Prohlašuji, že jsem svou bakalářskou práci napsala samostatně a výhradně s použitím citovaných pramenů.

Rozměr: px
Začít zobrazení ze stránky:

Download "Prohlašuji, že jsem svou bakalářskou práci napsala samostatně a výhradně s použitím citovaných pramenů."

Transkript

1 Masarykova Univerzita Přírodovědecká fakulta BAKALÁŘSKÁ PRÁCE Karolína Mladá Jednoduché strukturální modely časových řad Vedoucí práce: RNDr. Marie Forbelská, Ph.D. Studijní program: Aplikovaná matematika Studijní obor: Statistika a analýza dat 2010

2 Poděkování Děkuji paní RNDr. Marii Forbelské, Ph.D. za odborné vedení mé bakalářské práce, čas strávený na konzultacích a za nadhled nad danou problematikou, který mi celou dobu pomáhala udržet. Prohlašuji, že jsem svou bakalářskou práci napsala samostatně a výhradně s použitím citovaných pramenů. V Brně dne Karolína Mladá

3 Název práce: Jednoduché strukturální modely časových řad Autor: Karolína Mladá Ústav matematiky a statistiky Přírodovědecké fakulty MU Vedoucí bakalářské práce: RNDr. Marie Forbelská, Ph.D. Abstrakt: Tématem bakalářské práce jsou jednoduché strukturální modely časových řad. Práce je rozdělena do čtyř kapitol. První kapitola představuje teoretický základ obsahující pojmy a vztahy používané v dalších částech práce. Druhá kapitola popisuje jednotlivé typy přístupů k analýze časových řad. Třetí kapitola se zaměřuje na vysvětlení dynamického přístupu při modelování časových řad a způsobu jejich zápisu pomocí stavově- prostorových modelů. Ve čtvrté kapitole jsou uvedeny jednoduché strukturální modely časových řad, a to konkrétně modely trendu a sezónní složky. Klíčová slova: časové řady, stavově- prostorové modely, strukturální dynamické modely, trend, sezónnost Title: Simple structural time series models Author: Karolína Mladá Department of Mathematics and Statistics, Faculty of Science, MU Supervisor: RNDr. Marie Forbelská, Ph.D. Abstract: The theme of the bachelor thesis are the simple structural models of time series. The paper is divided into four chapters. The first one represents the theoretical basis and contains terminology and equations used in the following sections of the thesis. The second chapter describes various ways of analysing time series. The third chapter explains the dynamic way ofmodelingtimeseriesandhowtowritethemusingthestate-spacemodels. In the fourth chapter are introduced the simple structural models of time series, concretely models with trend and seasonal components. Keywords: time series, state- space models, structural dynamic models, trend, seasonal components

4 Obsah Úvod 2 1 Základní pojmy z teorie náhodných procesů Definicenáhodnéhoprocesu Stochasticképrocesydruhéhořádu Procesynestacionárnívestředníhodnotě Analýza časových řad Časovéřady Základnípřístupykanalýzečasovýchřad Klasickádekompozicečasovýchřad Dynamické lineární modely Motivačnípříklad Stavově-prostorovémodely Jednoduché strukturální modely časových řad Trend Sezónnost Závěr 24 Seznam použité literatury 25 1

5 Úvod Analýza časových řad je velmi důležitou disciplínou matematické statistiky. Tématem bakalářské práce jsou jednoduché strukturální modely časových řad. Práce je rozdělena do čtyř kapitol. První kapitola představuje teoretický základ obsahující pojmy a vztahy používané v dalších částech práce. Druhá kapitola popisuje jednotlivé typy přístupů k analýze časových řad. Třetí kapitola se zaměřuje na vysvětlení dynamického přístupu při modelování časových řad a způsobu jejich zápisu pomocí stavově- prostorových modelů. Ve čtvrté kapitole jsou uvedeny jednoduché strukturální modely časových řad, a to konkrétně modely trendu a sezónní složky. V prvních třech kapitolách jsem čerpala především ze skript Stochastické modelování jednorozměrných časových řad od RNDr.Forbelské Ph.D, jejích učebních materiálů k předmětu Lineární statistické modely a ze skript Základní statistické metody od RNDr.Budíkové, PhD. Ve čtrvté kapitole jsem vycházela především z druhé kapitoly anglické knihy od A.C.Harveyho Forecasting, structural series and the Kalman filter a knihy Dynamic Linear Models with R od G.Petris, S.Petrone a P.Campagnoli. 2

6 Kapitola 1 Základní pojmy z teorie náhodných procesů 1.1 Definice náhodného procesu Definice Nechť je dán pravděpodobnostní prostor(ω, A, P), indexová množina T Rareálnáfunkce Y:Ω T Rdefinovanápro ω Ωa t T. Jestližepro t Tje Y(ω, t)borelovskyměřitelnáfunkcevzhledemka (tj.pro B B a t Tplatí Y 1 (B)={ω Ω:Y(ω, t) B} A, kde B je σ-algebra borelovských podmnožin), pak tuto funkci nazýváme(n- rozměrným) náhodným procesem. Náhodnýproces Y(ω, t)připevném ω Ωsenazývárealizace(trajektorie) procesu. Pravěpodobnostnímíru P Y (B)=P(Y 1 (B))nazývámerozdělenípravděpodobností náhodného procesu Y(ω, t). Poznámka.Obdobnějakounáhodnýchveličin,kdemísto Y(ω), ω Ωpíšeme pouze Y,unáhodnýchprocesůbudememísto {Y(ω, t), ω Ω, t T }psát {Y t, t T }. Definice1.1.2.Pokudindexovámnožina T= Z=0, ±1, ±2,...nebo T Z, mluvíme o procesu s diskrétním časem či o náhodné posloupnosti. 3

