převod radianu na stupně > vydělit 2 vnásobit 360 převod strupnu na radiany > vydělit 360 vynásobit 2 whos vypisuje proměnné Vektor V1 = [1 2 3]

Rozměr: px
Začít zobrazení ze stránky:

Download "převod radianu na stupně > vydělit 2 vnásobit 360 převod strupnu na radiany > vydělit 360 vynásobit 2 whos vypisuje proměnné Vektor V1 = [1 2 3]"

Transkript

1 převod radianu na stupně > vydělit 2 vnásobit 360 převod strupnu na radiany > vydělit 360 vynásobit 2 whos vypisuje proměnné Vektor V1 = [1 2 3] V1 = [1 2 3] ////////////////////////////////////////////////// V2 = [1] [2] [3] V2 = [1; 2; 3;] ////////////////////////////////////////////////// M = ////////////////////////////////////////////// M = [1 2;3 4;] ////////////////////////////////////////////////// řady C = 5:2:20 naplnění řady od 5 po dvouch do 20 linspace dopočítaní řady r = [5: 0.2:0] > lichacisla = 1:2:20 t = < 10,10> v 20 bodech t = linspace( 10,10,20) ////////////////////////////////////////////////// ones matice jedniček m = ones (2,3) m = ////////////////////////////////////////////////// zeros matice nul p = zeros(2,2) p =

2 ////////////////////////////////////////////////// eye jedničková matice q = eye(2,3) q = ////////////////////////////////////////////////// normálmí = gausovské rozložení randn() rovnoměrné nepřirozené rand() takže tomu někdo rozumí, znamená že to dokáže jednoduše vysvětli a nemlží okolo toho /////////////////////// náhodná matice N = rand(5,5) hist(n) histogram výskutu hodnot v N //////////////////// h = >> h1 = h(1:2,2:3) h1 = ////////////// >> h = h(:,2:) h = ////////////////////////// >> h = [h h1] h = >> h(1, 1:)=[0 0]

3 h = //////////////////////// >> k = [zeros(1,2); ones(2,2)] k = >> k2 = [k,k] k2 = >> k3 = k2 k3 = >> k3(3,:)=[ ] //třetí řádek všechny sloupce k3 = /////////////// eval('a=55') vykoná kod, který je zapsaný jako string = lze zaběhu změnit kod programu /// vícevrstvá matice V=rand(2,3,4) ////////////////////////////

4 Struktura S.jmeno = 'dan' S = jmeno: 'dan' >> S.vek = 40 S = jmeno: 'dan' vek: 40 S(2).jmeno='Pavel' //už je to pole struktur ///////////////////////// >> K.den ={'Po' 'Ut' 'St'} K = den: {'Po' 'Ut' 'St'} ///cell array >> K.cislo = [1 2 5] K = den: {'Po' 'Ut' 'St'} cislo: [1 2 5] >> K.cislo(3) ans = 5 >> K.den{3} ans = St ////////////////////////////// Cell array

5 C={1 i;'ahoj' [4 5]} >> C{2,2} ans = 4 5 ///// navázání na seriovou linku S=serial('com1') ///////////////////////////////// cv02 save > implicitní proměnná matlab mat clear > smaže pamět (lokalní) load > nahraje se z disku save('data','b') > uloží (jmeno souboru, proměnna) load data save ('data.txt','b',' ascii') >> d = input('zadej data: ') zadej data: [1 5 8] >> disp(d) MATICE hodnost matice = řádky lineárně nezávislé A=rand(2,4);B = rand (4,3) size(a) > počet řádků, počet sloupců length(a),,transpozice >> x= [1 2 3] x = >> x'*x

6 ans = >> x*x' ans = 14 Diagonála >> diag(x'*x) ans = det(m) determinant M*inv(M) matice inverzní rank(m) hodnost matice.* dělá prvek po prvku, pro každý prvek matice/vektoru extra./ dělá prvek po prvku, pro každý prvek matice/vektoru extra.^ dělá prvek po prvku, pro každý prvek matice/vektoru extra >> tic >> toc Elapsed time is seconds. sin(x) cos(x) exp(x) log(x) přirozený logaritmus log10(x) logaritmický sqrt(x) odmocnina mean střední hodnota (suma prvků/ počtem prvků) var rozptyl std směrodatná odchylka

