho startovacího symbolu a v určtý ch, přesně defnovaný ch okamžcích mohou gramatky vzá emně komunkovat pomocí specá lních komunkačních symbolů. V našem případě se nezaímá me o klascké vlastnost PCG ako e vý početní síla, protože tyto vlastnost spíše popsuí sekvenční vlastnost těchto systé mů. Nás spíše zaímá pops paralelních vlastností, ako e komunkace a synchronzace, než aký azyk nakonec gramatcký systé m generue. V této prá c sou představeny procesy PCG [] ako prostředek pro pops paralelního chová ní PCG. Obecně řečeno, proces PCG získá me tak, že nechá me gramatcký systé m běžet a zaznamená vá me ednotlvé okamžky přepsová ní a komunkace. tohoto úhlu pohledu můžeme vdět podobnost s procesy Petrho sítí, které sou získá vá ny podobný m způ sobem. V první čá st prá ce sou představeny grafy dosažtelnost a komunkace PCG, dále sou defnová ny procesy PCG a na závěr e uveden ech vztah k Petrho sítím. Paralelně komunkuícígramatcké systé my V této prá c za PCG považueme pouze gramatcké systé my s regulá rním komponentam. Proto všechny zde uvedené defnce se vztahuí k prá vě tomuto druhu PCG. Paralelně komunkuící gramatcký systém stupně n e systé m n regulá rních gramatk G = G, Κ, G ), kde: ( n G = N, T,, P ), n sou regulá rní gramatky ( exstue množna K =, Κ, ) specá lních symbolů zvaný ch ( n n K Υ = komunkač ní symboly, pro něž platí nesmí být přepsaný a navíc v gramatce N. Žádný z těchto symbolů G nesmí být pravdlo obsahuící na pravé straně symbol pro všechna, t. gramatka nesmí žá dat komunkac sama od sebe.

3 Konfgurace G e n-tce x = x, Κ, x ), kde x T ( N { }) pro všechny ( n, n. Konfgurace, Κ, ) e nazý vá na počáteční. Říkáme, že ( n konfgurace x, Κ, x ) přímo dervue konfgurac y, Κ, y ), značíme ( n ( n n ( n x, Κ, x ) ( y, Κ, y ), pokud platí edna z ná sleduících podmínek:. x = 0 pro všechna, n a pokud x obsahue nontermná l a K x y v G nebo pokud. x > 0 pro některé, n K psá t x = z, kde x T a x = y. Potom pro každé takové můžeme z T a: estlže x = 0, pak y = zx a y = K estlže x > 0, pak y = x Pro všechny l, poklá dá me y = x l K l n, pro které není yl defnová no výše, l ymbolem w označueme počet výskytů symbolů z množny K v řetězc w. K Každý krok dervace se sklá dá buď z přepsovacího kroku (bod.) nebo z komunkačního kroku (bod.), přčemž komunkační krok má prortu před krokem přepsovacím. Relace dervace e pak tranztvní a reflexvní uzá věr relace. Tato defnce popsue synchronzovanou navraceící PCG. Gramatcký systé m se nazý vá navraceící, pokud se po komunkac navrací gramatka, která poskytla řetězec, k počá tečnímu symbolu. Pokud po komunkac pokračue ve větné formě, kterou poskytla, nazý vá se nenavraceící. ynchronzovaná PCG musí v každé m přepsovacím kroku prové st přepsá ní větné formy všem gramatkam, které maí ve větné formě nontermná l. Pokud dovolíme př přepsová ní některé gramatce čekat, pak mluvíme o nesynchronzovaném PCG. Jazyk generovaný PCG G e L(G) = w T (, Κ, ) ( w, w, Κ, w )}. { n n Graf dosaž telnost a graf komunkace PCG Dříve než uvedeme defnc grafu dosažtelnost a grafu komunkace PCG, defnueme s pá r pomocný ch pomů, které ná m usnadní manpulac s PCG. Pro každou konfgurac x = x, Κ, x ) PCG defnueme nontermnální ( n * řez (n-řez) ako NC( x) = ( A, Κ, An ), kde x = x A, x T a A N pro n. Pokud n-řez obsahue komunkační symbol, nazý vá se komunkační řez (c-řez). N-řez e dosažtelný v PCG, pokud př dervac z počá teční konfgurace dostaneme konfgurac obsahuící daný řez. Pro dva řezy v, v píšeme v v,

4 pokud exstuí dvě konfgurace x a y takové, že x y, NC ( x) = v a NC ( y) = v. Nechť v e n-řez. Potom komunkační sekvence řezu v e sekvence ndexů, Κ,, k, taková, že k v ( ) =,, v ( ) Κ = k. Komunkační sekvence se k nazý vá ukonč uící, pokud v ) není komunkační symbol, maxmální, pokud e ( k ukončuící a nelze rozšířt doleva a cyklcká, pokud v ( k ) =. PCG, která obsahue alespoň ednu cyklckou komunkační sekvenc se také nazý vá cyklcká. Necyklcká PCG, které obsahue komunkační sekvenc o maxmá lní délce m, 0 m stupeň PCG, se nazý vá m-komunkuící. Konflkt n-řezu v e posloupnost různý ch ndexů,, taková, že v ( ) = a v ( ) =. Pokud žá dný dosažtelný n-řez gramatcké ho systé mu neobsahue konflkt, pak mluvíme o bezkonflktním PCG. Nechť G e PCG. Pak graf dosažtelnost G popsue aké n-řezy sou dosažtelné z počá teční konfgurace a přechody mez nm a značíme ho Reach(G). Algortmus vytvoření grafu dosažtelnost: vezm všechny n-řezy a nakresl hranu z řezu v do řezu v, pokud platí v v odstraň všechny n-řezy v, pro které neexstue cesta z počá tečního řezu do řezu v. Odstraň také všechny koresponduící hrany. V případě nenavraceících se PCG není tato defnce grafu dosažtelnost zcela adekvá tní, protože graf obsahue "nepoužtelné " uzly, protože po dosažení řetězce termná lů první gramatky už dervace PCG nepokračue. V navraceící PCG s může některá z dalších gramatk požá dat o řetězec první gramatky a první gramatka pak pokračue ze své ho startovacího symbolu. Abychom sednotl defnc grafu pro oba dva typy PCG, použl sme obecněší varantu defnce. grafu dosažtelnost můžeme získat několk nformací o PCG. Nechť G e PCG. Pak n-řez v e dosažtelný v G, pokud e obsažen v Reach(G). Dále sou rozhodnutelné problé my, zda PCG e:. cyklcká. bezkonflktní. m-komunkuící v. centralzovaná v. obsahue omezený počet komunkací během dervace Tyto problé my lze rozhodnout prozkoumá ním každé ho uzlu grafu dosažtelnost, který e konečný (vyplý vá to z konečnost množny nontermná lů ). grafu dosažtelnost lze odvodt graf komunkace. Tento graf zaznamená vá v dervační posloupnost pouze komunkační kroky. grafu dosažtelnost ho získá me tak, že ponechá me pouze uzly, obsahuící komunkační symboly a počá teční uzel. Pak pro dva takové uzly v, v nakreslíme hranu z v