7 KAPITOLA 1. ZÁKLADNÍ POJMY Z TEORIE NÁHODNÝCH PROCESŮ Poznámka.Pozdějibudemeunáhodnéhoprocesu {Y t, t T }indexovou množinu Tinterpretovatjakočasapokud T= Z,budemetentoprocesnazývat pouze časovou řadou. Definice1.1.3.Pokudindexovámnožina T= t 1, t 2,kde t 1 t 2, říkáme,že Y t, t Tjenáhodnýprocessespojitýmčasem. Dvojice(S,S),kde Sjemnožinahodnotnáhodnýchveličin Y t as je σ-algebra podmnožin S,senazývástavovýprostorprocesu {Y t, t T }. Pokudnáhodnéveličiny Y t nabývajípouzediskrétníchhodnot,říkáme,žejde o proces s diskrétními stavy. Nabývají-li hodnot z nějakého intervalu, mluvíme o procesu se spojitými stavy. Definice1.1.4.Nechť T n jemnožinavšechvektorů T n =t=(t 1,...,t n ) : t 1 t 2 t n ; t i T; i=1,..., n. Pak(konečně dimenzionální) distribuční funkcí náhodného procesu rozumíme funkci F t (y)=f t1,...,t n (y 1,...,y n )=P(Y t1 y 1,...,Y tn y n ) = P Yt ((, y 1 >,...,(, y n >) pro t=(t 1,...,t n ) T n a y=(y 1,...,y n ) R n. 4

8 KAPITOLA 1. ZÁKLADNÍ POJMY Z TEORIE NÁHODNÝCH PROCESŮ 1.2 Stochastické procesy druhého řádu Definice Jestliže pro t=(t 1,...,t n ) T n apro τ=(t 1 + h,...,t n + h) T n platí F t (y)=f t1,...,t n (y 1,...,y n )=F τ1,...,τ n (y 1,..., y n )=F τ (y), pakřekneme,ženáhodnýproces {Y t, t T }jestriktněstacionární. Rovnost lze interpretovat tak, že základní pravděpodobnostní charakteristiky procesuseneměnípřoposunutívčase. Definice Existuje-lipro t T středníhodnota E(Y t ),paknazýváme funkci µ=e(y t )středníhodnotounáhodnéhoprocesu. Definice Jestližepro t T platí E(Y 2 t) <,paknáhodnýproces {Y t, t T }nazývámeprocesemdruhéhořáduaříkáme,ženáhodnýproces má konečné druhé momenty. Definice1.2.4.Náhodnýproces {Y t, t T }nazývámestacionárnívestřední hodnotě,pokudpro t Tjestředníhodnotakonstantní,tj. E(Y t )=µ. Pokud E(Y t )=0,nazývámenáhodnýprocescentrovaným. Definice1.2.5.Uvažujemenáhodnýproces {Y t, t T },kterýmákonečnédruhé momenty. Pak funkci γ(s, t)=c(y s, Y t )=E(Y s E(Y s ))(Y t E(Y t )) nazveme autokovarianční funkcí. Poznámka. Tato reálná funkce dvou proměnných dává informaci o lineárním vztahumezijakoukolivdvojicínáhodnýchveličin Y s a Y t. Definice1.2.6.Náhodnýproces {Y t, t T }senazývákovariančně stacionární,pokudpro t, s Tplatí γ(s, t)=γ(0, s t ), cožbudemetaképsátveformě γ(s, t)=γ(s t),tj.autokovariančnífunkcezávisí na svých argumentech pouze prostřednictvím jejich rozdílů. 5

9 KAPITOLA 1. ZÁKLADNÍ POJMY Z TEORIE NÁHODNÝCH PROCESŮ Definice1.2.7.Náhodnýproces {Y t, t T }senazývá (slabě) stacionární, je-li kovariančně stacionární, tj. γ(s, t)=γ(s t) pro t, s T, a navíc stacionární ve střední hodnotě, tj. E(Y t )=µ pro t T. Poznámka. Přívlastek slabě se většinou vynechává. Lze snadno ukázat, že je-li proces striktně stacionární, je také stacionární. Opačná implikace však neplatí. Definice1.2.8.Nechťnáhodnýproces {Y t, t T }jestacionární.označme a zaveďme funkci γ(0)=σ 2 ϱ(t)= γ(t) σ 2 = γ(t) γ(0). Tuto funkci nazveme autokorelační funkcí stacionárního náhodného procesu. Nyní definujme náhodné procesy, které budou hrát důležitou roli v aplikacích. Definice Řekneme,ženáhodnýproces {ε t, t T }jebílým šumem (WhiteNoise),jestliže ε t jsounekorelovanénáhodnéveličinysnulovoustřední hodnotou, tj. značíme E(ε t )=0, D(ε t )=σ 2, C(ε t, ε s )=0 (s t), ε t WN(0, σ 2 ). Pokud jsou navíc nejen nekorelované, ale i nezávislé, značíme je symbolem IID (independent identical defined), píšeme ε t IID(0, σ 2 ). Poznámka. Bílý šum je nejjednodušší specifikace náhodné fluktuace. Je to posloupnost náhodných nekorelovaných proměnných s konstantní střední hodnotou (v tomto případě 0) a konstantním rozptylem. 6