7 >> r='nesnasim statistiku' >> p= strfind(r,'i') lower(r) logické operátory logická fce nabývá pouze hodnot 0 a 1 relační operátory <,> <=, >=,!=, == and & or not ~ //// příklad součet čísel od 0 po 2 do 100 c=0:2:100 c*ones(length(c),1) /////////// a11*x1+a12*x2=y1 a21*x1+a22*x2=y2 a11 a12 x1 = y1 a21 a22 * x2 = y2 A *X = Y /* A^ 1 A^ 1*A*X = A^ 1*Y A^ 1*A = jednotková matice /////////// >> A=[1 2; 1 1] A = >> Y=[5; 1] Y = 5 1

8 >> X = inv(a)*y X = ///////////////////// nedourčený sytém, když nemám dostatek informace proto abych to vyřešil, si tam dám jakkýkoliv číslo chci >> X = A\Y >> A=[1 2] A = 1 2 >> Y=[5] Y = 5 >> X = A\Y X = ////// přeurčený systém kvadratické kriterium 2*x = 10 > 9 2+x = 6 >6,5 => nejlepší výsledek je 4,5 = řešení přes matlab nejlepší řešení je 4,8 K = 1,25; K = 10 9 je 1^2 6 6,5 je 0,5^2 a to se rovná K (K je nějaká plocha chyb) >> A=[2; 1]; Y = [10; 4]; X=A\Y X = K = 0,16 + 0,64

9 ////////////// příklda z tabule se 3mi rovnicemi (vyfocený) >> A = [1 1 1; 0 2 1; 0 1 1]; Y=[6; 1; 5]; X=A\Y X = do A píšem počet výskýtů X do Y píšem čísla ženský to je luxus to k životu nepotřebujete :D biker t shirts that arent so cheesy/ definice fce > pro právě jedno X vrátí právě jedno Y vykreslení kružnice >> t=linspace(0,2*pi,50); >> x=sin(t); y=cos(t); >> plot(x,y) mesh > dratený, pospojovaný body, plošky surf > /// >> x=linspace(0,2*pi,10) >> y=linspace( pi,pi,10); >> [X,Y]=meshgrid(x,y) >>Z=sin(x)+sin(y); >>mesh(x,y,z) ////cv04 ax^2+bx+c je polynom p=[a b c] p1 = 10x^3+2x 1 >> p1 = [ ] p2 = x^2 x >>p2 = [1 1 0] násobení polynomu conv, >> conv(p1,p2)

10 dělení polynomu deconv >> [Q,R] = deconv(ans,p1) Q je vysledek (10x^3+2x 1)/(x^2 x)=10x+10 zb.:12x 1 kořeny >> roots(p2) vždycky když je polynom 7 řádu muže bejt 7 realnecjch nebo 1 realených 6 komplexně združených vždy aspoň jeden reálný a ty ostatní združeny po 2 4 komplexní 3 realný atd vytvoření polynomu z kořenů >> p = poly ([0 5 i i]) (x k1)*(x k2) roots(p) vrátí kořeny v testu: nalezeněte řešení kořeny rovnice a vykreslete je jako hvězdičky y = 5x^5+2x^2 7 //hledám její kořeny 5x^5+2x^2 7 = 0 //řešení rovnice a vykreslit v komplexní rovinně >> y = [ ] >> roots(y) >> plot(ans,'*') interpolace >> x=[ ]; y=[ ]; >> p1=polyfit(x,y,1) >> p2=polyfit(x,y,2) >> p3=polyfit(x,y,3) >> xq=linspace(min(x),max(x),100); >> y1 = polyval(p1,xq); >> plot(x,y,'+',xq,y1) >> y2=polyval(p2,xq); >> y3=polyval(p3,xq); >>plot(x,y,'*',xq,y1,xq,y2,xq,y3) polyfit interpoluje řeknu xy a stupně (řád a vrátí polynom b) polyval dáme x a y a on to spočítá y=polyval(p,x);

11 interp1 používá spliny kubické funkce (3tího řádu) funkce function [ p,xg,yg ] = proloz(x,y,n,ng) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here p = polyfit(x,y,n) xg=linspace(min(x),max(x),ng); yg=polyval(p,xg); její použití >> [p1,xq,y1] = proloz(x,y,1,100); >> plot(xq,y1); // třeba ///funkce sectiprvkyvektoru function [ soucet ] = sectiprvkyvektoru( vektor) n = length(vektor); soucet=0; for R = 1:n soucet=soucet+vektor(r); >> x=rand(1,10000); >> tic,sectiprvkyvektoru(x);toc; Elapsed time is seconds. ///// podfunkce subfunction function y= f(x) function a=f(b) vnořená nested fuction y=f(x) function a = f(b) //vidim proměnné x a y

