Úvod do fyziky plazmatu

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod do fyziky plazmatu"

Transkript

1 Úvod do fyziky plazmatu Definice plazmatu(typická) Plazma je kvazineutrální systém nabitých(a případně i neutrálních) částic, který vykazuje kolektivní chování. Pozn. Kolektivní chování je tedy podstatné, nicméně nemusí dominovat. Kdy je počet nabitých částic v plynu nezanedbatelný? Ionizační rovnováha- Sahova rovnice[jednotky SI] n i n e n n ( = T 3/2 exp U ) i k B T Napříkladzaatmosférickéhotlakuapřipokojovéteplotě n n = N A = m 3 Boltzmannovakonstanta k B k B = R N A = J/K = ev/k k B T = 1 ev T = K Produsík ionizačnípotenciál U i = 14.5 ev Přiteplotě11600Kapřiatmosférickéhustotěje n i n n = Teplota plazmatu bývá vysoká a často se porovnává s potenciály ionizace, proto se obvykle udává v energetických jednotkách(ev, kev). Kvazineutralita Celkový elektrický náboj je mnohem menší než celkové množství kladného náboje(a absolutní hodnota celkového záporného náboje).

2 Náboje různých druhů se přitahují. K tomu, aby se oddělily od sebe(vznikly makroskopické oblasti s nekompenzovaným nábojem) je zapotřebí určité energie. Náboje se mohou samovolně oddělit jen na vzdálenost, kterou jim dovolí jejich tepelná energie- vzdálenost, kdy se veškerá tepelná energie změní na potenciální energii. Jednoduchý fyzikální model jak silná(tloušťka ) nekonečná rovinná vrstva elektronů se může posunout proti iontům o celou svou tloušťku? Obrázek 1: Schéma posunutí vrstvy elektronů o tloušťce proti iontům o vzdálenost Vzniká kondenzátor s plošnou hustotou náboje σ a uvnitř je elektrické pole E σ = e n e E = σ ε 0 Potenciální energie, kterou je nutno dodat jednomu elektronu pro posun o je pro maximální tloušťku vrstvy právě rovna jeho tepelné energii U pot = e E = e2 n e 2 Toto senazýváelektronovádebyovadélka λ De ε 0 = k B T e ( ε0 k B T e λ De = = n e e 2 )1/2 (1)

3 Plazma je tedy kvazineutrální na vzdálenostech, které jsou podstatně větší než Debyova délka, podmínkou kvazineutrality je charakteristický rozměr Lplazmatu L λ De. Časová podmínka kvazineutrality- kvazinetralitu nemá cenu uvažovat u velmi rychlých jevů k oddálení nábojů dochází jen na určitou krátkou dobu. Rychlost uspořádaného pohybu elektronů Pohybová rovnice pro elektrony v = d d t m e d v d t = e2 n e ε 0 d2 d t 2 = e2 n e ε 0 m e To je rovnice harmonického oscilátoru s frekvencí ω rovnou elektronové plazmovéfrekvenci ω pe ω pe = e2 1/2 n e ε 0 m e Tedy kvazineutralita platí, pokud charakteristický čas děje τ je velký τ ω 1 pe. Debyovo stínění Probereme nyní podrobněji stínění statického náboje v plazmě. Poprvé ho Debye odvodil v teorii elektrolytů. Budeme používat makroskopického popisu s veličinami jako hustota(koncentrace)elektronů n e aiontů n i. Budemepředpokládat,žeteplotaelektronů T e nemusíbýtobecněrovna teplotěiontů T i.tosevplazmatustáváčasto,protože(jakpozdějiukážeme) je přenos energie mezi elektrony a ionty velmi pomalý. Na rozdíl od učebnice [Chen] připustíme, že plazma může být vícenásobně ionizovaná, označíme Z střední náboj iontů. Tedy náboj elektronu je q e = eanábojiontuje q i = Z e. (2)