10 KAPITOLA 1. ZÁKLADNÍ POJMY Z TEORIE NÁHODNÝCH PROCESŮ Věta1.1.Náhodnéprocesy ε t WN(0, σ 2 )aε t IID(0, σ 2 )jsoustacionárními náhodnými procesy Důkaz. Zřejmý. Definice Náhodnýproces {Y t, t T }senazývágaussovským(normálním),jestližeprokaždépřirozené nalibovolnáčísla t j T, j=1,...,n,je jeho n-rozměrnádistribučnífunkce F t1,...,t n (y 1,...,x n )distribučnífunkcí n-rozměrného normálního rozdělení. Věta 1.2.Gaussůvnáhodnýproces {Y t, t T }jestacionární,právěkdyžje striktně stacionární. Důkaz. Triviální, plyne z vlastností normálního rozdělení. Definice Řekneme, ženáhodnýproces {Y t, t T }splňujelineární regresní model, pokud pro jeho střední hodnotu platí t T: E(Y t )=µ t = m β j f j (t), j=0 kde f 0,...,f m jsouznáméfunkcedefinovanénat, β=(β 0,...,β n ) jeneznámývektorregresníchparametrů. Pro lepší představu o lineárním regresním modelu předpokládejme, že mezi nějakýminenáhodnýmiveličinami y, x 1,...,x k platílineárnívztah y= β 1 x β k x k, vekterémjsou β 1,...,β k neznámýmiparametry. Informace o těchto parametrech můžeme získávat pomocí experimentu, a to tak, že budeme opakovaně měřit hodnoty veličin y při vybraných hodnotách proměnných x 1,..., x k. Při měření však vznikají chyby, což lze modelovat takto Y= β 1 x β k x k + ε t, kde ε t jenáhodnáchybaměření. Opakovanéhodnotysledovanýchveličinsepro i=1,..., nznačí Y i, x i1,...,x ik. Celkově jsme tedy dostali model Y 1 = β 1 x β k x 1k + ε 1. Y n = β 1 x n β k x nk + ε n 7

11 KAPITOLA 1. ZÁKLADNÍ POJMY Z TEORIE NÁHODNÝCH PROCESŮ vyjádřený maticově jako Y 1. Y n Y x x 1k β 1 ε 1 = x n1... x nk β k ε n X(matice plánu) β ε Klasickým konkrétním příkladem lineárního modelu je jednoduchá lineární regrese,kdepředpokládáme,ženezávislénáhodnéveličiny Y i pro(i=1,...,n) mají normální rozdělení Y i N(µ i = β 0 + β 1 x i, σ 2 ), kde x i jsoudanékonstanty,kterénejsouvšechnystejné. Rozptyly Y i jsoustejné,zatímcostředníhodnotylzevyjádřitjakolineárnífunkci známýchkonstant x i pomocíneznámýchparametrů β 0 a β 1. V tomto případě zapíšeme vektor závisle proměnných ve tvaru Y =. 1 x 1 matici plánu X =.., vektor regresních koeficientů β = 1 x n ε 1 avektorchyb ε=., přičemž ε N n (0, σ 2 I n ). ε n Definice Nechť {Y t, t Z}jeposloupnostnáhodnýchveličin. Operátor zpětného posunutí(backshift operator) je definován pomocí výrazu BY t = Y t 1, přičemž jej lze aplikovat několikanásobně jako Y 1 Y n ( β0 β 1, ) B j Y t = Y t j 8

12 KAPITOLA 1. ZÁKLADNÍ POJMY Z TEORIE NÁHODNÝCH PROCESŮ Tzv. diferenční operátor zavádíme pomocí vztahu: Y t = Y t Y t 1 =(1 B)Y t 2 Y t = ( Y t )= (Y t Y t 1 ). =(Y t Y t 1 ) (Y t 1 Y t 2 ) = Y t 2Y t 1 + Y t 2 =(1 B) 2 Y t d Y t =(1 B) d Y t. Definice Definujme ARMA proces řádu p,q vztahem Y t ϕ 1 Y t 1... ϕ p Y t p = ε t + θ 1 ε t θ q ε t q, kde ε t WN(0, σ 2 ), přičemž pomocí operátoru zpětného chodu lze psát Y t ARMA(p, q):φ(b)y t =Θ(B)ε t, kde φ(b)=1 ϕ 1 B... ϕ p B p (ϕ 0 1) a Θ(B)=1+θ 1 B+...+θ q B q (θ 0 1). Řekneme,že {Y t, t Z}jeARMA(p,q)sestředníhodnotou µ,jestliže {Y t µ} je ARMA(p,q) proces. Speciální případy ARMA procesů nazýváme: Autoregresnímodel(ARproces): Y t AR(p) ARMA(p,0), tj. q=0 Procesklouzavýchsoučtů(MAproces): Y t MA(q) ARMA(0, q),tj. p=0 V reálných situacích se však se stacionárními procesy setkáváme pouze zřídka. Obecně rozlišujeme dva druhy nestacionarity: nestacionaritu ve střední hodnotě a nestacionaritu v rozptylu. Z důvodu dalších aplikací se nyní budeme věnovat pouze případu nestacionarity ve střední hodnotě. 9