5 do v, pokud mez nm v původním grafu exstue cesta, která neobsahue komunkační řezy. Komunkační graf PCG G značíme Comm(G). Příklad Nechť G e ná sleduící PCG: : G : G : a G a Graf dosažtelnost gramatcké ho systé mu G e pak: a odpovídaící graf komunkace má pak tvar:

6 Procesy PCG Procesy PCG slouží k zachycení paralelního chová ní a komunkace gramatcký ch systé mů. Procesy sou steně ako procesy Petrho sítí defnová ny pomocí vý skytový ch sítí. íť e troce N = ( B, E, R), kde B a E sou dvě konečné, neprá zdné a dsunktní množny míst a přechodů a R ( B E) ( E B) e toková relace. Pro všechny x B E značíme x = { y ( y, x) F} Vý skytová síť e síť, která navíc splňue podmínky: b a b pro všechna b B a x = { y ( x, y) F}. + relace R e acyklcká lovně můžeme tyto podmínky vyá dřt tak, že každé místo má nevýše ednu vstupní a výstupní hranu a síť neobsahue cykly. U výskytové sítě místa označueme ako podmínky a přechody ako událost. Pokud e N e vý skytová síť, pak defnueme koncový řez této sítě ako množnu N = { b B b = 0}. Vý skytové sítě slouží pro pops procesů Petrho sítí. Konflkty v PCG se řeší ný m způ sobem než v Petrho sítích. atímco v Petrho sítích se konflkt řeší tak, že se náhodně vybere eden přechod, který se provede, v PCG e konflkt řešen rovnocenně pro všechny gramatky zapoené v konflktu a komunkace proběhne paralelně. Proto pro pops procesů PCG používá me vý skytovésítě s konflktem (značíme cfon), což sou sítě, pro něž platí pouze podmínka acyklčnost. Jako pomocný poem s pro PCG G zavedeme množnu Var(G,) = { v ( ) v e uzel grafu Reach(G) a v ( ) }. Tato množna obsahue všechny nontermná ly, které se mohou vyskytnou ve větné formě gramatky G. Poté s můžeme defnovat značenou výskytovou síť s konflktem, kterou pak použeme k popsu procesu PCG. načená cfon e síť π = ( N, p ), kde p e značíc í funkce, která zobrazue podmínky do množny { A n, A Var(G,) { }} a udá lost do množny T } { C v uzel grafu Reach(G) v ( ) = }; levý horní ndex {, : označue gramatku, znak označue řetězec termná lů a znak gramatka G žá dá gramatku G o komunkac. Udá lost označenou C, značí, že C, potom nazý vá me ako komunkač ní událost a podmínku označenou ako komunkační podmínku. amotné procesy PCG pak defnueme nduktvním způ sobem: Nechť G = G, Κ, G ) e navraceící synchronzovaná PCG stupně n, n. ( n Potom defnueme posloupnost množn značený ch cfon Π 0 (G), Π (G), Κ ná sleduícím způ sobem:. Π 0 (G) sestroíme tak, že do ní vložíme značenou cfon π = ( N, p) s těmto vlastnostm:

7 a) B = n, E = 0, R = 0 b) pro každé, n, exstue b B takové, že p( b). předpoklá deme, že množna Π (G), > 0 už byla úspěšně zkonstruová na. Potom pro každou π = ( N, p) Π ( G), N = (B, E, R) děle: a) pokud π neobsahue žá dnou komunkační podmínku a exstue b π takové, že p( b)= X pro něaké a X a neexstue řá dné pravdlo v gramatce G, které má X na levé straně, pak nelze z π vygenerovat žá dný nový proces; b) pokud π neobsahue žá dnou komunkační podmínku a není splněna podmínka uvedená v odstavc a), pak pro každé b π takové, že p( b) { n} a p( b)= X vezm lbovolné pravdlo tvaru X uy G a vytvoř novou udá lost e označenou u se vstupní podmínkou b a vý stupní podmínkou b označenou Y pokud Y N nebo značenou pokud Y = ; c) pokud π obsahue komunkační podmínky, pak pro každou ukončuící komunkační sekvenc délky dvě, vytvoř novou udá lost e značenou C se vstupním podmínkam sítě π značený m a, podmínkam značený m X., X pro něaké X a se dvěm výstupním a, tak ak e naznačeno na obrá zku Nechť π e takto získaná značená cfon, pak Π + (G) e množna všech π získaný ch popsaný m postupem. Procesy gramatky G e pak množna Π (G) Υ Π (G). = 0 X C, X Obrázek

8 Ve výše uvedené m algortmu bod. a) ošetřue stuac, kdy se dervační sekvence gramatky zablokue z nedostatku patřčné ho pravdla. Avšak procesy vznklé před zabloková ním gramatcké ho systé mu považueme za řá dné procesy, když nevedou k vygenerová ní řetězce nontermná lů. Bod. b) rozšřue už exstuící procesy o eden přepsovací krok a bod. c) o eden komunkační krok. Příklad Nechť G e PCG stupně s ná sleduícím komponentam: G : ax G : G : X X X X X X Jeden z procesů gramatcké ho systé mu G e pak vyobrazen na obrá zku. a X X C, C, X X C, C, X X Obrázek Konečný proces gramatcké ho systé mu G e takový proces π, který má vlastnost π. Třídu konečný ch procesů pak značíme Π f (G). Výše uvedenou defnc procesu lze lehce modfkovat pro nenavrace ící a nesynchronzované PCG: pro nenavraceící PCG musíme nahradt symbol v bodě. c) symbolem X pro nesynchronzované PCG musíme odstrant celý bod. a) a v bodě. b) nahradt větu "a není splněna podmínka uvedená v odstavc a), pak