12 ukazatel na fci adresa v paměti kde se nalézá v dnešní době pomocí referencé > tam může mít odkaz na objekt v matlabu handle h = figure //handle k objektu handle k funkci function y = fce(x). uloženo v fce.m y = x^2+sin(x) f // ukazatel(handle) na fci anonymní fce nemá.m file, ale vytvoříme na urovni příkazu f=@(x) x^2+sin(x) ////// kořeny fce a jejich hledání pomocí fzero X = fzero(fun,x0) //X0 kam trpaslíka na fci posadim aby se zkulil ke kořenu // fun je handle k funkci (y = fun(x)) x^3=2x 5 x^3 2x+5 = 0 >> roots([ ]) //jen na polynom >> x= 3:0.1: 1 >> y1=x.^3;y2=2*x 5; >> plot(x,y1,x,y2,x,y1 y2) fce1.m function [ y ] = fce1( x ) y=x.^3 2*x+5; >> x=fzero('fce1', 1) ////// handler >> f1=@fce1; >> x=fzero(f1, 1) /////anonimní fcí >> f1=@(x) x.^3 2*x+5; >> x=fzero(f1, 1) hledej extrém x=fminbnd(fun,x1,x2) x1 odkud x2 kam //na tabuli y=x^3+2x^2+sin(x) >> y=x.^3+2*x.^2+sin(x);

13 >> x= 2:0.1:2; >> y=fce1(x); >> plot(x,y) >> >> min=fminbnd(f3, 1,0) min = //minimální hodnota fce v intervalu od 1 do 0 maximum je mínus minima takže fce vypadá takto y= (x.^3+2*x.^2+sin(x)); max=fminbnd(@fce1m,0,0.5) x= fminsearch (fun,x0); místo intervalu, zadám vychozí bod pro výpočet simplexy 3 trpaaslíci co maji špagátky mezi sebou a tvoří trojúhelník a řikaj si jak jsou vysoko a ten co je nejvýš přejde na druhou stranu > trojúhleník se překlápí přes nejnižší stranu + provázky (strany trojúhelníku) se zmenšují Z = 100(y x^2)^2+(1 x)^2 Banánová fce >> x= 3:0.1:3; >> y= 1:0.1:3; >> [X,Y]=meshgrid(x,y); >> Z=100*(Y X.^2).^2+(1 X).^2; >> mesh(x,y,z); přepis do fce function [ Z ] = fce4( X ) %UNTITLED4 Summary of this function goes here % Detailed explanation goes here Z=100*(X(2) X(1).^2).^2+(1 X(1)).^2; >> x=fminsearch(f4,[0 0]) //vylsledek ///// y = sin(x^2); x je od 0 do pi

14 kořeny a extrémy >> f=@(x) sin(x.^2); >> x=linspace(0,pi,100); >> y=f(x); >> plot(x,y); kořeny >> k1=fzero(f,1.5); >> k2=fzero(f,2.5); >> k3=fzero(f,3); >> plot(x,y,[k1 k2 k3],zeros(1,3),'*') minimum min=fminsearch(f,2); maximum >> fm=@(x) sin(x.^2); >> max1=fminsearch(fm,1) >>max2 = fminsearch(fm,3); >> plot(x,y,[k1 k2 k3],zeros(1,3),'*',max1,f(max1),'+',min,f(min),'+',max2,f(max2),'+') /////// integrály určité = někdě začíná a končí Spočitejte obsah integralu od do y=e^( x^2) 0,5 x < 1,2> >> f1=@(x)exp( x.^2) 0,5 >> y=f1(x) >> plot(x,y) >> k1=fzero(f1, 1) >> k2=fzero(f1,1) >> S=quad(f1,k1,k2) > vysledek vizualizace toho co jsem spočital >> plot(x,y) >> hold >> xa = linspace(k1,k2,100); >> ya=f1(xa); >> area(xa,ya)

