V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

Rozměr: px
Začít zobrazení ze stránky:

Download "V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :"

Transkript

1 Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku a objemu lynu je konstantní : Nebo ro dva stavy lynu, očáteční a koncový : - diagramu je tento roces znázorněn hyerbolou sojující body obou stavů lynu, je to tzv. izoterma : Další informace o ději získáme rozborem.věty termodynamické a veličin v ní vystuujících. Při izotermickém ději se mění objem (nař. ři izotermické exanzi se zvětšuje), lyn tedy koná ráci. Podle úvah v minulé kaitole by řitom měla klesat kinetická energie molekul (řeměňuje se na ráci), měla by klesat i vnitřní energie lynu. Z odmínky o konstantní telotě ovšem lyne, že ři tomto ději se vnitřní energie lynu nemění : U 3 konst Diferenciál konstantní veličiny je samozřejmě nulový : a odle.věty termodynamiky musí latit : o znamená, že možný úbytek vnitřní energie ři ráci lynu je ihned (a během rocesu růběžně) dolňován dodávanou energií teelnou. Lze říci, že tak vlastně robíhá dokonalá řeměna teelné energie na ráci. Důležitou otázkou je ovšem realizace takového rocesu, ři kterém je do lynu dodáváno telo, aniž dochází ke zvýšení jeho teloty.

2 dnešní době si lze ředstavit automatizovaný, očítačem řízený systém jakýsi termostat, který by omocí telotních senzorů uvnitř lynu hlídal jeho telotu tak, že kdyby v důsledku exanze a ráce lynu začala telota klesat (tj. objevila by se neatrná diferenciální odchylka od ožadované hodnoty), zanulo by se ihned nějaké ohřívací těleso a do lynu by byla dodávána teelná energie, dokud by se telota nezvýšila Jak si však oradili vědci minulosti bez těchto moderních omůcek? Princiiálně stejný účinek jako elektronická regulace bude mít dokonalý teelný styk (bez ztrát, s nekonečně velikou teelnou vodivostí) sledovaného lynu se zdrojem teelné energie o konstantní telotě rovné ožadované telotě (tzv. ohřívač, teelný rezervoár). Účinek ohřívače lze dobře ochoit v souvislosti s dříve uvedeným oisem vratného děje jako sledu (skoro)rovnovážných stavů : ři změně takového stavu dojde k (nekonečně) malé změně stavových veličin zde k diferenciálnímu oklesu teloty lynu z ůvodní teloty, a roto z ohřívače bude řecházet telo do neatrně chladnějšího lynu, až se oět teloty vyrovnají a nastane další (skoro)rovnovážný stav se stejnou telotou a oněkud odle stavové rovnice odlišným tlakem a objemem. Děj samozřejmě okračuje dále : rotože lyn stále racuje, telota oět neatrně klesá, teelná energie řechází do lynu a telota se oět vyrovnává atd. takovém usořádání se tak ři ráci lynu automaticky dolňuje telo z teelného rezervoáru, aby nahradilo vykonanou ráci, a roto telota a vnitřní energie lynu zůstávají konstantní. říadě izotermické komrese, kdy se objem lynu zmenšuje, rotože je ístem v racovním válci stlačován, je rinci stabilizace teloty stejný, ouze telo a ráce mají oačná znaménka, a tedy oačný směr řechodu : ráce lynu je záorná konají ji vnější síly a tím by měla růst kinetická energie lynu, a tedy i vnitřní energie. by se tak nestalo, musí nyní teelná energie z lynu odcházet do okolí lyn tedy musí mít oět dokonalý teelný styk s teelným jímačem teloty, který bude odebírat telo (tzv. chladič). K teelnému toku do chladiče dochází nyní ři diferenciálním zvýšení teloty lynu jako důsledku ráce sil okolí a výsledkem je oět stabilizace teloty a vnitřní energie lynu.