9 pro každé b π takové, že p( b) { n} b π takové, že p( b) { n} 5 Vztah PCG a Petrho sítí a pro toto b" " větou "vezm něaké V této kaptole s ukážeme, ak vytvořt Petrho síť, eíž proces e stený ako daný PCG. Abychom mohl Petrho sítí smulovat prortu komunkačního kroku nad přepsovacím, zavedeme Petrho síť s prortam. íť s prortam e taková síť N = ( Σ, p ), kde Σ e klascká Petrho síť a p e čá stečné uspořá dá ní nad přechody Σ. Odpalovací pravdlo e pak modfková no tak, že můžeme prové st pouze ty přechody t, pro které platí ( t pt) pro všechna t T. Pro smulac synchronzované PCG musíme zavé st Petrho síť s maxmální odpalovací strategí, což e klascká Petrho síť s odpalovacím pravdlem pozměněný m tímto způ sobem: př dané m značení vyber maxmá lní množnu současně provedtelný ch přechodů a ty proveď v ednom kroku. Poté můžeme zkombnovat prorty s maxmá lní odpalovací strategí tímto způ sobem. Nechť M e značení, pak vyber množnu přechodů T T takový ch: a) T e maxmá lní množna neporovnatelný ch přechodů vzhledem k uspořá dá ní p provedtelný ch př značení M b) estlže T e množna splňuící podmínku a), T T, pak t pt pro všechna t T a t T. Potom proveď množnu značení T v ednom kroku. íť s takto vytvořený m odpalovacím pravdlem se pak nazý vá Petrho síť s prortam a s maxmální odpalovací strategí. Algortmus převodu neblokuící bezkonflktní synchronzované ho PCG G na Petrho síť s prortam a s maxmá lní odpalovací strategí N takovou, že G N maí stené procesy. Nechť G = G, Κ, G ), n e takový PCG, pak můžeme ( n zkonstruovat síť N = ( Σ, p, M 0, l ) ná sleduícím způ sobem: pro každé, n a X Var(G,) { } vytvoříme místo X (v případě, že X = pak toto místo značíme ) pro každé, n a každé pravdlo r : X uy P, ( u T { }) vytvoříme přechod t značený symbolem u; a vytvoříme hrany takové : t = r t ) = { r { X} r r ) = { a ( t Y}. V případě pravdla X u vytvoříme hranu ( } pro každé, n a N (pokud takové exstue) a každé X Var(G,) { } vytvoříme přechod vytvoříme příslušné hrany } přechody pak nazý vá me komunkační přechody X t, značený symbolem C, X X t, = {, X a (, ) { X, } ; a t =. Tyto

10 vá ha všech hran e počá teční značení M 0 má ná sleduící tvar: (, pokud s { n} M 0 s) = 0, v ostatních případech pro všechna místa s všechny komunkační přechody maí prortu nad ostatním přechody, čá stečné uspořá dá ní p e defnová no takto: tp t, prá vě když t e komunkační přechod a t není Příklad : Petrho síť odpovídaící navraceícímu PCG z příkladu e zobrazena na obrá zku. a X C, C, C, C, X C, X X X Obrázek

11 6 ávěr V této prá c sme uká zal způ sob, aký m lze popsat paralelní chová ní a komunkac paralelně komunkuících gramatcký ch systé mů pomocí procesů. Proces PCG e reprezentová n výskytovou sítí s konflkty, která e vytvořena zaznamená ním evoluce PCG. Defnoval sme procesy pro více varant PCG (synchronzované, nesynchronzované, navraceící a nenavraceící). V druhé čá st sme uká zal vztah mez PCG a Petrho sítěm. Uká zal sme, ke každé bezkonflktní PCG lze vytvořt Petrho síť, která má stený proces, t. z hledska paralelního chová ní reprezentue stený systé m. Lteratura [] Tplea F.L., Katsura M., Ito M.: Processes and Vectoral Characterzatons of Parallel Communcatng Grammar ystems, Journal of Automata, Languages and Combnatorcs, 997, 7-7 [] Dassow J., Paun G., Rozenberg G.: Grammar ystems

1. Nejkratší cesta v grafu

1. Nejkratší cesta v grafu 08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

{ } SYNTÉZA TABULEK PŘECHODŮ 1. NEALGEBRAICKÉ METODY

{ } SYNTÉZA TABULEK PŘECHODŮ 1. NEALGEBRAICKÉ METODY SNTÉZA TABULEK PŘECHODŮ. NEALGEBRAICKÉ METOD a) GINSBURGOVA METODA Využívá tzv. korespondencí mez vstupním a výstupním slovem př dané vstupní a výstupní abecedě. Jnak řečeno, vyhodnocuí se ednotlvé odezvy

Více

1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem

1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem Kvaternon 2/204, 79 98 79 MATICOVÉ HRY V INŽENÝRSTVÍ JAROSLAV HRDINA a PETR VAŠÍK Abstrakt. Následuící text pokrývá eden z cyklů přednášek předmětu Aplkovaná algebra pro nženýry (0AA) na FSI VUT. Text

Více

PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO

PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO MAPOVÁNÍ WEBOVÝCH STRÁNEK ŘIMNÁČ MARTIN 1, ŠUSTA RICHARD 2, ŽIVNŮSTKA JIŘÍ 3 Katedra řídcí technky, ČVUT-FEL, Techncká 2, Praha 6, tel. +42 224 357 359, fax. +

Více

Konstrukce zásobníkového automatu LALR(1)

Konstrukce zásobníkového automatu LALR(1) Konstrukce zásobníkového automatu LALR(1) Vlém Vychodl 5. lstopadu 2001 Tento text se zabývá technckým aspekty konstrukce významné třídy zásobníkových automatů určených pro determnstckou syntaktckou analýzu

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je 28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci

Více

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Ivana Lnkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE Abstrakt Příspěvek prezentuje B-splne křvku a Coonsovu, Bézerovu a Fergusonovu kubku jako specální případy