4 Elektrostaticképolekolemnáboje q T umístěnéhovpočátkujedánopoissonovou rovnicí ϕ = ρ ε 0 = e ε 0 (n e Z n i ) q T ε 0 δ( r) Předpokládáme,žev (tamkde ϕ = 0)jehustotanáboje ρ = 0.Tedy n e = n 0 = Z n i. Předpokládáme rovnovážný stav a tepelnou energii elektronů i iontů podstatně větší než je Fermiho energie E F = π2 h 2 2m e ( 3ne π ) 2/3. Např. Fermiho energie pro pevné kovové látky bývají řádově několik ev. Pravděpodobnost obsazení hladin je pak dána Boltzmannovou statistikou atedy p exp( U/k B T).Tedy ( ) eϕ n e = n 0 exp k B T e n i = n ( 0 Z exp Z eϕ k B T i Hustoty elektronů a iontů lze teď dosadit do Poissonovy rovnice a tuto řešit. Řešení si zjednodušíme linearizací, budeme předpokládat, že potenciální energie je malá proti kinetické. Pro ) x 1 exp(x) 1 + x Pak 2 ϕ = e2 ( 1 n e + Z ) ε 0 T e T i Pro sférickou symetrii je 2 ϕ = 1 r 2 d dr ( ϕ r 2 dϕ dr pro r 0 Posubstituci ϕ = ϕ/rmápoissonovarovnicepro r > 0tvar kdedebyovadélka λ 2 Dje λ 2 D = λ 2 De + λ 2 Di λ De = d 2 ϕ dr 2 = ϕ λ 2 D ) k B T e ε 0 n e e 2 λ Di = k B T i ε 0 Z n e e 2 (3)

5 Při T e > T i /Zdominujeiontovéstíněnístatickéhonáboje.Kolemkaždé nabité částice je určité stínění. Aby vzniklo stacionární iontové stínění, musí být rychlost nabité částice mnohem menší než je tepelná rychlost iontů. Pokud je částice rychlejší než tepelné ionty, ale mnohem pomalejší než je tepelná rychlost elektronů, vytváří se stacionární stínění elektrony, ale stínění ionty je menší než u statického náboje. Potenciálstatickéhonáboje q T vplazmatuje ϕ = q ( T 4π ε 0 r exp r ) (4) λ D Plazmatedyodstínístatickýnábojnavzdálenost λ D. Odvození v sobě obsahovalo 2 předpoklady Při odvození jsme používali hustoty nabitých částic, což s rozumnou přesností lze jen, pokud se jedná o vzdálenosti velké ve srovnání se střednívzdálenostimezičásticemi,tedy λ D musíbýtvelkéatudíž počet částic v Debyově sféře N D = 4π 3 λ3 De n e = 4π 3 ε 3/2 0 k 3/2 B Te 3/2 e 3 ne 1/2 1 (5) Veličině N D nebojejímunásobkuseříkáplazmatickýparametr.brzy uvidíme,žejenpři N D 1převažujekolektivnípůsobenínadbinárním působením částic v plazmatu. Pokud je splněna podmínka N D 1,mluvímeoideálnímplazmatu. Pozn. V ideální plazmatu tedy kolektivní působení dominuje nad binární interakcí částic. Při linearizaci Poissonovy rovnice jsme předpokládali, že potenciální energie nabitých částic eϕ je mnohem menší než jejich tepelná energie k B T e.tojistěneplatívbezprostředníblízkostipočátku,aletam neplatíanipředchozípředpoklad.stačítedypředpokládat,že q T je takmalé,ženastřednívzdálenostimezielektrony R e = [3/(4πn e )] 1/3 nerovnost platí. Plazmováfrekvence ω pe,elektronovádebyovadélka λ De atepelnárychlost elektronů v Te splňujíjednoduchývztah v Te = k B T e /m e = λ De ω pe (6)