15 ///// diferenciální rovnice je to rozšíření algebraitské rovnice o nějaký fenomén algebraitsky y = f(x) třeba y = sin(x)*x^2 když y nebude záležet na tom X, ale také né uplně na sobě. y = F(x,dy/dx) > 2*(dy/dx)+y = 5 > (dy/dx) = (5 y)/2 > Y = integrál(dy/dx) jen musim znát podmínku že Y v nule je třeba 0 > většinou dynamika jak se mění teplota vzduchu uvnitř vůči teplotě okolo 2*(dy/dx)+y=3 //soustava prvního řádu kolik je podmínek? jen jednu y(x=0) = y(0) = 0 x <0,10> [t,y]=ode45(odefun,tspan,y0) odefun = y =f(t,y) tspan = delění časů [0 Tfinal] y0 = počáteční podmínky dy/dx = (3 y)/2 funkce odefun function [ dy ] = dif1( t,y ) %UNTITLED Summary of this function goes here % Detailed explanation goes here dy=(3 y)/2; >> [t,y]=ode45('dif1',[0 10],0); >> plot(t,y) se směrnicí (derivací Y) >> plot(t,y,t,(3 y)/2) //// 2*(d^2y/dx^2)+y = 3 y(0) = 1 y (0) = 0 x <0,20> funkce dif2 function [ dy ] = dif2( t,y ) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here

16 y=y(1); u=y(2); dy=[u; (3 y)/2]; >> [t,y]=ode45('dif2',[0 20],[ 1 0]); plot(t,y) //// 3ÿ+2y(prvni derivace)+y = sin(t) y(0)= 1 y(prvni der)(0) = 1 t <0,5> function [ dy ] = dif4( t,y ) y=y(1); u=y(2); dy=[u; (sin(t) y 2*u)/3]; //////////////// dif. rovnice 10y +y = 0,3 potřebuje znát podmínek stejně jako je řád derivací = 1 y(t=0)=2 < poč. podmínka 10*(dy(t)/dt)+y(t)=0,3 dy/dt = 0,3 y/10

17 2y +3y +y=sin(t) y(t=0)=2 y (t=0)=1 y =(sin(t) y 3y )/2 y >integruju >y >integruju >y t >sin >odečíst Y a Y

18 x +x x/y = y x(0) = 2 y +y+y/x = x y(0) = 1 x =x/y x y y = y/x x y

19 ////////////// vytvoření masky na subsystemu pravym a create mask

20 X Y proložte polynomem 3 řádu x = [ 2,5,10,20] y = [3,6,8,9] >> p1=polyfit(x,y,1) >> p2=polyfit(x,y,2) >> p3=polyfit(x,y,3) >> xq=linspace(min(x),max(x),100); >> y1 = polyval(p1,xq); >> plot(x,y,'+',xq,y1) >> y2=polyval(p2,xq); >> y3=polyval(p3,xq); >>plot(x,y,'*',xq,y1,xq,y2,xq,y3) /////// polynom X^7+3x^3 2x^2 = 7 >> p=[ ] >> k = roots(p) >> plot(real(k),imag(k),'*') ///// integral od x= 0 do K e^x * sin(x)*dx = 5 function [I] = integral( k ) f=@(x) exp(x).*sin(x); I=quadl(f,0,k) >> integral(1) ///////////////////////////////////////// hledání kořene integral od x= 0 do K e^x * sin(x)*dx 5 = 0 function [I] = integral( k ) f=@(x) exp(x).*sin(x); I=quadl(f,0,k) 5; >> fzero('integral',3)

21 >> integral(ans); ////////////////////////////////// sum od i=2 do 7 cos(x^2)^2 pomocí maticové operace >> x=2:7; >> v=cos(x.^2); >> S=v*v'; //v = to transponuje (vymění řádky a sloupce) vektor ///// Soustava rovnic 2x 3 +X 4 = 7 X 1 +X 2 = X 3 2X 1 + X 3 = 0 X 4 = 7 >> X=[ ; ; ; ]; Y=[7; 0; 0; 7]; >> A=X\Y ///// Nakreselte fci od 5 do 5 Z = [ sin(x^2/2+y)*cos(xy) ] / odmocnina(1+x^2+y^2) x < 3,3> y < 5,5> x=linspace( 3,3,100); y=linspace( 5,5,100); [X,Y] = meshgrid(x,y); Z = (sin(x.^2/2 + Y).* cos (X.*Y) )./ sqrt (1+X.^2+Y.^2); mesh(x,y,z) najdi minumum fce fminsearch funguje tak že X nahradnim X 1 a Y nahradim X 2 dwd // X = X(1) // Y = X(2) Z = (sin(x(1).^2/2 + X(2)).* cos (X(1).*X(2)) )./ sqrt (1+X(1).^2+X(2).^2); function [ Z ] = plocha( X ) Z = (sin(x(1).^2/2 + X(2)).* cos (X(1).*X(2)) )./ sqrt (1+X(1).^2+X(2).^2); >> fminsearch('plocha',[0, 1]) maximum najdu tak že fci otočim