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a

Více

vektor a vrátili jiný vektor. Měli-li jsme jistou pozorovatelnou A, dostali jsme jejím změřením

vektor a vrátili jiný vektor. Měli-li jsme jistou pozorovatelnou A, dostali jsme jejím změřením Operátor hustoty Popsueme-l vývo uzavřeného kvantového systému, vystačíme s většnou s pomem čstého stavu. Jedná se o vektor v Hlbertově prostoru H, který e danému kvantovému systému přdružen. Na daném

Více

2 ÚVOD DO TEORIE PRAVDĚPODOBNOSTI. 2.1 Náhodný jev. π, které je třeba co nejpřesněji a nejúplněji vymezit, a k nimž je třeba výsledky pokusu a

2 ÚVOD DO TEORIE PRAVDĚPODOBNOSTI. 2.1 Náhodný jev. π, které je třeba co nejpřesněji a nejúplněji vymezit, a k nimž je třeba výsledky pokusu a ÚVOD DO TEORIE PRAVDĚPODOBNOSTI.1 Náhodný ev Tato kaptola uvádí souhrn základních pomů a postupů teore pravděpodobnost, které se uplatňuí př rozboru spolehlvost stavebních konstrukcí a systémů. Výklad

Více

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti Teore her a ekonomcké rozhodování 10. Rozhodování př stotě, rzku a neurčtost 10.1 Jednokrterální dskrétní model Jednokrterální model rozhodování: f a ) max a Aa, a,..., a ( 1 2 f krterální funkce (zsk,

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

Dopravní plánování a modelování (11 DOPM )

Dopravní plánování a modelování (11 DOPM ) Department of Appled Mathematcs Faculty of ransportaton Scences Czech echncal Unversty n Prague Dopravní plánování a modelování (11 DOPM ) Lekce 5: FSM: rp dstrbuton Prof. Ing. Ondře Přbyl, Ph.D. Ing.

Více

Dále budeme předpokládat, že daný Markovův řetězec je homogenní. p i1 i 2

Dále budeme předpokládat, že daný Markovův řetězec je homogenní. p i1 i 2 4 Markovovy řetězce se nazývá Markovův řetě- Defnce 7 Posloupnost celočíselných náhodných velčn {X n } zec (markovský řetězec), jestlže P(X n+ = j X n = n,, X 0 = 0 ) = P(X n+ = j X n = n ) (7) pro každé

Více

2. Posouzení efektivnosti investice do malé vtrné elektrárny

2. Posouzení efektivnosti investice do malé vtrné elektrárny 2. Posouzení efektvnost nvestce do malé vtrné elektrárny Cíle úlohy: Posoudt ekonomckou výhodnost proektu malé vtrné elektrárny pomocí základních metod hodnocení efektvnost nvestních proekt ako sou metoda

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2 ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav

Více

APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU

APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU APPLICATION OF MATHEMATICAL PROGRAMMING IN DESIGNING THE STRUCTURE OF THE DISTRIBUTION SYSTEM Martn Ivan 1 Anotace: Prezentovaný

Více

Podmíněná pravděpodobnost, spolehlivost soustav

Podmíněná pravděpodobnost, spolehlivost soustav S1 odmíněná pravděpodobnost, spolehlvost soustav odmíněná pravděpodobnost, spolehlvost soustav Lbor Žák odmíněná pravděpodobnost Nechť,, 0, podmíněná pravděpodobnost evu vzhledem k evu : S akou pravděpodobností

Více

Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly

Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly Plánování proektu 3. dubna 2018 1 Úvod 2 Reprezentace proektu 3 Neomezené zdroe 4 Variabilní doba trvání 5 Přidání pracovní síly Problémy plánování proektu Zprostředkování, instalace a testování rozsáhlého

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

á Ř ň ř á Ý Č Í Á Č Š ž ů ř á ů Ž Ý á ú á á Ř ň ř á Ř ř ř ř á á Š Š Č Ř ř Č á Š Š á á é á Š á á ď á ř á ř ů ř á ř ň á ň á ň á ň ň ř áň á Š ň ř áň á ď á é á á á ř é á Ú á á žá ů á Ú á ů ř žá é á é Š á á

Více

Úloha syntézy čtyřčlenného rovinného mechanismu

Úloha syntézy čtyřčlenného rovinného mechanismu Úloha syntézy čtyřčlenného rovnného mechansmu Zracoval: Jaroslav Beran Pracovště: Techncká unverzta v Lberc katedra textlních a ednoúčelových stroů Tento materál vznkl ako součást roektu In-TECH 2, který

Více

MANAŽERSKÉ ROZHODOVÁNÍ

MANAŽERSKÉ ROZHODOVÁNÍ MANAŽERSKÉ ROZHODOVÁNÍ Téma 14 POSUZOVÁNÍ A HODNOCENÍ VARIANT doc. Ing. Monka MOTYČKOVÁ (Grasseová), Ph.D. Unverzta obrany Fakulta ekonomka a managementu Katedra voenského managementu a taktky Kouncova

Více

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 S Á ČK Y NA PS Í E XK RE ME N TY SÁ ČK Y e xk re m en t. p o ti sk P ES C Sá čk y P ES C č er né,/ p ot is k/ 12 m y, 20 x2 7 +3 c m 8.8 10 bl ok

Více

ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ

ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ THE TIME COORDINATION OF PUBLIC MASS TRANSPORT ON SECTIONS OF THE TRANSPORT NETWORK Petr Kozel 1 Anotace: Předložený příspěvek

Více

Klasifikace a predikce. Roman LUKÁŠ

Klasifikace a predikce. Roman LUKÁŠ 1/28 Klasfkace a predkce Roman LUKÁŠ 2/28 Základní pomy Klasfkace = zařazení daného obektu do sté skupny na základě eho vlastností Dvě fáze klasfkace: I. Na základě trénovacích vzorů (u nchž víme, do aké

Více

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI SEMESTRÁ LNÍ PRÁ CE Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI Předmě t ANOVA A ZÁ KON PROPAGACE CHYB U JEDNOROZMĚ RNÝ CH DAT Ú stav experimentá lní biofarmacie, Hradec

Více

Turingovy stroje. Teoretická informatika Tomáš Foltýnek

Turingovy stroje. Teoretická informatika Tomáš Foltýnek Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,

Více

Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen.

Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Jdi na stranu Celá obr./okno Zavřít 1 Operace s maticemi Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Brno 2014 RNDr. Rudolf Schwarz, CSc.