6 Kolektivní chování Pojmem kolektivní chování označujeme vzájemné působení částic pomocí makroskopických elektromagnetických polí na rozdíl od mikroskopických polí, kterými na sebe působí částice při binární srážce. Pro převahu kolektivního chování musí být kolektivní působení, charakterizované elektronovouplazmovoufrekvenci ω pe,silnějšínežjebinárnípůsobenícharakterizovanésrážkovoufrekvencí ν c.musítedyplatit ω pe > ν c. Srážky mezi nabitými částicemi Chceme odvodit srážkovou frekvenci, pro jednoduchost budeme předpokládat,žeseneměnísložkarychlosti v 0 nalétávajícíčásticevesměrupohybu předsrážkou(platíprovelká b,kdydocházíjenkmalézměněsměrupohybu částice) Obrázek2:Schémasrážky2nabitýchčástic(ˆrjejednotkovývektorvesměru r, bje srážkový parametr) Kolmou složku hybnosti částice získáme časovou integrací impulsu síly m v = F (t) dt Kolmá složka síly je dána vztahem F = q q 0 4π ε 0 r 2 sinθ = q q 0 4π ε 0 b 2 sin3 θ,

7 kdejsmevyužilivztahu r = b/ sinθ. Závislost F načasejedánazávislostíúhlu θ.pohybvesměru ˆxpokládáme zarovnoměrný,aproto t = x/v 0 = r cosθ/v 0 = b cos θ/(v 0 sinθ)a tedy dt = b dθ v 0 sin 2 θ Po dosazení q q 0 q q 0 π v = 4π ε 0 m b 2 sin3 θ(t)dt = 4π ε 0 m b v sinθdθ = v 0 b b kde b 0 jelandauovadélka b 0 = 1 2q q 0 4π ε 0 m v0 2 (7) Srážkovýparametr b 0 odpovídározptyluna90,tedysituaci,kdyčástice ztratilapůvodnísměrrychlosti.účinnýprůřezprorozptylnaúhel 90 je σ = π b 2 0. Srážková frekvence(pro rozptyl na velké úhly) ν L = πn 0 v 0 b 2 0 = 4πn 0 (4πε 0 ) 2 q 2 q 2 0 m 2 v 3 0 Rozptyl na malé úhly Elektrostatické pole- síla dalekého dosahu- nad rozptylem na velké úhly často převažuje suma mnoha rozptylů na malé úhly. Ke ztrátě původní orientace rychlosti tedy pravděpodobně dojde mnoha malými změnami vektoru rychlosti dříve než dojde k jedné srážce s velkým úhlem rozptylu. Srážková frekvence je pak definována jako 1 lomeno průměrnou dobou, za kterou částice ztratí původní orientaci rychlosti. Historii pohybu částice lze považovat za náhodnou procházku v prostoru rychlostí. Dojde-li v určitém časovém intervalu k N srážkám, je změna např. y složky rychlosti v y = v y1 + v y v yn, přitomstředníhodnota v y = v yi = 0.Poněvadžlzepovažovatjednotlivésrážkyzanekorelované,jedisperze v y D vy = ( v y ) 2 = ( N v yi ) 2 = N ( vyi ) 2 = N ( v y1 ) 2 i=1 i=1

8 Pro jednu srážku se srážkovým parametrem b je v 2 = ( vy ) 2 + ( v z ) 2 = v2 0 b 2 0 b 2 Protože disperze je pro obě kolmé složky rychlosti stejná, je ( vy ) 2 tot = N 2 v 2 0 b 2 0 b 2 Počet srážek se srážkovým parametrem v intervalu db je dn = n 0 v 0 2πb db a tedy celková disperze kolmé složky rychlosti je dána vztahem d ( vy ) 2 tot = π n0 v0 3 b 2 0 dt db b = π n 0 v 3 0 b 2 0 ln b max b min Divergující integrál jsme museli omezit. Spodní hranice je dána předpoklademrozptylůnamaléúhly,atenprosrážkovéparametrymenšínež b 0 zjevně neplatí. Pro velké srážkové parametry neplatí předpoklad o Coulombovském působení mezi částicemi, neboť se zde uplatní Debyovské stínění, protovolíme b max = λ De. Označmeprosrážkumezielektronystepelnourychlostí v Te Λ = λ De b 0 = 2πε 0 λ De m e v 2 Te e 2 = 2π n e λ 3 De = 3 2 N D (8) Veličina Λjevelkávideálnímplazmatu,kdeplazmovýparametr N D 1. Veličina lnλ se nazývá Coulombův(Coulombovský) logaritmus, je to poměr srážkové frekvence všech srážek k frekvenci rozptylu na úhly větší než 90.Jejítypickáhodnotavideálnímplazmatubývá5 20. Srážkováfrekvenceprosrážkyelektronůsrychlostí v 0 selektronyje ν = 8π n 0 e 4 (4πε 0 ) 2 m 2 e v 3 0 lnλ SrážkováfrekvenceCoulombovskýchsrážekje v 3 astřednívolnádráha je v 4,protorelativněrychléelektronyzkoncerozdělenírychlostímají málo srážek a mohou bez větší změny směru projít poměrně velkou vzdálenost.