13 KAPITOLA 1. ZÁKLADNÍ POJMY Z TEORIE NÁHODNÝCH PROCESŮ 1.3 Procesy nestacionární ve střední hodnotě Nyní je třeba vysvětlit a odlišit pojmy: Deterministický trend, tj. případ, kdy nestacionaritu ve střední hodnotě chápeme jako funkci času. K jeho modelování použijeme například polynomickýtrend E(Y t )=f(t)=β 0 + β 1 t+...+β d t d, případně periodickýtrend E(Y t )=f(t)=µ+ p (α j cosλ j t+β j sin λ j t) Stochastický trend: U ARMA procesů požadujeme, aby všechny kořeny polynomu j=1 φ(z)=1 ϕ 1 z... ϕ p z p ležely vně jednotkové kružnice, tj. aby proces byl kauzální. Pokud však nějaký kořen leží na jednotkové kružnici, mluvíme o procesu nestacionárním se stochastickým trendem. V případě, že kořen leží uvnitř jednotkové kružnice, mluvíme o procesu nestacionárním explozivního typu. Nestacionární proces se stochastickým trendem nazýváme integrovaným smíšeným modelem a značíme ARIMA(p,d,q) Formálně jej zapíšeme pomocí operátoru zpětného chodu takto: a položíme-li ARIMA(p, d, q):φ(b)(1 B) d Y t =Θ(B)ε t W t =(1 B) d Y t, pak W t jestacionárníarma(p,q). Poznámka. Velice důležitým ARIMA modelem je náhodná procházka kterou značíme také I(1). Y t = Y t 1 + ε t, 10

14 Kapitola 2 Analýza časových řad 2.1 Časové řady Pod pojmem časová řada rozumíme realizaci(konečné délky) náhodné posloupnosti.jdeon-ticihodnot y t1,...,y tn uspořádanoupodlepřirozené časovéposloupnosti t 1,...,t n. Od této chvíle budeme uvažovat pouze případy, kdy jsou časové intervaly mezi pozorováními (t 1, t 2 ),...,(t n 1, t n ) stejnědlouhé(tj.jsouekvidistantní)azápiszjednodušímena y 1,...,y n. Máme-li k dispozici hodnoty určitého ukazatele za více období ve formě časové řady, je nám umožněno rozpoznat určité zákonitosti ve vývoji tohoto ukazatele. Časové řady vznikají v přírodních vědách nebo technice(např.seismický záznam v geofyzice, údaje o průměrných ročních teplotách v klimatologii), v bilogických vědách(četnosti výskytu určitého škůdce v několika po sobě jdoucích letech, v ekonomii(vývoj směnného kurzu) atd. 2.2 Základní přístupy k analýze časových řad V analýze časových řad se nejčastěji setkáváme s těmito základními přístupy: Klasická dekompozice časových řad, která je založena na regresní analýze Neoklasická dekompozice časových řad(tzv. Box-Jenkinsonova metodologie), jejímž základem je korelační analýze Spektrální analýza časových řad založená na Fourierově analýze 11

15 KAPITOLA 2. ANALÝZA ČASOVÝCH ŘAD Dynamickélineárnímodely-vpraxisečastosetkávámestím,žehodnoty určité časové řady nejsou jen funkcí času, či předchozích pozorování, ale jsou vysvětlovány pomocí dalších časových řad, kterým říkáme faktorové časové řady a mluvíme o tzv. příčinných(kauzálních, faktorových) modelech, které jsou konstruovány na základě teoretických předpokladů. 2.3 Klasická dekompozice časových řad Klasická dekompozice časových řad vychází z předpokladu, že náhodný proces, který časovou řadu generuje, je závislý pouze na čase. Samotnou dekompozicí časové řady pak rozumíme rozklad časové řady na deterministickou a náhodnou složku. Deterministickásložkasedálerozkládánatrend(Tr t )asezónnísložku(sz t ). Náhodnousložkupředstavujínáhodnéfluktuace(ε t ),kterémodelujídrobné a v jednotlivostech nepostižitelné příčiny kolísání časových řad. Proces ε t jebílýšumsnulovoustředníhodnotou. Při klasické dekompozici časových řad se používají především tyto modely: Aditivní modely, které lze zapsat rovnicí a multiplikativní modely ve tvaru Y t = Tr t + Sz t + ε t, Y t = Tr t Sz t ε t, které se transformují logaritmováním na aditivní modely. Klíčovým nástrojem klasické dekompozice časových řad je regresní analýza, která využívá regresních modelů. Neznámé parametry v těchto modelech bývají odhadovány pomocí metody nejmenších čtverců. 12