Více

ASYMPTOTICKÉ VLASTNOSTI ODHADŮ S MINIMÁLNÍ KOLMOGOROVSKOU VZDÁLENOSTÍ

ASYMPTOTICKÉ VLASTNOSTI ODHADŮ S MINIMÁLNÍ KOLMOGOROVSKOU VZDÁLENOSTÍ ASYMPTOTICKÉ VLASTNOSTI ODHADŮ S MINIMÁLNÍ KOLMOGOROVSKOU VZDÁLENOSTÍ Bc. Jtka Hanousková 1 Abstrakt: Příspěvek se zabývá postačujícím podmínkam pro konzstenc odhadů s mnmální Kolmogorovskou vzdáleností

Více

Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen.

Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. U stav matematiky a deskriptivnı geometrie Operace s maticemi Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Brno 2014 RNDr. Rudolf Schwarz,

Více

BAYESŮV PRINCIP ZDENĚK PŮLPÁN

BAYESŮV PRINCIP ZDENĚK PŮLPÁN ROBUST 000, 7 4 c JČMF 00 BAYESŮV PRINCIP ZDENĚK PŮLPÁN Abstrakt. Poukážeme na možnost rozhodování pomocí Bayesova prncpu. Ten vychází z odhadu podmíněné pravděpodobnosta z předpokladu dsjunktního rozkladu

Více

Softwarová podpora matematických metod v ekonomice a řízení

Softwarová podpora matematických metod v ekonomice a řízení Softwarová podpora matematckých metod v ekonomce a řízení Petr Sed a Opava 2013 Hrazeno z prostředků proektu OPVK CZ.1.07/2.2.00/15.0174 Inovace bakalářských studních oborů se zaměřením na spoluprác s

Více

Syntaxí řízený překlad

Syntaxí řízený překlad Syntaxí řízený překlad Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Definice Překlad z jazyka L 1 do jazyka L 2 je definován množinou

Více

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE 2013 Radka Luštncová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Název bakalářské práce: Aplkace řezných

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Plánování a rozvrhování. Podmínky pro zdroje. Typy zdrojů. Zdroje. časové vztahy. omezení kapacity zdrojů. Roman Barták, KTIML

Plánování a rozvrhování. Podmínky pro zdroje. Typy zdrojů. Zdroje. časové vztahy. omezení kapacity zdrojů. Roman Barták, KTIML 12 Plánování a rozvrhování Roman Barták, KTIML roman.bartak@mff.cun.cz http://ktml.mff.cun.cz/~bartak Rozvrhování jako CSP Rozvrhovací problém je statcký, takže může být přímo zakódován jako CSP. Splňování

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 000/00 Michal Marvan 3. Matice lineárního zobrazení V této přednášce budeme používat indexy dvoího druhu:

Více

1. Sítě se vzájemnými vazbami

1. Sítě se vzájemnými vazbami Obsah 1. Sítě se vzáemným vazbam... 2 1.1 Základní nformace... 2 1.2 Výstupy z učení... 2 1.3 Obecná charakterstka umělých neuronových sítí se vzáemným vazbam... 2 1.4 Hopfeldova síť... 3 1.4.1 Organzační

Více

Automatická klasifikace dokumentů do tříd za použití metody Itemsets

Automatická klasifikace dokumentů do tříd za použití metody Itemsets Automatcká klasfkace dokumentů do tříd za použtí metody Itemsets Jří HYNEK 1, Karel JEŽEK 2 1 nsite, s.r.o., Knowledge Management Integrator Rubešova 29, 326 00 Plzeň r.hynek@nste.cz 2 Katedra nformatky

Více

Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. RNDr. Rudolf Schwarz, CSc.

Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. RNDr. Rudolf Schwarz, CSc. First Prev Next Last Go Back Full Screen Close Quit Matematika 1 Lagrangeu v tvar interpolac nı ho mnohoc lenu Newtonu v tvar interpolac nı ho mnohoc lenu Studijnı materia ly Pro listova nı dokumentem

Více

á š á á ě ř é ÍŽ ě Ž Ď ě á Ď á á á é Ž š Ď ě Í é š ň á á ě č ě Ů š Í Ý á ě ě á Í Í Í ě š š ěň é Ž á é ě ě é ňí š Í é á ě ě é š č č č á é ě é ě ě Ď á ě

á š á á ě ř é ÍŽ ě Ž Ď ě á Ď á á á é Ž š Ď ě Í é š ň á á ě č ě Ů š Í Ý á ě ě á Í Í Í ě š š ěň é Ž á é ě ě é ňí š Í é á ě ě é š č č č á é ě é ě ě Ď á ě áě á á Š Á É Ě čá á č é ě ň ě á Í š č é Ž ě é á á Ů ň Í š ě ň ěž ě é ě á Ů á č é á š ě é é ě á ň š š á Í é š ě ň é ě é ě ě é á Ž ň á á č š Í Č č ě ĎÍ ě ěž á é Í á č é é é ě á š ě é š Ž č ě Ž č ě Ž é Ů

Více

Numerické metody optimalizace

Numerické metody optimalizace Numercké metody optmalzace Numercal optmzaton methods Bc. Mloš Jurek Dplomová práce 2007 Abstrakt Abstrakt česky Optmalzační metody představují vyhledávání etrémů reálných funkcí jedné nebo více reálných

Více

VŠB - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky. Diplomová práce. 2014 Michal Běloch

VŠB - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky. Diplomová práce. 2014 Michal Běloch VŠB - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky Katedra aplkované matematky Dplomová práce 204 Mchal Běloch VŠB - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky Katedra

Více

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...)