9 Srážkovoufrekvencielektronůstepelnourychlostí v 0 = v Te = (k B T e /m e ) 1/2 nazýváme efektivní srážkovou frekvencí ν c = Poměr srážkové frekvence k plazmové frekvenci je ν c = 1 ω pe 2π lnλ n 0 λ 3 De 8π n e e 4 lnλ (4πε 0 ) 2 m 1/2 e (k B T e ) 3/2 (9) = ln(3n D/2) 3N D /2 ( 1 pro N D 1 ) a proto v ideálním plazmatu je efektivní srážková frekvence mnohem menší než elektronová plazmová frekvence a vliv kolektivní interakce pomocí makroskopických elektromagnetických polí dominuje nad vlivem srážek. Pro popis některých jevů lze tedy použít přiblížení bezesrážkového plazmatu. Poměr potenciální a kinetické energie Porovnejme energii elektronu v poli nejbližšího elektronu, vzdáleného o střednívzdálenost R e = (3/4π n e ) 1/3 sjehokinetickouenergií W p e2 4πε 0 R e = W p W k 2 9 e 2 n 1/3 e 3 1/3 (4π) 2/3 ε 0 W k 3 2 k B T e 3 4π e 3 n 1/2 e ε 3/2 0 k 3/2 B Te 3/2 2/3 = 2 9N 2/3 D V ideálním plazmatu je tedy kinetická energie částic mnohem větší než jejich vazebná(potenciální) energie. Jde tedy o slabě vázané plazma. Tím se ideální plazma přibližuje plynu, a proto často mluvíme o ionizovaném plynu. Stavová rovnice ideálního plynu je pak dobrou aproximací stavové rovnice elektronů v plazmatu. Parametr vázanosti plazmatu Γ Uspořádání iontů je dáno poměrem potenciální energie 2 sousedních iontů sestřednímnábojemzvestřednívzdálenosti R i kekinetickéenergiiiontu Γ = Z 2 e 2 ( 4π = 4πε 0 R i k b T i 3 ) 1/3 Z 2 e 2 n 1/3 i 4πε 0 k B T i (10) Pokud Γ 1jednáseoslaběvázané(weaklycoupled)plazma,kdejsou ionty neuspořádané jako v plynu. Stavová rovnice ideálního plynu je pak

10 dobrou aproximací iontové stavové rovnice v plazmatu, navíc lze pak obvykle zanedbat i interakční energii mezi elektrony a ionty. Ideální plazma je plazma slabě vázané. V dynamice ideálního plazmatu obvykle vystačíme s klasickým(nekvantovým) popisem. Naopakpři Γ 1sejednáosilněvázanéplazma,kdejsouiontyksobě vázány obdobně jako v kapalině či pevné látce. Kvantové efekty hrají podstatnou roli v chování silně vázaného plazmatu. Degenerované plazma Degenerovaný je elektronový plyn a tudíž degenerované plazma má menší elektronovouteplotu T e nežjefermihoenergie E F Různé typy plazmatu k B T e < E F = π2 h 2 2m e ( 3ne π ) 2/3. Plazma v přírodě Ideální- výboje; ionosféra; sluneční vítr; vnější vrstvy hvězd; mezihvězdný plyn Ideální i neideální- vnitřky hvězd Neideální- elektronový plyn v kovech(degenerované plazma), elektrolyty Plazma v laboratoři Ideální- výboje různých typů(elektronky, výboje pro čerpání plynových laserů, pinče, kapilární výboj); MHD generátory; iontové motory Ideální i neideální- laserové plazma Plazma, které nesplňuje definice Častomluvímeoplazmatutam,kdenászajímajíobdobnéjevyjakov plazmatu(např. kolektivní chování systému), ačkoliv definice splněna není neneutrální plazma- intenzivní částicové svazky