3 Poznámka: eoreticky jsou chladič i ohřívač v rinciu stejné velké teelné rezervoáry, tj. relativně velká tělesa s velkým obsahem vnitřní energie, aby říjem či výdej tela nezůsobil změnu jejich teloty. echnické rovedení chladiče i ohřívače bude ovšem odlišné. yočítejme nyní konkrétně omocí.věty ráci vykonanou lynem a řijaté telo ři izotermickém ději z očátečního stavu (,, ) do konečného stavu (,, ) : Q Protože nedochází ke změně teloty, nelze oužít běžné vztahy ro telo dodané látce ři ohřevu, ale můžeme oužít vztah ro ráci : Q d Dosadíme za tlak ze stavové rovnice : dostaneme : Q d d ln můžeme zasat jednodušeji : d ln o Q ln ráce a telo ři izotermickém ději Při izotermické exanzi bude konečný objem větší, a tedy vykonaná ráce i řijaté telo jsou kladné : Q izotermická exanze Při izotermické komresi je tomu naoak : Q izotermická komrese 3

4 ) Děj izochorický ( = ) Za ředokladu konstantního objemu se nyní stavová rovnice ro dané množství lynu změní na Gay- Lussacův zákon o rozínavosti lynu : Nebo ro dva stavy lynu, očáteční a koncový : - diagramu je tento děj znázorněn římkou sojující body obou stavů, rovnoběžnou s osou tlaků je to tzv. izochora. Podmínku realizace tohoto děje konstantní objem lynu jednoduše zajistí evný neměnný objem nádoby, ve které je lyn umístěn. Konstantní objem lynu ovšem znamená jeho nulový řírůstek (diferenciál), a tedy znemožní ráci lynu : d Podle.věty ak latí : o znamená, že veškerá dodaná teelná energie se římo mění na řírůstek vnitřní energie, ohřev lynu je za těchto odmínek nejefektivnější, tj. na zvýšení teloty o jednotkový telotní rozdíl ( K) se sotřebuje 4

5 nejmenší množství tela. Jinak řečeno, molární teelná kaacita má nejmenší možnou hodnotu, a jestliže s její omocí vyjádříme dodané telo : d Dostaneme tím nový, dobře oužitelný vztah ro řírůstek (změnu) vnitřní energie, který se rovná tomuto telu : d změna vnitřní energie Jestliže ak tento výraz orovnáme se vztahem dříve odvozeným ro ideální lyn : 3 d Dostaneme konkrétní velikost ro molární teelnou kaacitu ři konstantním objemu : 3 ato hodnota latí ouze za odmínky latnosti dříve uvedeného Maxwellova rozdělení ro ideální jednoatomový lyn, kdy lze zanedbat řísěvek energie rotačního ohybu molekuly. Pro běžné dvouatomové molekuly (kyslík, dusík, vodík, ) ak latí : 5 složitější molekuly ak mají teelnou kaacitu ještě vyšší. Kdybychom chtěli vyočítat dodané telo a zvýšení vnitřní energie lynu ři nějakém izochorickém ději z očátečního stavu (,, ) do konečného stavu (,, ), rovedli bychom integraci tj. součet diferenciálních veličin : Q U d elkové dodané telo by se samozřejmě řevedlo na celkové zvýšení vnitřní energie, bez vykonání jakékoliv ráce. 3) Děj izobarický ( = ) Za ředokladu konstantního tlaku se stavová rovnice ro zadané množství lynu změní na Gay- Lussacův zákon o roztažnosti lynu : 5

6 Nebo ro dva stavy lynu, očáteční a koncový : - diagramu je tento děj oět znázorněn římkou sojující body obou stavů, rovnoběžnou s osou je to tzv. izobara. Podmínku realizace tohoto děje konstantní tlak lynu je možno zajistit oužitím válce s ístem, na který bychom zvenku (vnější síly) ůsobily konstantní silou (svislý íst by mohlo nař. zvenku zatěžovat závaží zvolené hmotnosti). likujeme dále na izobarický děj.větu termodynamiky, jejíž žádný člen nyní nebude nulový : Dodávaná teelná energie se tedy sotřebuje nejen na zvýšení vnitřní energie, ale i na konání ráce lynem - ohřev lynu je méně efektivní než za konstantního objemu, tj. na zvýšení teloty o jednotkový telotní rozdíl se sotřebuje větší množství tela, tedy molární teelná kaacita je větší : d Dosaďme tento výraz do.věty solu se známými vztahy ro ráci lynu a zvýšení vnitřní energie : d d d 6

7 K úravě druhého členu na ravé straně oužijeme stavovou rovnici : kterou diferencujeme, tj. vyočítáme diferenciál (řírůstek) ravé i levé strany : d d Dostaneme tak : d d d d Porovnáním obou stran tak vznikne vztah ro molární teelnou kaacitu ři konstantním tlaku : Mayerův vztah Pro jednoatomový lyn tedy bude latit : 5 3 ro dvouatomové molekuly : 7 5 Pro výočet dodaného tela, vykonané ráce a změny vnitřní energie ři nějakém izobarickém ději ze stavu (,, ) do stavu (,, ) bychom, jako v ředcházejících dějích, rovedli integraci elementárních veličin : d Q d U d současně ro ráci musí latit (využijeme stavovou rovnici) : d d 7