16 Kapitola 3 Dynamické lineární modely Dynamické lineární modely jsou narozdíl od klasické dekompozice časových řad založeny na myšlence, že hodnoty určité časové řady nejsou jen funkcí času či předchozích pozorování, ale jsou ovlivňovány i dalšími faktory. 3.1 Motivační příklad K lepší představě o myšlence dynamických lineárních modelů nám může posloužit jednoduchý ilustrační příklad. Představmesi,žejsmeseocitlinaostrověasnažímeseodhadnoutnaší vzdálenost od pobřeží. Tuto vzdálenost budeme značit x a je pro nás tedy neznámým stavem. Nejprve předpokládejme, že během tohoto odhadování stojíme stále na stejném místě, což znamená, že x je konstatní. Hrubou představu o naší pozici máme, neboť čas od času máme možnost zahlédnout pobřeží skrze stromy. O naší vzdálenosti od pobřeží se však chceme dozvědět víc, proto provádíme průběžná měření. Tatoměřeníoznačíme Y t abudemejemodelovattakto: Y t = x+ε t, ε t N(0, σ 2 ), t=0,1,2,..., n kde ε t a xjsounezávisláaprojednoduchost σ 2 jeznámákonstanta. 13

17 KAPITOLA 3. DYNAMICKÉ LINEÁRNÍ MODELY Měření Y t jsounezávisláamajístejnénormálnírozdělenípravděpodobností, tedy Y i N(x, σ 2 ), kde t=0,1,..., n 1.Pomocíhvězdodhadnemevčase0našipozicijako Y 0 surčitou nepřesností C 0. Na základě dosavadních znalostí známe hustotu pozice x, kterou označíme p 1 0 (x)=p(x Y 0 ),sestředníhodnotou x 1 0 = Y 0 arozptylem σ = C 0, tedy x N(Y 0, C 0 ). 2. Mraky se rozestoupí a jasněji vidíme hvězdy. Proto upřesníme náš odhad jako Y 1 světšíjistotou C 1 < C 0. Na základě širších znalostí dostáváme novou hustotu pozice x jako p 1 1 (x)=p(x Y 0, Y 1 ) sestředníhodnotou x 1 1 arozptylem σ Tutostředníhodnotuvypočtemejakováženýprůměrpozorování Y 0 a Y 1, kdeváhajeotovětší,očjepozorovánípřesnější,tj.mámenšírozptyl (přitomsoučetvahjeroven1) x 1 1 = 1 C 0 1 C Y C 1 1 C 1 C 1 C Y 1 = C 1 C 0 + C } {{ 1} =(1 K) Y 0 + C 0 C 0 + C 1 =K Y 1 =(1 K)Y 0 +KY 1 Pozorování Y 0 a Y 1 jsounezávislá,protorozptylváženéhoprůměrujeroven ( ) 2 ( ) 2 σ = C1 C0 C 0 C 0 + C 1 = C 1 = KC 1 =(1 K)C 0 C 0 + C 1 C 0 + C 1 C 0 + C 1 tj. σ < C 1 Celkově tedy dostaneme tyto rekurentní vztahy: x 1 1 = x K(Y 1 x 1 0 ) a σ2 1 1 =(1 K) σ Tedy x 1 1 jsmezískalijakonejlepšíodhadvčase0, x 1 0,opravený předpovědníchybou(y 1 x 1 0 )aváženýfaktorem K= C 0 C 0 +C 1. Využili jsme tedy informace z prvního i druhého měření. 14

18 KAPITOLA 3. DYNAMICKÉ LINEÁRNÍ MODELY 3. Nyní náš příklad zdynamizujeme(rozpohybujeme). Představmesi,ževčase2sezačnemepohybovat, tzn.vzdálenost x už není konstantní, ale mění se v čase. Tutozměnumezidvěmaměřenímimůžememodelovatjako 1 : x t = x t 1 + ν+ w t, kde w t N(0, σ 2 w), (3.1) akde νjeznámárychlostnašehopohybuaw t náhodnáchyba sestředníhodnotou0aznámounepřesností σ 2 w. Před tím, než provedeme další měření(v čase 2), uděláme predikci x 2 1 = F 1 x 1 1 nazákladěinformací,kterézatímznáme, tzn.nazákladěpředchozíhostavu x 1 1 adynamickéhomodelu (nějakéfunkcepřechodu F 1 )surčitoudávkounepřesnosti σ Nyníprovedemedalšíměřenípolohy,tj. Y 2 snepřesností C Všechny předchozí informace shrneme do odhadu polohy x 2 2 = x 2 1 +K(Y 2 x 2 1 ) svahou K= σ σ C 2 (též tzv. Kalmanův zisk) σ =(1 K) σ Krovnici(3.1)můžemedojítzjednoduchéhodynamickéhomodelu dx dt = }{{} ν + }{{} w konstantnní posun náhodná složka resp.rovnice x ti = x ti 1 + ν(t i t i 1 )+w ti (t i t i 1 ), kdeberemejednotkovéčasovéintervaly,tzn.(t i t i 1 )=1 15