11 Počet částic (elektronů + iontů) v Debyově sféře Převzato z R.P. Drake, High-Energy-Density Physics, Springer 2006 (a) Plazma z materiálů s vysokým atomovým číslem, kde se předpokládá střední ionizace Z = 0.63 Te, kde T je v ev. (b) Plazma z materiálů s nízkým atomovým číslem, kde se předpokládá střední ionizace Z=4

12 Obrázek 3: Typické parametry různých forem plazmatu

13 Obrázek 4: Typické teploty a hustoty různých forem plazmatu

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Lenka Zajíčková, Ústav fyz. elektroniky Doporučená literatura: J. A. Bittencourt, Fundamentals of Plasma Physics, 2003 (3. vydání) ISBN 85-900100-3-1 Navazující a související přednášky:

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

Úvod do vln v plazmatu

Úvod do vln v plazmatu Úvod do vln v plazmatu Co je to vlna? (fázová a grupová rychlost) Přehled vln v plazmatu Plazmové oscilace Iontové akustické vlny Horní hybridní frekvence Elektrostatické iontové cyklotronové vlny Dolní

Více

Plazmové metody. Základní vlastnosti a parametry plazmatu

Plazmové metody. Základní vlastnosti a parametry plazmatu Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.

Více

Kovy - model volných elektronů

Kovy - model volných elektronů Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

2. Statistický popis plazmatu

2. Statistický popis plazmatu Statistický popis plazmatu 60 Statistický popis plazmatu Při popisu typického plazmatu je technicky nemožné popsat trajektorie všech částic Jen v řídkém plazmatu mezihvězdného prostoru nalezneme miliony

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Základní experiment fyziky plazmatu

Základní experiment fyziky plazmatu Základní experiment fyziky plazmatu D. Vašíček 1, R. Skoupý 2, J. Šupík 3, M. Kubič 4 1 Gymnázium Velké Meziříčí, david.vasicek@centrum.cz 2 Gymnázium Ostrava-Hrabůvka příspěvková organizace, jansupik@gmail.com

Více

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE. ATOMY + MOLEKULY ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE H ˆψ = Eψ PRO PŘÍPAD POTENCIÁLNÍ ENERGIE Vˆ = Ze 2 4πε o r ŘEŠENÍ HLEDÁME

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum

Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Urychlení KZ Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Obecné principy Netermální vznik nekompatibilní se spektrem KZ nerealistické teploty E k =3/2 k B T, Univerzalita tvaru spektra

Více

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním

Více

elektrony v pevné látce verze 1. prosince 2016

elektrony v pevné látce verze 1. prosince 2016 F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

Vnitřní magnetosféra

Vnitřní magnetosféra Vnitřní magnetosféra Plazmasféra Elektrické pole díky konvenkci (1) (Convection Electric Field) Vodivost σ, tj. ve vztažné soustavě pohybující se s plazmatem rychlostí v je elektrické pole rovno nule (

Více

Plazma v kosmickém prostoru

Plazma v kosmickém prostoru Plazma v kosmickém prostoru Literatura F. F. Chen, Úvod do fyziky plazmatu Academia, Praha, 1984 D. A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics: With Space and Laboratory Applications

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Fyzika atomového jádra

Fyzika atomového jádra Fyzika atomového jádra (NJSF064) František Knapp http://www-ucjf.troja.mff.cuni.cz/~knapp/jf/ frantisek.knapp@mff.cuni.cz Slupkový model jádra evidence magických čísel: hmoty, separační energie, vazbové