8 Stejný vztah bychom také dostali odle.věty odečtením rvních dvou výrazů ro telo a změnu vnitřní energie, nebo římým dosazením ze stavové rovnice do ředchozího výrazu ro ráci. Zatím jsme rozkoumali tři významné termodynamické děje a jsou to vlastně všechny možnosti, kdy může být jedna ze tří stavových veličin význačná konstantní. e dvou říadech jsme ak dostali zvláštní tvary.věty, ouze se dvěma členy ři izotermickém ději byl nulový řírůstek vnitřní energie a ři izochorickém ději byla nulová vykonaná ráce. Může nás tedy naadnout, že by mohla existovat možnost - nulového dodaného tela a takový termodynamický děj se ukázal být velmi důležitým. 4) Děj adiabatický ímto ojmem označujeme termodynamický děj, ři kterém není lynu dodávaná žádná teelná energie a samozřejmě žádné telo ani není odebíráno obecně říkáme, že je nulová výměna tela termodynamické soustavy s okolím. oho lze dosáhnout dokonalou teelnou izolací stěn, které obkloují lyn - jejich teelná vodivost tedy musí být nulová. (Povšimněte si, že to je rávě oačná odmínka, než byla u izotermického děje, kdy jsme ožadovali dokonalou teelnou rostunost stěn.).věta termodynamická má tedy v říadě adiabatického děje také jednoduchý tvar : Plyn nyní koná ráci ouze na úkor vnitřní energie, a můžeme roto tuto ráci jednoduše vyjádřit ouze omocí telotní změny lynu : d elková ráce vykonaná lynem ři nějakém adiabatickém ději z očátečního stavu (,, ) do konečného stavu (,, ) ak bude integrálem těchto elementárních rací : d 8

9 ýsledek této integrace je samozřejmě jednoduchý : ráce ři adiabatickém ději Při konání kladné ráce lynem, tj. zvětšování objemu, se jeho telota snižuje, tj. vnitřní energie klesá : adiabatická exanze ráce sil okolí ak zahřívá lyn, tedy zvyšuje jeho vnitřní energii : adiabatická komrese Při adiabatickém ději není zřejmě konstantní žádná ze stavových veličin mění se obecně tlak, telota i objem lynu a ři jejich výočtech tedy musíme oužívat obecný tvar stavové rovnice : Na dalších řádcích si však ukážeme, jak lze z této rovnice vyloučit libovolnou roměnnou a dostat zjednodušený tvar stavové rovnice vhodný ro dvourozměrné grafy, nař. ro - diagram. Naišme znovu.větu : d za ráci oužijme standardní výraz : d d Za telotu na ravé straně dosaďme ze stavové rovnice : vyočítejme její diferenciál (jako funkce dvou roměnných a ) : d d( ) d d Po vynásobení a řevedení na levou stranu máme : d d d Použijeme-li Mayerův vztah : ak dostáváme : 9

10 d d ovnici vydělíme molární kaacitou ři konstantním objemu a součinem. : d d Zavedeme ještě novou veličinu : Poissonova konstanta rozdělíme členy na obě strany : d d znikl tak seciální tvar diferenciální rovnice o dvou roměnných, které jsou searovány, tj. odděleny, každá na jedné straně rovnice. K vyřešení této rovnice stačí rovést její integraci omocí určitého integrálu v mezích od očátečního stavu lynu (,, ) do konečného stavu (,, ) : d d Primitivní funkce na obou stranách jsou stejného druhu : ln ln Dostaneme tedy : ln ln ln ln Po roznásobení a oužití znalostí o logaritmech : ln ln ln ln a o řevedení členů : ln ln ln ln a o sdružení logaritmů: ] ln [ ] ln [

11 ovnost logaritmů znamená ovšem také rovnost funkcí : nebo obecněji - neboť očáteční i koncový stav byly libovolné : Poissonova rovnice Dostali jsme tak obecnou rovnici adiabaty. Protože Poissonova konstanta je větší než, je křivka adiabaty v - diagramu strmější než izoterma. Dosazením ze stavové rovnice lze získat další varianty rovnice adiabaty ro jiné dvě roměnné : Poznámka: diabatickému ději se bude také blížit rychle robíhající děj v teelně neizolované termodynamické soustavě (lynu), rotože telo nestačí řecházet do lynu. Čím je tedy roces rychlejší, tím více se řibližuje adiabatickému ději (ale tím více se odchyluje od kvazistacionárnosti, tedy také od vratnosti a od latnosti stavové rovnice) (konec kaitoly) K. usňák, verze /5