19 KAPITOLA 3. DYNAMICKÉ LINEÁRNÍ MODELY 3.2 Stavově- prostorové modely Stavově- prostorové modely jsou způsobem, jak pohodlně sestavit formální zápis lineárních dynamických modelů. Místojednorozměrnénáhodnéposloupnosti {Y t, t Z}uvažujmeposloupnost w-rozměrnýchnáhodnýchvektorů {Y t, t Z},Y t R w,kterésplňují tzv. datové a stavové rovnice: Datová rovnice popisuje vztah mezi(nepozorovatelnými) stavovými veličinamivektorux t anaměřenými(pozorovatelnými)veličinamivektoruy t ; je určena zápisem: Y t =G t X t +W t kde t=1,2,3,... Stavová rovnice popisuje vývoj stavu procesu popsaného v časovém okamžiku tvektoremstavovýchproměnnýchx t tak,žejedefinovánasouvislost mezistavovýmvektoremvokamžiku tavnásledujícímokamžiku t+1,tj. X t+1 =F t X t +V t+1 kde t=1,2,3,..., X t jetzv.stavový v-rozměrnýnáhodnývektor, W t ješumměření(w-rozměrnýnáhodnývektorchyb), V t+1 ješumprocesu(v-rozměrnýnáhodnývektorchyb), G t jeposloupnostmatictypu w v(popisujívztahpozorováníkestavu) af t jeposloupnostmatictypu v v(tzn.maticpřechodumodelujících dynamiku) Předpokládejme, že všechny náhodné vektory mají konečné druhé momenty aplatí E(V t )=0 E(W t )=0 D ( Wt V t E(W t W t)=r t ) ( ) Rt S = t, tj. E(V t V t )=Q t S t Q t E(W t V t )=S t a C(X t,(w t,v t ) )=0,(tj.stavovývektorachybovévektoryjsou nekorelované). 16

20 Kapitola 4 Jednoduché strukturální modely časových řad Strukturálními modely časových řad budeme rozumět takové modely, které jednoduchým rekurentním způsobem popisují stochastické chování časových řad. Dále se budeme věnovat elementárním modelům, které dovolují modelovat trend a sezónnost. 4.1 Trend Trend v časové řadě představuje dlouhodobou tendenci vývoje zkoumaného jevu. Je výsledkem dlouhodobého působení vnějších faktorů a podmínek. Nejjednodušší strukturální modely časových řad se skládají právě z trendu a náhodné fluktuace. Trendové modely zapisujeme ve tvaru: Y t = Tr t + ε t t=1,...,t kdesložky Tr t a ε t jsouoběstochastické, Tr t představujetrendaε t bílýšum. Přitom předpokládáme, že obě složky jsou stochasticky nezávislé. Všimněme si postupně jednotlivých typů trendu, resp. trendových funkcí. a) KONSTANTNÍ TREND Nejjednodušším modelem trendu je Tr t = α. 17

21 KAPITOLA 4. JEDNODUCHÉ STRUKTURÁLNÍ MODELY ČASOVÝCH ŘAD Vtomtopřípaděplatí Tr t+1 = α=tr t. Pokud chceme, aby se parametry měnily v čase, přidáme náhodnou chybu η t,kterájebílýmšumemsnulovouhodnotouarozptylem σ 2 η,tj. η t WN(0, σ 2 η ) a dostaneme tzv. model s lokálním konstantním trendem(anglicky local level model). Tr t+1 = Tr t + η t+1. Model můžeme přepsat do datových a stavových rovnic takto: Datová rovnice Y t = Tr }{{} t + ε t, tj. G }{{} t =1 X t W t Stavová rovnice Tr } {{ t+1 = Tr } t + η }{{} t+1 tj.také F }{{} t =1 X t+1 X t V t b) LINEÁRNÍ TREND Pokud nevystačíme s konstantním lokálním trendem a přidáme další složku, pak Tr t = α+βt. V tomto případě Tr t+1 = α+β(t+1)=α+βt+β= Tr t + β Tr t Vidíme tedy, že nepotřebujeme znát hodnotu parametru α. Pokudbudemeopětchtít,abyseiparametr βmohlměnitvčase,budeme uvažovatmodelsnáhodnýmifluktuacemi η t a ξ t,kteréjsoubílýmišumy snulovoustředníhodnotouarozptylem σ 2 η a σ2 ξ, tj. platí η t WN(0, σ 2 η ) ξ t WN(0, σ 2 ξ ), 18

22 KAPITOLA 4. JEDNODUCHÉ STRUKTURÁLNÍ MODELY ČASOVÝCH ŘAD a dostaneme modely Tr t+1 = Tr t + β t + η t+1 β t+1 = β t + ξ t+1 kde t=..., 1,0,1,.... Fluktuace η t dovolujehladinětrendupohybovatsenahoruadolů, zatímcofluktuace ξ t dovolujezměnuparametru β. Čím větší jsou rozptyly těchto fluktuací, tím větší jsou stochastické pohyby v trendu. Všimněmesi,že β t jenáhodnouprocházkou,tj.modelem I(1). Celkový model můžeme opět vyjádřit pomocí stavově- prostorových modelů, tzn. pomocí stavových a datových rovnic, a to takto Datová rovnice Y t = ( 1 0 ) ( ) ( ) Trt εt + G t=g β t X t 0 W t Stavová rovnice ( ) Trt+1 = β t+1 X t+1 ( ) ( ) 1 1 Trt 0 1 β t F t=f X t ( ) ηt+1 + ξ t+1 V t c) CYKLICKÝ TREND v časové řadě vyjadřuje dlouhodobé kolísání okolo trendu, ve kterém se střídají fáze růstu a poklesu. V posledních letech se věnuje pozornost zejména technologickým, inovačním či demografickým cyklům. Cyklický trend předpokládá, že Tr t = ψ t, kde ψ t jecyklickásložkasfrekvencí λ c,kteroulzevyjádřitdvojímzpůsobem. Zápisem pomocí funkce kosinus: ψ t = Acos(λ c t θ), kde t=1,...,t 19