22 Z = (sin(x(1).^2/2 + X(2)).* cos (X(1).*X(2)) )./ sqrt (1+X(1).^2+X(2).^2); ////// diferenciální rovnice d^3*y/d*t + (d^2*y/d*t^2)^2 2 * (dy/dt) = sin(t)*t je tam 3 řád > Y = [Y Y Y ] = [y u v] dy = [u v sin(t)*t+2u v^2] y = sin(t) *t +2y y ^2 y(0) = 2 y (0) = 0 y (0) = 0 function [ dy ] = diferrovnice( T,Y ) dy = [Y(2); Y(3); sin(t)*t+2*y(2) Y(3)^2]; >> [T,Y] = ode45('diferrovnice',0:5,[2; 0; 0]); >> plot(t,y) >> plot(t,y(:,1))

23

vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1)

vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1) ZKOUŠKA ČÍSLO 1 x=linspace(0,100,20); y=sqrt(x); A=[x;y]'; save('data.txt','a','-ascii'); polyn = polyfit(x,y,3); polyv = polyval(polyn,x); plot(x,y,'r*') plot(x,polyv,'b') p1=[1 0 0 0 0 0 0-1]; k=roots(p1);

Více

% vyhledání prvku s max. velikostí v jednotlivých sloupcích matice X

% vyhledání prvku s max. velikostí v jednotlivých sloupcích matice X %------------------------------------- % 4. cvičení z předmětu PPEL - MATLAB %------------------------------------- % Lenka Šroubová, ZČU, FEL, KTE % e-mail: lsroubov@kte.zcu.cz %-------------------------------------

Více

Řešení diferenciálních rovnic v MATLABu

Řešení diferenciálních rovnic v MATLABu Řešení diferenciálních rovnic v MATLABu Základy algoritmizace a programování Přednáška 23. listopadu 2011 Co řešíme Obyčejné diferenciální rovnice prvního řádu: separovatelné lineární exaktní druhého řádu,

Více

MATrixLABoratory letný semester 2004/2005

MATrixLABoratory letný semester 2004/2005 1Prostedie, stručný popis okien Command Window příkazové okno pro zadávání příkazů v jazyku Matlabu. Workspace zde se zobrazuje obsah paměti; je možné jednotlivé proměnné editovat. Command History dříve

Více

. Poté hodnoty z intervalu [ 1 4, 1 2. ] nahraďte hodnotami přirozeného logaritmu.

. Poté hodnoty z intervalu [ 1 4, 1 2. ] nahraďte hodnotami přirozeného logaritmu. 1. Spočítejte objemy krychlí s délkami stran a = 2 cm, 3 cm a 4 cm. 2. Vytvořte vektor funkčních hodnot funkce sin(x) v bodech 0, π 4, π 2,..., 2π. 3. Vygenerujte posloupnost u čísel 2, 1.8,... délky 20.

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

Interpolace a aproximace dat.

Interpolace a aproximace dat. Numerické metody Interpolace a aproximace dat. Interpolace dat křivkou (funkcí) - křivka (graf funkce) prochází daty (body) přesně. Aproximace dat křivkou (funkcí) - křivka (graf funkce) prochází daty

Více

Lineární algebra s Matlabem cvičení 3

Lineární algebra s Matlabem cvičení 3 Lineární algebra s Matlabem cvičení 3 Grafika v Matlabu Základní příkazy figure o vytvoří prázdné okno grafu hold on/hold off o zapne/vypne možnost kreslení více funkcí do jednoho grafu ezplot o slouží

Více

PPEL_3_cviceni_MATLAB.txt. % zadat 6 hodnot mezi cisly 2 a 8 % linspace (pocatek, konec, pocet bodu)

PPEL_3_cviceni_MATLAB.txt. % zadat 6 hodnot mezi cisly 2 a 8 % linspace (pocatek, konec, pocet bodu) %------------------------------------- % 3. cvičení z předmětu PPEL - MATLAB %------------------------------------- % Lenka Šroubová, ZČU, FEL, KTE % e-mail: lsroubov@kte.zcu.cz %-------------------------------------

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov 3. 10. 2012 Základy práce s výpočetními systémy opakování a pokračování

Více

Aproximace a interpolace

Aproximace a interpolace Aproximace a interpolace Aproximace dat = náhrada nearitmetické veličiny (resp. složité funkce) pomocí aritmetických veličin. Nejčastěji jde o náhradu hodnot složité funkce g(x) nebo funkce zadané pouze

Více

Uzavřené a otevřené množiny

Uzavřené a otevřené množiny Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,