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...) . NÁHODNÁ VELIČINA Průvodce studem V předchozích kaptolách jste se seznáml s kombnatorkou a pravděpodobností jevů. Tyto znalost použjeme v této kaptole, zavedeme pojem náhodná velčna, funkce, které náhodnou

Více

č á á á ů áš á á á ř á á á á ň á š á č á á ř á á č Ú á Žďá á ř á á ř á š á á Ů á š á á řá š á á šč á á ň á ů á á á á Ňá š š Ú á ž á á š á á á á á č ř

č á á á ů áš á á á ř á á á á ň á š á č á á ř á á č Ú á Žďá á ř á á ř á š á á Ů á š á á řá š á á šč á á ň á ů á á á á Ňá š š Ú á ž á á š á á á á á č ř á áš á á ů č ý ú č á ř á Úř š á č á á á ů áš á á á ř á á á á ň á š á č á á ř á á č Ú á Žďá á ř á á ř á š á á Ů á š á á řá š á á šč á á ň á ů á á á á Ňá š š Ú á ž á á š á á á á á č ř á ř ř á š á á č á Ú

Více

Transformace Aplikace Trojný integrál. Objem, hmotnost, moment

Transformace Aplikace Trojný integrál. Objem, hmotnost, moment Trojný integrál Dvojný a trojný integrál Objem, hmotnost, moment obecne ji I Nez zavedeme transformaci dvojne ho integra lu obecne, potr ebujeme ne kolik pojmu. Definice Necht je da no zobrazenı F : R2

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

ok s k s k s k s k s k s k s k a o j ks k s k s jk s k s k s k s k k

ok s k s k s k s k s k s k s k a o j ks k s k s jk s k s k s k s k k s 0.Je ce - st tr - ním p - se - tá, ež li - li - e - mi pr- vé - tá. 1.Kd Kris- tu v - lá "u - ři - žu", 1.ten v hře- by mě - ní - zy svů, 2.N ru - tých sud-ců p - y - ny, svů l - tář vzl Pán ne - vin

Více

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA Katedra Matematky Řetězové zlomky Dplomová práce Brno 04 Autor práce: Bc. Petra Dvořáčková Vedoucí práce: doc. RNDr. Jaroslav Beránek, CSc. Bblografcký záznam

Více

ř ž ť ť čá á ý ý á á áč ž ý ě ě ů á ř ž ř á ř ž ř ž ň á ř ř ř ý ěř ž ž ý č á ř ý č č šť á á Ú ý ó ž ť č ž á ě á š ě ř á á ě ůř ů ě š á ř ž á ě ř ř š ž

ř ž ť ť čá á ý ý á á áč ž ý ě ě ů á ř ž ř á ř ž ř ž ň á ř ř ř ý ěř ž ž ý č á ř ý č č šť á á Ú ý ó ž ť č ž á ě á š ě ř á á ě ůř ů ě š á ř ž á ě ř ř š ž á ůž č á č á č á á ň á č á á ů ěř ů ěř á ě ř ň á č č ý ý ě š ě žá á ý á ř ě ú ř á ž ž á ř ě ě Í ě á á č ě á ř ě á ř ř ě ý ú ť ř á á ě ě á á ěě ý á š Ť á ě á á š Í á ž á ě ě ž ě á á á á ě ů ž š ě ý ř Ž

Více

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

ú ů ů á á č ž éš ú ů á ř á ů é á š á ú ž á á č ú ů á á č ž é š ú ů á ř ý á á ú ů á á č ú ý ů č ú ř ůž á ř ý ů č ú ř ů á ř ů č č ú č č ú Č á ý ú áš é Í

ú ů ů á á č ž éš ú ů á ř á ů é á š á ú ž á á č ú ů á á č ž é š ú ů á ř ý á á ú ů á á č ú ý ů č ú ř ůž á ř ý ů č ú ř ů á ř ů č č ú č č ú Č á ý ú áš é Í á á é ř ý Čá ý Č é ř ů á ř á á á ř Ú Č ú ů ď é á ž Ť Š é á ů é áš á á ř č č ý č á ý á é áď á ý ý Ú á š é š é š á á Ť ž ů ř č á á é á á ř ý ď ý ř ý č č á ú ů ů á á č ž éš ú ů á ř á ů é á š á ú ž á á č ú

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce . meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu

Více

Minimalizace KA - Úvod

Minimalizace KA - Úvod Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat

Více

á ář á ř ř Č ř áč ě řá ú á ř č á á á á á ú ů ř ř Č á ř á á á Š ž č ě ř č ý ů á á ř ř ú á ř ž ý ý á á ž á ř č ů á á ů ř ý ý áš á ěř á ž á á ěř á á ř ž á ě ě á á žá á ů ý ř žá ř ě č ě á ě á ř ž ú ů ř ř ž

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

Ů ř á á ú á á Ž ě ě č á ý č ú ý ř š ů ě ý á ř ů čá č ě ě ě ý á ú ř é ú á á á ú á á ú á á Ú š é é řá á á řá ř é ě ý ě ž Ú Ú ř ě ú á ř š Í á Í řá á ě ý

Ů ř á á ú á á Ž ě ě č á ý č ú ý ř š ů ě ý á ř ů čá č ě ě ě ý á ú ř é ú á á á ú á á ú á á Ú š é é řá á á řá ř é ě ý ě ž Ú Ú ř ě ú á ř š Í á Í řá á ě ý á á ě ě ě úř á ě ě Á á á Íú á á á á č ý ř á á á č ú á á řá ě ě š ř ů á á á á á á ř č áš č Ú ě ý ú ě á ů ú ě á č ř úř á ě ě ě ú á á ÁĚ š á úř á ě ě ě č Ů ř á á ú á á Ž ě ě č á ý č ú ý ř š ů ě ý á ř ů čá

Více

ž í í ý í š í í ý ů í í ů á í ý í ý ů í é í é á í č ě ý ýú ů íý ě í ů í Ž í ů ě ě éů ěž í íž č é ě í á í ě í á č í ě í á í ě ý á áš í á ě é é á č ěá Ž

ž í í ý í š í í ý ů í í ů á í ý í ý ů í é í é á í č ě ý ýú ů íý ě í ů í Ž í ů ě ě éů ěž í íž č é ě í á í ě í á č í ě í á í ě ý á áš í á ě é é á č ěá Ž ž í í í Á á á áš íú í í Ž í í š á ě ě á ě á ě á á á í Ž í á áš í á í ó á í ž á á á éč á í ž íá áš í á ě é é Ž í í ú í á á í á í í á ě í é í ě ší ů á á í á á áš í áš ě á ě é Ú í Ú í é áš íú í ě á áš á ě

Více

uбdajuй rоaбdneб cоi mimorоaбdneб uбcоetnуб zaбveоrky a oddeоleneб evidence naбkladuй a vyбnosuй podle zvlaбsоtnубho praбvnубho prоedpisu.