23 KAPITOLA 4. JEDNODUCHÉ STRUKTURÁLNÍ MODELY ČASOVÝCH ŘAD nebo jako kombinaci funkcí sinus a kosinus: ψ t = αcosλ c t+βsin λ c t, kde t=1,...,t, přičemž A= α 2 + β 2 jeamplituda a θ=arctan β α je fáze. Abychom dostali rekurentní vztah jako u lineárního trendu, uvažujme nejprve ψ t = αcosλ c t+βsin λ c t. Pak ψ t+1 = αcosλ c (t+1)+βsin λ c (t+1)= = α[cosλ c tcosλ c sin λ c tsin λ c ]+β[sin λ c tcosλ c +cosλ c tsin λ c ]= =cosλ c [αcosλ c t+βsin λ c t] +sin λ c [ αsin λ c t+βcosλ c t] ψ t ψ Při značení počítejme dále ψ t= αsin λ c t+βcos λ c t ψ t+1 = αsin λ c(t+1)+βcosλ c (t+1)= = α[sin λ c tcosλ c +cosλ c tsin λ c ]+β[cosλ c tcosλ c sin λ c tsin λ c ]= =cosλ c [ αsin λ c t+βcosλ c t] sin λ c [αcosλ c t+βsin λ c t]. Takže můžeme psát ψ t+1 =cosλ c ψ t +sin λ c ψ t ψ t+1 = sin λ cψ t +cos λ cψ t, což lze vyjádřit maticově takto: ( ) ( ) ( ) ψt+1 cos λc sin λ = c ψt sin λ c cosλ c ψ t+1 ψ t 20

24 KAPITOLA 4. JEDNODUCHÉ STRUKTURÁLNÍ MODELY ČASOVÝCH ŘAD Nynípředchozívztahydoplnímeonáhodnéfluktuace κ t a κ t,kteréjsou nezávislé bílé šumy, tj. κ t WN(0, σ 2 κ) Dostaneme tedy datovou rovnici κ t WN(0, σ2 κ ). Y t = ( 1 0 ) G t=g ( ψt ψ t ) X t a stavovou rovnici ( ) ( ) ψt+1 cos λc sin λ ψt+1 = c sin λ c cosλ c X t+1 F t + ε t }{{} W t ( ψt ψ t X t ) + ( κt+1 κ t+1 ) V t kde funkce označené hvězdičkami jsou pouze pomocné, umožňující rekurzivní přepis. 21

25 KAPITOLA 4. JEDNODUCHÉ STRUKTURÁLNÍ MODELY ČASOVÝCH ŘAD 4.2 Sezónnost Sezónnísložka Sz t popisujevlineárníchmodelechkrátkodobéperiodickézměny, tj. pravidelné kolísání okolo trendu v rámci kalendářního roku, které je kratšího rázu, např. vliv střídání ročních období, svátků, dovolených apod. Nejprve uvažujme jednoduchý sezónní model se šumem. Předpokládejme, že délka sezóny je s. Sezónníkomponenty(výkyvy)označme γ 1, γ 2,..., γ s apředpokládejme,žepro ně platí vztahy γ t+s = γ t, tj.vlivvýkyvusepouplynutícelésezónyneliší,a γ γ s =0, tj. celkový vliv výkyvů za sezónu je nulový. Odtud dostaneme jednoduché vztahy γ t+1 = γ t+1 s γ t+1 + γ t +...+γ t+1 s+1 =0, tj. γ t+1 = γ t γ t 1... γ t+2 s Doplníme-lipředchozívztahonáhodnéfluktuace ω t,kteréjsoubílýmšumem,tj. dostaneme neboli obecně amaticově γ t+1 γ t γ t 1. γ t+2 s ω t WN(0, δ 2 ω ), γ t+1 = γ t γ t 1... γ t+2 s + ω t+1, s 1 γ t = γ t j + ω t j= = γ t γ t 1 γ t 2. γ t+1 s + ω t

26 KAPITOLA 4. JEDNODUCHÉ STRUKTURÁLNÍ MODELY ČASOVÝCH ŘAD Abychom sezónní složky mohli zakomponovat do modelu časové řady Y t = Sz t + ε t, zavedemepomocnéproměnné z jt definovanépro j=1,...,s 1následujícím způsobem: 1, t=j, j+ s, j+2s,... z jt = 0, t j, j+ s, j+2s,... 1, t=s,2s,3s,... Pak Sz t = j γ j z jt. Zápis sezónnosti pomocí stavově- prostorových modelů bude vypadat takto: Datová rovnice Stavová rovnice Y t = ( ) z tt z t 1,t z t 2,t... z t+1 s,t G t γ t+1 γ t γ t 1. γ t+2 s X t = F t γ t γ t 1 γ t 2. γ t+1 s X t γ t γ t 1 γ t 2. γ t+1 s X t + ε t }{{} W t + ω t V t+1 23