Více

VÝUKA MOŽNOSTÍ MATLABU

VÝUKA MOŽNOSTÍ MATLABU VÝUKA MOŽNOSTÍ MATLABU Miroslav Olehla Technická univerzita v Liberci, Fakulta strojní, Katedra aplikované kybernetiky V následujícím příspěvku jsou uvedeny některé oblasti MATLABU ve výuce. Vychází se

Více

Kreslení grafů v Matlabu

Kreslení grafů v Matlabu Kreslení grafů v Matlabu Pavel Provinský 3. října 2013 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a naprogramujte příklad podobný. Tím se ujistíte, že příkladu

Více

pi Ludolfovo číslo π = 3,14159 e Eulerovo číslo e = 2,71828 (lze spočítat jako exp(1)), např. je v Octave, v MATLABu tato konstanta e není

pi Ludolfovo číslo π = 3,14159 e Eulerovo číslo e = 2,71828 (lze spočítat jako exp(1)), např. je v Octave, v MATLABu tato konstanta e není realmax maximální použitelné reálné kladné číslo realmin minimální použitelné reálné kladné číslo (v absolutní hodnotě, tj. číslo nejblíž k nule které lze použít) 0 pi Ludolfovo číslo π = 3,14159 e Eulerovo

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

- transpozice (odlišuje se od překlopení pro komplexní čísla) - překlopení matice pole podle hlavní diagonály, např.: A.' ans =

- transpozice (odlišuje se od překlopení pro komplexní čísla) - překlopení matice pole podle hlavní diagonály, např.: A.' ans = '.' - transpozice (odlišuje se od překlopení pro komplexní čísla) - překlopení matice pole podle hlavní diagonály, např.: A.' 1 4 2 5 3-6 {} - uzavírají (obklopují) struktury (složené proměnné) - v případě

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

Příklad animace změny prokládané křivky při změně polohy jednoho z bodů

Příklad animace změny prokládané křivky při změně polohy jednoho z bodů 3. Polynomy p x x x 3 ( ) = 2 5 Polynom je reprezentován řádkovým vektorem koeficientů jednotlivých řádů od nejvyššího dolů p = [1 0-2 -5]; kořeny polynomu r = roots(p) r = 2.0946-1.0473 + 1.1359i -1.0473-1.1359i

Více

Stručný návod k programu Octave

Stručný návod k programu Octave Stručný návod k programu Octave Octave je interaktivní program vhodný pro technické výpočty. Je nápadně podobný programu MATLAB, na rozdíl od něho je zcela zadarmo. Jeho domovská vebová stránka je http://www.octave.org/,

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Příklad elektrický obvod se stejnosměrným zdrojem napětí

Příklad elektrický obvod se stejnosměrným zdrojem napětí Příklad elektrický obvod se stejnosměrným zdrojem napětí Určete proudy 18, 23, 4, 5, 67 v obvodu na obr., je-li dáno: 1 = 1 Ω, 2 = 2 Ω, 3 = 3 Ω, 4 = 5 Ω, 5 = 3 Ω, 6 = 2 Ω, 7 = 4 Ω, 8 = 4,5 Ω, U = 6 V.

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice KTE / PPEL Počítačová podpora v elektrotechnice 22.12.2010 Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov Příklad: Obvod RLC v sérii R=200 Ω L=0,5 H C=5. 10-6 F U 0

Více

výsledek 2209 y (5) (x) y (4) (x) y (3) (x) 7y (x) 20y (x) 12y(x) (horní indexy značí derivaci) pro 1. y(x) = sin2x 2. y(x) = cos2x 3.

výsledek 2209 y (5) (x) y (4) (x) y (3) (x) 7y (x) 20y (x) 12y(x) (horní indexy značí derivaci) pro 1. y(x) = sin2x 2. y(x) = cos2x 3. Vypočtěte y (5) (x) y (4) (x) y (3) (x) 7y (x) 20y (x) 12y(x) (horní indexy značí derivaci) pro 1. y(x) = sin2x 2. y(x) = cos2x 3. y(x) = x sin2x 4. y(x) = x cos2x 5. y(x) = e x 1 6. y(x) = xe x 7. y(x)

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a

Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?