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

Fyzikální chemie. 1.2 Termodynamika

Fyzikální chemie. 1.2 Termodynamika Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický

Více

Termodynamické základy ocelářských pochodů

Termodynamické základy ocelářských pochodů 29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických

Více

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2 Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

9. Struktura a vlastnosti plynů

9. Struktura a vlastnosti plynů 9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

Kruhový děj s plynem

Kruhový děj s plynem .. Kruhový děj s lynem Předoklady: 0 Chceme využít skutečnost, že lyn koná ři rozínání ráci, na konstrukci motoru. Nejjednodušší možnost: Pustíme nafouknutý balónek. Balónek se vyfukuje, vytlačuje vzduch

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.

Více

LOGO. Struktura a vlastnosti plynů Ideální plyn

LOGO. Struktura a vlastnosti plynů Ideální plyn Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvantová a statistická fyzika 2 (ermodynamika a statistická fyzika) ermodynamika ermodynamika se zabývá zkoumáním obecných vlastností makroskoických systémů v rovnováze, zákonitostmi makroskoických rocesů,

Více

11. Tepelné děje v plynech

11. Tepelné děje v plynech 11. eelné děje v lynech 11.1 elotní roztažnost a rozínavost lynů elotní roztažnost obje lynů závisí na telotě ři stálé tlaku. S rostoucí telotou se roztažnost lynů ři stálé tlaku zvětšuje. Součinitel objeové

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

Výsledky úloh. Obsah KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku

Výsledky úloh. Obsah KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku ýsledky úloh C R, C R, κ 0, 0,088 0, 0,8 KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku 6 η 0,8 ( ){ { Obsah Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových

Více

Cvičení z termodynamiky a statistické fyziky

Cvičení z termodynamiky a statistické fyziky Cvičení z termodynamiky a statistické fyziky 1 Matematické základy 1 Parciální derivace Necht F(x,y = xe x2 +y 2 Sočtěte F x, F y, 2 Úlný diferenciál I Bud 2 F x 2, 2 F x y, dω = A(x,ydx + B(x,ydy 2 F

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

Termodynamika pro +EE1 a PEE

Termodynamika pro +EE1 a PEE ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]

Více

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování

Více

Teplo, práce a 1. věta termodynamiky

Teplo, práce a 1. věta termodynamiky eplo, práce a. věta termodynamiky eplo ( tepelná energie) Nyní již víme, že látka (plyn) s vyšší teplotou obsahuje částice (molekuly), které se pohybují s vyššími rychlostmi a můžeme posoudit, co se stane

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA YSOKÉ UČENÍ ECHNICKÉ BRNĚ FAKULA SAEBNÍ PAEL SCHAUER APLIKOANÁ FYZIKA MODUL ERMODYNAMIKA SUDIJNÍ OPORY PRO SUDIJNÍ PROGRAMY S KOMBINOANOU FORMOU SUDIA Recenzoval: Prof. RNDr. omáš Ficker, CSc. Pavel Schauer,

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

PZP (2011/2012) 3/1 Stanislav Beroun

PZP (2011/2012) 3/1 Stanislav Beroun PZP (0/0) 3/ tanislav Beroun Výměna tela mezi nální válce a stěnami, telotní zatížení vybraných dílů PM elo, které se odvádí z nálně válce, se ředává stěnám ve válci řevážně řestuem, u vznětových motorů

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

III. STRUKTURA A VLASTNOSTI PLYNŮ

III. STRUKTURA A VLASTNOSTI PLYNŮ III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

W pot. F x. F y. Termodynamické potenciály. V minulé kapitole jsme poznali novou stavovou veliinu entropii S a vidli jsme, že ji lze používat

W pot. F x. F y. Termodynamické potenciály. V minulé kapitole jsme poznali novou stavovou veliinu entropii S a vidli jsme, že ji lze používat ermodynamické otenciály minulé kaitole jsme oznali novou stavovou veliinu entroii a vidli jsme, že ji lze oužívat stejn jako jiné stavové veliiny - na. tlak, telotu, objem, oet ástic soustavy N, jejich