27 Závěr Jedním ze způsobů analýzy časových řad je klasická dekompozice založená na regresní analýze. Při tomto přístupu je konstruován model pro všechna data a jeho parametry se nemění. Regresní modely jsou výhodné především z hlediska interpretace, předpokládají však vzájemnou nekorelovanost(nezávislost) dat z minulosti. Tento předpoklad časové řady nesplňují, proto byla snaha najít lepší způsob, který by se vypořádal i s daty, která se navzájem ovlivňují. Tímto způsobem je Box-Jenkinsova metodologie, která celou časovou řadu považuje za řadu stochastického charakteru. Avšak z hlediska interpretace a vyhodnocování je Box-Jenkinsova metoda černou skřínkou, neboť současná hodnota je lineární kombinací předchozích hodnot a lineární kombinací náhodných fluktuací. Strukturální přístup k analýze časových řad navržený A.C.Harveyem(1990) je jistou kombinací dvou předešlých metod. Využívá předchozích dat a jejich vzájemné závislosti, pracuje však pouze s informací, kterou jsou získali o jeden krok dříve. Díky tomuto postupu jsou strukturální dynamické modely při výpočtech méně náročné na paměť, objevuje se v nich méně parametrů a parametry, které se v nich používají, jsou lépe interpretovatelné, než tomu je v Box-Jenkinsově metodě. Navíc se parametry mohou měnit v čase, čímž jsou modely více flexibilní. V bakalářské práci jsou popsány nejjednodušší strukturální dynamické modely časových řad a jsou zapsány pomocí stavově-prostorových modelů. Tyto jednoduché strukturální modely jsou základními kameny dynamického přístupu kanalýzečasovýchřadamohousedálrůzněkombinovatavytvářettakmodely složitější. 24

28 Seznam použité literatury [1] Budíková M., Lerch T., Mikoláš Š. Základní statistické metody, Brno 2006 [2] Forbelská, M. Stochastické modelování jednorozměrných časových řad, Brno 2009 [3] Forbelská M. učební materiály k předmětu Lineární statistické modely, M5120 [4] Harvey, A.C. Forecasting, structural series models and the Kalman filter, Cambridge 1990 [5] Petris, G., Petrone, S., Campagnoli, P. Dynamic Linear Models with R, Springer

Úvod do analýzy časových řad

Úvod do analýzy časových řad Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

NÁHODNÝ VEKTOR. 4. cvičení

NÁHODNÝ VEKTOR. 4. cvičení NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

STATISTIKA I Metodický list č. 1 Název tématického celku:

STATISTIKA I Metodický list č. 1 Název tématického celku: STATISTIKA I Metodický list č. 1 Analýza závislostí Základním cílem tohoto tématického celku je seznámit se s pokročilejšími metodami zpracování statistických údajů.. 1. kontingenční tabulky 2. regresní

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

AVDAT Geometrie metody nejmenších čtverců

AVDAT Geometrie metody nejmenších čtverců AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Modely pro nestacionární časové řady

Modely pro nestacionární časové řady Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Modely ARIMA Transformace Proces náhodné procházky Random Walk Process Proces Y t = Y t 1 + ɛ t je

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Aplikovaná ekonometrie 7. Lukáš Frýd

Aplikovaná ekonometrie 7. Lukáš Frýd Aplikovaná ekonometrie 7 Lukáš Frýd Nestacionární časové řady Možné příčinny Sezonost Deterministický trend (time trend) Jednotkový kořen (Stochastický trend) Strukturní zlomy Časový trend (deterministický

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Odhad stavu matematického modelu křižovatek

Odhad stavu matematického modelu křižovatek Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Diagnostika regrese pomocí grafu 7krát jinak

Diagnostika regrese pomocí grafu 7krát jinak StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Kapitola 4: Extrémy funkcí dvou proměnných 1/5

Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Analýza časových řad. John Watters: Jak se stát milionářem.

Analýza časových řad. John Watters: Jak se stát milionářem. 5.2 Analýza časových řad Nechal jsem si udělat prognózu růstu své firmy od třech nezávislých odborníků. Jejich analýzy se shodovaly snad pouze v jediném - nekřesťanské ceně, kterou jsem za ně zaplatil.

Více

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Politická ekonomie 45: (2), str. 281-289, VŠE Praha, 1997. ISSN 0032-3233. (Rukopis) REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Josef ARLT, Vysoká škola ekonomická, Praha 1. Úvod Pro modelování

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality. Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat

Více

VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD 2. PRAKTICKÁ ČÁST

VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD 2. PRAKTICKÁ ČÁST EMI, Vol., Issue 3, ISSN: -99 (Print), 5-353X (Online) VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD. PRAKTICKÁ ČÁST USING WAVELETS BY TIME SERIES ANALYSIS. PRACTICAL PART Vratislava Mošová Moravská vysoká

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Ekonometrie. Jiří Neubauer

Ekonometrie. Jiří Neubauer Úvod do analýzy časových řad Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Úvod do analýzy

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava    luk76/la1 Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text

Více

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Matematika I (KMI/5MAT1)

Matematika I (KMI/5MAT1) Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života

Více

12. Křivkové integrály

12. Křivkové integrály 12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více