Více

více křivek v jednom grafu hold on přidrží aktuální graf v grafickém okně, lze nakreslit více grafů do jednoho grafického okna postupně hold off

více křivek v jednom grafu hold on přidrží aktuální graf v grafickém okně, lze nakreslit více grafů do jednoho grafického okna postupně hold off více křivek v jednom grafu hold on přidrží aktuální graf v grafickém okně, lze nakreslit více grafů do jednoho grafického okna postupně hold off vypnutí, konec možnosti kreslit více grafů do jednoho grafického

Více

Operace s vektory a maticemi + Funkce

Operace s vektory a maticemi + Funkce + Funkce 9. března 2010 Operátory Operátory Aritmetické: Operátory Operátory Aritmetické: maticové + (sčítání), (odčítání), (násobení), / (dělení matematicky je maticové delení násobení inverzní maticí),

Více

Příklad: Řešte soustavu lineárních algebraických rovnic 10x 1 + 5x 2 +70x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 100 8x 1 + 9x 2 +

Příklad: Řešte soustavu lineárních algebraických rovnic 10x 1 + 5x 2 +70x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 100 8x 1 + 9x 2 + Příklad: Řešte soustavu lineárních algebraických rovnic 1x 1 + 5x 2 +7x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 1 A * x = b 8x 1 + 9x 2 + x 3 +45x 4 +22x 5 = 319 3x 1 +12x 2 + 6x 3 + 8x

Více

Numerické metody 6. května FJFI ČVUT v Praze

Numerické metody 6. května FJFI ČVUT v Praze Extrémy funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Více dimenzí Kombinatorika Lineární programování Programy 1 Úvod Úvod - Úloha Snažíme se najít extrém funkce, at už jedné

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice KTE / PPEL Počítačová podpora v elektrotechnice 3. 12. 2014 Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov Grafy, úprava, popisky, vizualizace výsledků výpočtů opakování

Více

Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných

Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných jakési nádoby na hodnoty jsou různých typů při běžné

Více

Příklad: Součet náhodných čísel ve vektoru s počtem prvků, které zadá uživatel, pomocí sum() a pomocí cyklu for. Ověříme, že příliš výpisů na

Příklad: Součet náhodných čísel ve vektoru s počtem prvků, které zadá uživatel, pomocí sum() a pomocí cyklu for. Ověříme, že příliš výpisů na Příklad: Součet náhodných čísel ve vektoru s počtem prvků, které zadá uživatel, pomocí sum() a pomocí cyklu for. Ověříme, že příliš výpisů na obrazovku zpomaluje tím, že zobrazíme okno (proužek) o stavu

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Příklady v MATLABu Přednáška 10 30. listopadu 2009 Řídící instrukce if else C Matlab if ( podmínka ) { } else { } Podmíněný příkaz if podmínka elseif podmínka2... else

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový 1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Úvod do práce s Matlabem

Úvod do práce s Matlabem Úvod do práce s Matlabem 1 Reálná čísla 1.1 Zadávání čísel Reálná čísla zadáváme s desetinnou tečkou (.), čísla lze také zadávat v exponenciálním tvaru například číslo 0.000014 zadáme takto 1.4e-5, číslo

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Globální extrémy. c ÚM FSI VUT v Brně. 10. ledna 2008

Globální extrémy. c ÚM FSI VUT v Brně. 10. ledna 2008 10. ledna 2008 Příklad. Určete globální extrémy funkce f(x, y) = x 2 + 2xy + 2y 2 3x 5y na množině M. Množina M je trojúhelník určený body A[0, 2], B[3, 0], C[0, 1]. Protože množina M je kompaktní (uzavřená,

Více

8.4. Shrnutí ke kapitolám 7 a 8

8.4. Shrnutí ke kapitolám 7 a 8 8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti

Více

Funkce více proměnných. April 29, 2016

Funkce více proměnných. April 29, 2016 Funkce více proměnných April 29, 2016 Příklad (Derivace vyšších řádů) Daná je funkce f (x, y) = x 2 y + y 3 x 4, určte její parc. derivace podle x a podle y prvního i druhého řádu, i smíšené. f x = 2xy

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Příklady k prvnímu testu - Matlab

Příklady k prvnímu testu - Matlab Příklady k prvnímu testu - Matlab March 13, 2013 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a naprogramujte příklad podobný. Tím se ujistíte, že příkladu rozumíte.