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami

Více

4. Stanovení teplotního součinitele odporu kovů

4. Stanovení teplotního součinitele odporu kovů 4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

2.6. Koncentrace elektronů a děr

2.6. Koncentrace elektronů a děr Obr. 2-11 Rozložení nosičů při poloze Fermiho hladiny: a) v horní polovině zakázaného pásu (p. typu N), b) uprostřed zakázaného pásu (vlastní p.), c) v dolní polovině zakázaného pásu (p. typu P) 2.6. Koncentrace

Více

Počítačový model plazmatu. Vojtěch Hrubý listopad 2007

Počítačový model plazmatu. Vojtěch Hrubý listopad 2007 Počítačový model plazmatu Vojtěch Hrubý listopad 2007 Situace Zajímá nás, co se děje v okolí kovové sondy ponořené do plazmatu. Na válcovou sondu přivedeme napětí U Očekáváme, že se okolo sondy vytvoří

Více

Tepelná vodivost pevných látek

Tepelná vodivost pevných látek Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK

Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Sluneční dynamika Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Slunce: dynamický systém Neměnnost Slunce Iluze Slunce je proměnná hvězda Sluneční proměny Díky vývoji Dynamika hmoty Magnetická

Více

Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou

Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,

Více

E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií

E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií Polovodiče To jestli nazýváme danou látku polovodičem, závisí především na jejích vlastnostech ve zvoleném teplotním oboru. Obecně jsou to látky s 0 ev < Eg < ev. KOV POLOVODIČ E g IZOLANT Zakázaný pás

Více

Petr Zikán. Studentský seminář, Březen 2011

Petr Zikán. Studentský seminář, Březen 2011 Sondová měření v plazmatu Petr Zikán Studentský seminář, Březen 2011 Přehled prezentace 1 Child-Langmuirův zákon Přehled prezentace 1 Child-Langmuirův zákon 2 Sheath a pre-sheath Přehled prezentace 1 Child-Langmuirův

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

Lekce 4 Statistická termodynamika

Lekce 4 Statistická termodynamika Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty

Více

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla; TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla

Více

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

Plazmové svařování a dělení materiálu. Jaromír Moravec

Plazmové svařování a dělení materiálu. Jaromír Moravec Plazmové svařování a dělení materiálu Jaromír Moravec 1 Definice plazmatu Definice plazmatu je následující: Plazma je kvazineutrální soubor částic s volnými nosiči nábojů, který vykazuje kolektivní chování.

Více

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

Šíření tepla. Obecnéprincipy

Šíření tepla. Obecnéprincipy Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné. Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností

Více

Látkové množství n poznámky 6.A GVN

Látkové množství n poznámky 6.A GVN Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové

Více

Vojtěch Hrubý: Esej pro předmět Seminář EVF

Vojtěch Hrubý: Esej pro předmět Seminář EVF Vojtěch Hrubý: Esej pro předmět Seminář EVF Plazma Pod pojmem plazma většinou myslíme plynné prostředí, které se skládá z neutrálních částic, iontů a elektronů. Poměr množství neutrálních a nabitých částic

Více

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 2 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografické zobrazení kartografické zobrazení vzájemné přiřazení polohy bodů na dvou různých referenčních

Více

Řešení. Označme po řadě F (z) Odtud plyne, že

Řešení. Označme po řadě F (z) Odtud plyne, že Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme

Více

TECHNIKA VYSOKÝCH NAPĚŤÍ. #4 Elektrické výboje v elektroenergetice

TECHNIKA VYSOKÝCH NAPĚŤÍ. #4 Elektrické výboje v elektroenergetice TECHNIKA VYSOKÝCH NAPĚŤÍ #4 Elektrické výboje v elektroenergetice Korónový výboj V homogenním elektrickém poli dochází k celkovému přeskoku mezi elektrodami najednou U nehomogenních uspořádání dochází

Více

Lekce 9 Metoda Molekulární dynamiky III. Technologie

Lekce 9 Metoda Molekulární dynamiky III. Technologie Lekce 9 Metoda molekulární dynamiky III Technologie Osnova 1. Výpočet sil. Výpočet termodynamických parametrů 3. Ekvilibrizační a simulační část MD simulace Výpočet sil Pohybové rovnice ɺɺ W mk rk = FK,

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1 Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní

Více

KINETICKÁ TEORIE LÁTEK

KINETICKÁ TEORIE LÁTEK ZÁKLADNÍ POZNATKY V mechanice je pohled na tělesa makroskopický makros = veliký, na zákon zachování energie pohlížíme tak, že nás nezajímá částicová struktura, v molekulové fyzice se zajímáme o tom, co

Více

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino

Více

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná

Více

Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje

Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Přednáška 4 Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Jak nahradit ohřev při vypařování Co třeba bombardovat ve vakuu

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních

Více

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita

Více

Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy

Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných

Více

Prověřování Standardního modelu

Prověřování Standardního modelu Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference

Více

4.1.7 Rozložení náboje na vodiči

4.1.7 Rozložení náboje na vodiči 4.1.7 Rozložení náboje na vodiči Předpoklady: 4101, 4102, 4104, 4105, 4106 Opakování: vodič látka, ve které se mohou volně pohybovat nosiče náboje (většinou elektrony), nemohou ji však opustit (bez doteku

Více

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e 8 Atom vodíku Správné řešení atomu vodíku je jedním z velkých vítězství kvantové mechaniky. Podle klasické fyziky náboj, který se pohybuje se zrychlením (elektron obíhající vodíkové jádro proton), by měl

Více

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014 F40 Kvantová fyzika atomárních soustav letní semestr 03-04 VIII. Vibrace víceatomových molekul cvičení KOTLÁŘSKÁ 3. DUBNA 04 Úvodem capsule o maticích a jejich diagonalisaci definice "vibračních módů"

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Základy molekulové fyziky a termodynamiky

Základy molekulové fyziky a termodynamiky Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Většina atomů má tendenci se spojovat do větších celků (molekul), v nichž jsou vzájemně vázané chemickou vazbou. Chemická vazba je

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ

Více

Technika vysokých napětí. Elektrické výboje v elektroenergetice

Technika vysokých napětí. Elektrické výboje v elektroenergetice Elektrické výboje v elektroenergetice Korónový výboj V homogenním elektrickém poli dochází k celkovému přeskoku mezi elektrodami najednou U nehomogenních uspořádání dochází k optickým a akustickým projevům

Více

Modelování plazmatu. Katedra fyziky, Západočeská univerzita v Plzni, 2018

Modelování plazmatu. Katedra fyziky, Západočeská univerzita v Plzni, 2018 Modelování plazmatu Přednášky k předmětu KFY/MPPL Tomáš Kozák Katedra fyziky, Západočeská univerzita v Plzni, 2018 Obsah 1 Úvod do modelování plazmatu 2 Řešení Boltzmannovy rovnice pro elektrony 1 Úvod

Více

Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole

Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Vliv na tvar

Více

Kvantová mechanika - model téměř volných elektronů. model těsné vazby

Kvantová mechanika - model téměř volných elektronů. model těsné vazby Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme

Více

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

Dualismus vln a částic

Dualismus vln a částic Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz

Více

MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE

MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE 26. mezinárodní konference DIAGO 27 TECHNICKÁ DIAGNOSTIKA STROJŮ A VÝROBNÍCH ZAŘÍZENÍ MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE Jiří TŮMA VŠB Technická Univerzita Ostrava Osnova Motivace Kalibrace měření Princip

Více

V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6.

V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6. Nekvantový popis interakce světla s pasivní látkou Zcela nekvantová fyzika nemůže interakci elektromagnetického záření s látkou popsat, např. atom jako soustava kladných a záporných nábojů by vůbec nebyl

Více

V nejnižším energetickém stavu valenční elektrony úplně obsazují všechny hladiny ve valenčním pásu, nemohou zprostředkovat vedení proudu.

V nejnižším energetickém stavu valenční elektrony úplně obsazují všechny hladiny ve valenčním pásu, nemohou zprostředkovat vedení proudu. POLOVODIČE Vlastní polovodiče Podle typu nosiče náboje dělíme polovodiče na vlastní (intrinsické) a příměsové. Příměsové polovodiče mohou být dopované typu N (majoritními nosiči volného náboje jsou elektrony)

Více