uбdajuй rоaбdneб cоi mimorоaбdneб uбcоetnуб zaбveоrky a oddeоleneб evidence naбkladuй a vyбnosuй podle zvlaбsоtnубho praбvnубho prоedpisu. Cо aбstka 143 SbУбrka zaбkonuй cо. 377 /2001 Strana 7965 377 VYHLAб Sо KA Energetickeбho regulacоnубho uбrоadu ze dne 17. rоубjna 2001 o Energetickeбm regulacоnубm fondu, kterou se stanovуб zpuй sob vyбbeоru

Více

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w

Více

Ý č í é é ř š í é č í é ľ ľá á í ě í č říč í á Ú ý č říčí č ľ ý ł ĺ á á łí ĺ ě ř ĺ í ě ĺ ř á í ĺł ĺĺ ďĺ í á á ĺ ľ ĺ ĺí é ł í ĺ ĺé ťł ť łĺĺ ľ á í ĺ ĺ ę

Ý č í é é ř š í é č í é ľ ľá á í ě í č říč í á Ú ý č říčí č ľ ý ł ĺ á á łí ĺ ě ř ĺ í ě ĺ ř á í ĺł ĺĺ ďĺ í á á ĺ ľ ĺ ĺí é ł í ĺ ĺé ťł ť łĺĺ ľ á í ĺ ĺ ę Ý č é é ř š é č é ľ ľá á ě č řč á Ú ý č řč č ľ ý á á ě ř ě ř á ď á á ľ é é ť ť ľ á ę ľ ř á é ý á ý č á é é ě é á ě é ú ě Ú ň é é ú á ž é ř Ż č Ż č ř č š ě ě š ů é č á ě ř š ě č ě á č úř ň é Ż ě č ř č ě

Více

č á č č ú ý á ý Č á Č á ú á ú ž á á č á č á á čá ý Č čá á Ú ž ý á č č ž á č č á ž ý á č á Ú č Ú á š š ž ý á č ý ž ý ý ž ý á

č á č č ú ý á ý Č á Č á ú á ú ž á á č á č á á čá ý Č čá á Ú ž ý á č č ž á č č á ž ý á č á Ú č Ú á š š ž ý á č ý ž ý ý ž ý á č č ý Ý ů ý Ý Č Á ý č á č č ú ý á ý Č á Č á ú á ú ž á á č á č á á čá ý Č čá á Ú ž ý á č č ž á č č á ž ý á č á Ú č Ú á š š ž ý á č ý ž ý ý ž ý á ú Ň š ú áóň Ř ó Ř Ě č ŘÁ š č č Ú Í Ý Í Ě č Í Č Š Ě Í Í č

Více

Vlastnosti Derivační strom Metody Metoda shora dolů Metoda zdola nahoru Pomocné množiny. Syntaktická analýza. Metody a nástroje syntaktické analýzy

Vlastnosti Derivační strom Metody Metoda shora dolů Metoda zdola nahoru Pomocné množiny. Syntaktická analýza. Metody a nástroje syntaktické analýzy Metody a nástroje syntaktické analýzy Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 14. října 2011 Vlastnosti syntaktické analýzy Úkoly syntaktické

Více

ů á ř ě Ú á á ý á ů č Ú á Č č áš ý ý ě ó ž á Í á ý ý ý ě ř áš ý š šť á ř á ě á á ř á ů ě á á žďý á á á á š ř š ř ý á š á á ů á ý á á ť ř ř á č á ž ý ž

ů á ř ě Ú á á ý á ů č Ú á Č č áš ý ý ě ó ž á Í á ý ý ý ě ř áš ý š šť á ř á ě á á ř á ů ě á á žďý á á á á š ř š ř ý á š á á ů á ý á á ť ř ř á č á ž ý ž řč á ů ů ó ě ý ů ý ř á ú á č ř ó á Ú ě ě Ž š ř ý á ř ů ó ř á ý ů ě č ů ů ě ě á ý ů ě ář ě ě ě ě ý ř š ýš ě šť á ř š č ř ě Ž š ř á ě šš ě ů ě ě š ě ů á šť ř ě ě Ž č ý Ž á ě ý ě á ě ě ýš ě ý ů ř ěř ýš ě

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

LectureV. April 18, celou historii vývoje škálovacího faktoru a Hubleovy konstanty. Otázkou je, jak určit množství hmoty ve vesmíru.

LectureV. April 18, celou historii vývoje škálovacího faktoru a Hubleovy konstanty. Otázkou je, jak určit množství hmoty ve vesmíru. LectureV Aprl 18, 2016 1 Temná hmota V předchozích lekcích sme ukázal, že pokud známe celkové množství hmoty ve vesmíru a eí složení, známe celou hstor vývoe škálovacího faktoru a Hubleovy konstanty. Otázkou

Více

VYSOKÉ U ENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ U ENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ U ENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS MATEMATICKÝ MODEL ROZPO TU MATHEMATICAL

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

ě ý ř š ž ř ě ř ě Č ř ě Ž á ě ě á ů ý á ť ž ž ý ě ě ý š ř á á áž ě ůž ž š ť ž á ý ž ý Ž š ř ř ř á áž ě ř ř Ž ó ř á ě ř ý á ě ž ř ž Ú á ě Ž Ž ý ř á ě ř

ě ý ř š ž ř ě ř ě Č ř ě Ž á ě ě á ů ý á ť ž ž ý ě ě ý š ř á á áž ě ůž ž š ť ž á ý ž ý Ž š ř ř ř á áž ě ř ř Ž ó ř á ě ř ý á ě ž ř ž Ú á ě Ž Ž ý ř á ě ř ž ú Á ý á á Ť Č ř ě š á á ř á š ž á Ť Ť Á Č á ř š á Ť á ě ý á ř Ť š Ť á řá ý ž á á ů ř á ě ú ú Ž ť ř Ž Ž ý ý ž ř á ý á Í ě ř á ř ú ž ř ř žá ýě ř á á ž ůž ř ú Ž ř á ú ž ř ž Č ž á á ř ě ů ř á á á Ý šš š

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim 3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

í ý ó ý ó š í á á é ě ší é í ě ě é Č Ě í í í é ý ž é á í ž ý ů ý í ů í á é ě ňá ů š ě é ř é ší á í ž ř í čí é ý ř ž ý é á í ý ý é č é é ě é é í ř í š

í ý ó ý ó š í á á é ě ší é í ě ě é Č Ě í í í é ý ž é á í ž ý ů ý í ů í á é ě ňá ů š ě é ř é ší á í ž ř í čí é ý ř ž ý é á í ý ý é č é é ě é é í ř í š í ý ó ý ó š í á á é ě ší é í ě ě é Č Ě í í í é ý ž é á í ž ý ů ý í ů í á é ě ňá ů š ě é ř é ší á í ž ř í čí é ý ř ž ý é á í ý ý é č é é ě é é í ř í š í ř í é čí í ř č é ř č é ř ě ý é í í č í é í é čá ř

Více

Postup při instalaci aplikace Kalkulačka Home Credit Spotřebitelské ú věry 2002

Postup při instalaci aplikace Kalkulačka Home Credit Spotřebitelské ú věry 2002 Postup při instalaci aplikace Kalkulačka Home Credit Spotřebitelské ú věry 2002 V ná sledujícím dokumentu jsme pro Vás připravili poměrně podrobný postup při instalaci software na Váš počítač. Postup je

Více

Jednoznačné a nejednoznačné gramatiky

Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.