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov Polynomy opakování a pokračování 31. 10. 2012 Příklad: Funkce, která vykreslí

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Práce se symbolickými proměnnými Práce s grafikou Přednáška 11 7. prosince 2009 Symbolické proměnné Zjednodušení aritmetických výrazů simplify (s) Příklady: >>syms

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )

Zdrojem většiny příkladů je sbírka úloh   1. cvičení ( ) 2. cvičení ( ) Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem

Více

cyklus s daným počtem opakování cyklus s podmínkou na začátku (cyklus bez udání počtu opakování)

cyklus s daným počtem opakování cyklus s podmínkou na začátku (cyklus bez udání počtu opakování) Řídící příkazy: if podmíněný příkaz switch přepínač for while cyklus s daným počtem opakování cyklus s podmínkou na začátku (cyklus bez udání počtu opakování) if logický_výraz příkaz; příkaz; příkaz; Podmínka

Více

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Matematický software MAPLE slouží ke zpracování matematických problémů pomocí jednoduchého

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Seminář z MATLABU. Jiří Krejsa. A2/710 krejsa@fme.vutbr.cz

Seminář z MATLABU. Jiří Krejsa. A2/710 krejsa@fme.vutbr.cz Seminář z MATLABU Jiří Krejsa A2/710 krejsa@fme.vutbr.cz Obsah kurzu Posluchači se seznámí se základy systému Matlab, vědeckotechnickými výpočty, programováním v Matlabu včetně pokročilých technik, vizualizací

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

NÁHODNÁ VELIČINA. 3. cvičení

NÁHODNÁ VELIČINA. 3. cvičení NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Úvod do Matlabu. Vít Vondrák Katedra aplikované matematiky FEI, VŠB-TU Ostrava

Úvod do Matlabu. Vít Vondrák Katedra aplikované matematiky FEI, VŠB-TU Ostrava Úvod do Matlabu Vít Vondrák Katedra aplikované matematiky FEI, VŠB-TU Ostrava Co je Matlab? Interaktivní softwarový balík MathWorks Inc. Matlab=MATrix LABoratory Základním typem proměnné je matice Číslo

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

MATLAB, v , Release 13

MATLAB, v , Release 13 MATLAB, v. 6.5.0180913, Release 13 1. Úvod Jedná se o programový systém, jehož název znamená MATRIX LABORATORY. Používá se od roku 1984 v mnoha oborech k simulacím, měření, grafice. Používá se celosvětově

Více

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3, V. Lokální extrémy. Příklad 1: Určete lokální extrémy zadané funkce. 1. f(x, y) = x 2 + y 2 + xy 3y 2. Definičním oborem funkce je množina Df = R 2 a funkce f má spojité parciální = 2x + y, = 2y + x 3.

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

AVDAT Vektory a matice

AVDAT Vektory a matice AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce

Více

Numerická matematika Písemky

Numerická matematika Písemky Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R.

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R. Řešené příklady k extrémům funkcí více proměnných 8 Určete všechny lokální extrémy funkce fx y x + arctg x + y + y x y R Řešení Funkci f si vyjádříme jako součet f + f kde f x x + arctg x x R f y y + y

Více

Příklady k druhému testu - Matlab

Příklady k druhému testu - Matlab Příklady k druhému testu - Matlab 20. března 2013 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a naprogramujte příklad podobný. Tím se ujistíte, že příkladu

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10

Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 Obsah Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 KAPITOLA 1 Úvod 11 Dostupná rozšíření Matlabu 13 Alternativa zdarma GNU Octave 13 KAPITOLA 2 Popis prostředí

Více

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému 2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka

Více

Lineární a polynomická regrese, interpolace, hledání v tabulce

Lineární a polynomická regrese, interpolace, hledání v tabulce co byste měli umět po dnešní lekci: proložit body přímku, parabolu,... a určit chyby parametrů (u přímky) interpolovat mezi hodnotami v tabulce hledat v tabulce (1D) prokládání (fitování) křivek metoda

Více

Hledání extrémů funkcí

Hledání extrémů funkcí Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání

Více

Q(y) dy = P(x) dx + C.

Q(y) dy = P(x) dx + C. Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato

Více

Výpočet průsečíků paprsku se scénou

Výpočet průsečíků paprsku se scénou Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, minut. Součet Koeficient Body. 4. [10 bodů] Integrální počet. 5.

Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, minut. Součet Koeficient Body. 4. [10 bodů] Integrální počet. 5. Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, 6.2.204 60 minut 2 3 4 5 6 Jméno:................................... Součet Koeficient Body. [2 bodů] V následující tabulce do každého z šesti

Více

Univerzitní licence MATLABu. Pište mail na: se žádostí o nejnovější licenci MATLABu.

Univerzitní licence MATLABu. Pište mail na: se žádostí o nejnovější licenci MATLABu. Univerzitní licence MATLABu Pište mail na: operator@service.zcu.cz se žádostí o nejnovější licenci MATLABu. * násobení maticové K = L = 1 2 5 6 3 4 7 8 Příklad: M = K * L N = L * K (2,2) = (2,2) * (2,2)

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více