Více

II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV

II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV II. MOLEKLOÁ FYZIKA 1. Základy termodynamiky I 1 Obsah Princi maxima entroie. Minimum vnitřní energie. D otenciály vnitřní energie entalie volná energie a Gibbsova energie a jejich názorný význam ři některých

Více

PRŮTOK PLYNU OTVOREM

PRŮTOK PLYNU OTVOREM PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy

Více

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci

Více

Stavová rovnice. Ve stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní parametry Y i

Stavová rovnice. Ve stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní parametry Y i ermodynamický ostulát: Stavová rovnice e stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní arametry Y i určeny jako funkce všech vnějších arametrů X j a teloty Y i f

Více

BH059 Tepelná technika budov Konzultace č. 2

BH059 Tepelná technika budov Konzultace č. 2 Vysoké učení technické v Brně Fakulta stavební Ústav ozemního stavitelství BH059 Teelná technika budov Konzultace č. 2 Zadání P6 zadáno na 2 konzultaci, P7 bude zadáno Průběh telot v konstrukci Kondenzace

Více

1.5.2 Mechanická práce II

1.5.2 Mechanická práce II .5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a

Více

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se

Více

Kinetick teorie plyn

Kinetick teorie plyn 0 Kinetick teorie lyn P edstavte si, ûe jste se r vï vr tili z lyûa skè t ry do romrzlè chaty; co udïl te nejd Ìv? NejsÌö zatoìte v kamnech ó a roë? ÿeklo by se, ûe kamna zv öì obsah vnit nì (ÑteelnÈì)

Více

III. Základy termodynamiky

III. Základy termodynamiky III. Základy termodynamiky 3. ermodynamika FS ČU v Praze 3. Základy termodynamiky 3. Úvod 3. Základní ojmy 3.3 Základní ostuláty 3.4 Další termodynamické funkce volná energie a volná entalie 3.5 Kritérium

Více

Poznámky k semináři z termomechaniky Grafy vody a vodní páry

Poznámky k semináři z termomechaniky Grafy vody a vodní páry Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,

Více

21.1 VRATNÉ A NEVRATNÉ DĚJE 21.2 ENTROPIE. Probíhá-li v uzavřeném systému nevratný děj, entropie S systému vždy roste a nikdy neklesá.

21.1 VRATNÉ A NEVRATNÉ DĚJE 21.2 ENTROPIE. Probíhá-li v uzavřeném systému nevratný děj, entropie S systému vždy roste a nikdy neklesá. 21 Entroie AnonymnÌ n is na zdi v jednè kav rniëce na Pecan Street v Austinu v Texasu n m sdïluje: Ñ»as je z sob, jak B h zajistil, aby se vöechno nestalo najednouì.»as m takè smïr: nïkterè dïje se odehr

Více

Laplaceova transformace.

Laplaceova transformace. Lalaceova transformace - studijní text ro cvičení v ředmětu Matematika -. Studijní materiál byl řiraven racovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za odory grantu IG ČVUT č. 300043 a v rámci

Více

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout?

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout? 2.6.7 Fázový diagram Předoklady: 2606 Př. 1: Poiš děje zakreslené v diagramu křivky syté áry. Za jakých odmínek mohou roběhnout? 4 2 1 3 1) Sytá ára je za stálého tlaku zahřívána. Zvětšuje svůj objem a

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Termodynamické zákony

Termodynamické zákony Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce

Více

Druhá věta termodynamiky

Druhá věta termodynamiky Druhá věta termoynamiky cience owes more to the steam engine than the steam engine owes to cience. Lawrence J. Henerson (97) Nicolas R. ai arnot 796 83 William homson, lor Kelvin 84 907 Ruolf J.E. lausius

Více

Oddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE

Oddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE ÚSTV NORGNIKÉ THNOLOGI Oddělení technické elektrochemie, 037 LBORTORNÍ PRÁ č.9 YKLIKÁ VOLTMTRI yklická voltametrie yklická voltametrie atří do skuiny otenciodynamických exerimentálních metod. Ty doznaly

Více

Úvěr a úvěrové výpočty 1

Úvěr a úvěrové výpočty 1 Modely analýzy a syntézy lánů MAF/KIV) Přednáška 8 Úvěr a úvěrové výočty 1 1 Rovnice úvěru V minulých řednáškách byla ro stav dluhu oužívána rovnice 1), kde ředokládáme, že N > : d = a b + = k > N. d./

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

IDEÁLNÍ PLYN II. Prof. RNDr. Emanuel Svoboda, CSc.