Více

č á á é ú Č é č Č á Č í ř č í ů í á í á č á í á é ě ý ý é í č í í á č í š ř á í č é č ě š í á š ě á á á ý č ě Č ý ěř í á í č č í ř é č á á í ě ý č í á

č á á é ú Č é č Č á Č í ř č í ů í á í á č á í á é ě ý ý é í č í í á č í š ř á í č é č ě š í á š ě á á á ý č ě Č ý ěř í á í č č í ř é č á á í ě ý č í á á č Č č š é é č ř š í é ž í á ý š í ř é č ý ř č í ý ě ě é í í á é ý ě é š ú ň á í í ě ě ň í ý é Í ý ý ů í ů ň á á í é Č á č Ž ž Č ý č Ž í ř é í ř é ě í ě č á í č š ý í í č ř ď ě č ě ý í ů í č é á ě Ž é

Více

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T. BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné

Více

Matematické modelování ve stavební fyzice

Matematické modelování ve stavební fyzice P6 - Numercké řešení vedení tepla ve stěně Obsa: Stěna z omogennío materálu Stěna z různýc materálů Okraové podmínky Dvorozměrné vedení tepla Rovnce vedení tepla Rovnce kontnuty (v 1D) dq qcd, x qcd, x

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOS A SAISIKA Regulární systém hustot Vychází se z: -,, P - pravděpodobnostní prostor -, R neprázdná množna parametrů - X X 1,, náhodný vektor s sdruženou hustotou X n nebo s sdruženou pravděpodobnostní

Více

ť

ť ť Í Á Á Í Ř Í ť Ř ÁŘ Ř ť ž Ň Š Ť Ě Ň ť ť ď É ý ý é é ň ž Í ť ž ž é ů ň Á ý é ů é é ž ů é é ŮŽ ž ž ž ň ž ň ý é ž ň é ůž ý Í ú ž ů é é é Á Ú Á Š Ů é é ž ž Í Í ý ž Á Ň Í ů ůž ž é Í ň ý Í Ě ň ŤŤ ž ý ž é ž

Více

5 2 1 d o t a zn ík ů, t j. 3 2, 5 % n e u v e d e n o, zd a v y p l ňu j e m u ž n e b o že n a : 2 2 d o t a zn ík ů

5 2 1 d o t a zn ík ů, t j. 3 2, 5 % n e u v e d e n o, zd a v y p l ňu j e m u ž n e b o že n a : 2 2 d o t a zn ík ů D o o b c í M ik r o r e g io n u P o d r a ls k o b y lo r o ze s l á n o 1 6 0 0 d o t a zn ík ů Návratnost: Z toho 5 2 1 d o t a zn ík ů, t j. 3 2, 5 % že n y : 2 7 8 d o t a zn ík ů m u ži : 2 2 1

Více

Obsah přednášky 1. Bayesův teorém 6. Naivní Bayesovský klasifikátor (NBK)

Obsah přednášky 1. Bayesův teorém 6. Naivní Bayesovský klasifikátor (NBK) Obsah přednášky 1. Bayesův teorém 2. Brutální Bayesovský klasfkátor (BBK) 3. Mamální aposterorní pravděpodobnost (MA) 4. Optmální Bayesovský klasfkátor (OBK) 5. Gbbsův alortmus (GA) 6. Navní Bayesovský

Více

z 0 3a 0 0dosti o vyda 0 0n rozhodnut o um ste 0 3n stavby

z 0 3a 0 0dosti o vyda 0 0n rozhodnut o um ste 0 3n stavby 1 3Strana 6962 Sb 0 1 0 0rka za 0 0konu 0 8 c 0 3. 503 / 2006 C 0 3 a 0 0stka 163 503 VYHLA 0 0 S 0 3 KA ze dne 10. listopadu 2006 o podrobne 0 3js 0 3 0 1 0 0 u 0 0 prave 0 3 u 0 0 zemn 0 1 0 0ho r 0

Více

VY_32_INOVACE_CTE_2.MA_19_Registry posuvné a kruhové. Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_CTE_2.MA_19_Registry posuvné a kruhové. Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_CTE_2.MA_19_egistry posuvné a kruhové Název školy Autor Tematická oblast očník Střední odborná škola a Střední odborné učiliště, ubno

Více

MINI KRA - KOŽ CUP Hrací rozpis

MINI KRA - KOŽ CUP Hrací rozpis MINI RA - OŽ U 2017 wwwbcz cí zp á 17:00 1 p - bz 52 : 19 18:00 2 p - řá 17 : 37 19:00 3 řá - bz 52 : 12 20:00 4 bz - řá 59 : 28 b 9:00 5 áá - bz 44 : 12 10:00 6 ňá - řá 6 : 69 11:00 7 ň - T 4 : 81 12:00

Více

8. STATISTICKÝ SOUBOR SE DVĚMA ARGUMENTY

8. STATISTICKÝ SOUBOR SE DVĚMA ARGUMENTY 8. STATISTICKÝ SOUBOR SE DVĚMA ARGUMETY Stattcký oubor e dvěma argument Průvodce tudem Vužeme znalotí z předchozí kaptol, která poednávala o tattckém ouboru edním argumentem a rozšíříme e. Předpokládané

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

Hodnost matice. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen.

Hodnost matice. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. U stav matematiky a deskriptivnı geometrie Hodnost matice Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Brno 2014 RNDr. Rudolf Schwarz, CSc.

Více