IDEÁLNÍ PLYN II. Prof. RNDr. Emanuel Svoboda, CSc. IDEÁLNÍ PLYN II Prof. RNDr. Eanuel Svoboa, Sc. ZÁKLADNÍ RONIE PRO LAK IP F ýchoisko efinice tlaku vztahe S Náoba tvaru krychle, stejná rychlost olekul všei sěry (olekulární chaos, všechny sěry stejně ravěoobné)

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou

Více

Teplovzdušné motory motory budoucnosti

Teplovzdušné motory motory budoucnosti Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Telovzdušné motory motory budoucnosti Text byl vyracován s odorou rojektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď)

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) Jméno: _ podpis: ročník: č. studenta Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) 1. JEDNOTKA PASCAL JE DEFINOVÁNÁ JAKO a. N.m.s b. kg.m-1.s-2 c. kg.m-2 d. kg.m.s 2. KALORIMETRICKÁ

Více

Předpjatý beton Přednáška 6

Předpjatý beton Přednáška 6 Předjatý beton Přednáška 6 Obsah Změny ředětí Okamžitým ružným řetvořením betonu Relaxací ředínací výztuže Přetvořením oěrného zařízení Rozdílem telot ředínací výztuže a oěrného zařízení Otlačením betonu

Více

F6040 Termodynamika a statistická fyzika

F6040 Termodynamika a statistická fyzika F6040 ermodynamika a statistická fyzika Záisky z řednášek Poslední úrava: 21. července 2015 Obsah 1 Úvod do ermodynamiky a statistické fyziky 4 1.1 Pois systémů mnoha částic................... 4 1.2 Zkoumané

Více

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.

Více

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného lynu - statistické zracování dat Teorie Tam, kde se racuje se stlačenými lyny, je možné ozorovat zajímavý jev. Jestliže se do nádoby, kde je

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 1 STAVOVÉ VELIČINY TERMODYNAMICKÝCH SOUSTAV

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 1 STAVOVÉ VELIČINY TERMODYNAMICKÝCH SOUSTAV VYSOKÉ UČEÍ ECHICKÉ V BRĚ FAKULA SAVEBÍ PAVEL SCHAUER APLIKOVAÁ FYZIKA MODUL SAVOVÉ VELIČIY ERMODYAMICKÝCH SOUSAV SUDIJÍ OPORY PRO SUDIJÍ PROGRAMY S KOMBIOVAOU FORMOU SUDIA Recenzoval: Prof. RDr. omáš

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Cyklické kódy. Alena Gollová, TIK Cyklické kódy 1/23

Cyklické kódy. Alena Gollová, TIK Cyklické kódy 1/23 Cyklické kódy 5. řednáška z algebraického kódování Alena Gollová, TIK Cyklické kódy 1/23 Obsah 1 Cyklické kódy Generující olynom - kódování Kontrolní olynom - objevování chyb Alena Gollová, TIK Cyklické

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

Poznámky k cvičením z termomechaniky Cvičení 4. Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou

Poznámky k cvičením z termomechaniky Cvičení 4. Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou Adiabatická změna: Při adiabatickém ději nedochází k výměně tepla s okolím, tedy platí: dq = 0; dq = 0 () Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou Pro její první tvar:

Více

SHANNONOVY VĚTY A JEJICH DŮKAZ

SHANNONOVY VĚTY A JEJICH DŮKAZ SHANNONOVY VĚTY A JEJICH DŮKAZ JAN ŠŤOVÍČEK Abstrakt. Důkaz Shannonových vět ro binární symetrický kanál tak, jak měl být robrán na řednášce. Číslování vět odovídá řednášce. 1. Značení a obecné ředoklady

Více

Teplota a nultý zákon termodynamiky

Teplota a nultý zákon termodynamiky Termodynamika Budeme se zabývat fyzikou oisující děje, ve kterých se telota nebo skuenství látky (obecně - stav systému) mění skrze řenos energie. Tato část fyziky se nazývá termodynamika. Jak záhy uvidíme,

Více

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi 1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4

Více

Cvičení z termomechaniky Cvičení 3.

Cvičení z termomechaniky Cvičení 3. Příklad 1 1kg plynu při izobarickém ohřevu o 710 [ C] z teploty 40[ C] vykonal práci 184,5 [kj.kg -1 ]. Vypočítejte molovou hmotnost plynu, množství přivedeného tepla a změnu vnitřní energie ΔT = 710 [K]

Více

3. Silové působení na hmotné objekty

3. Silové působení na hmotné objekty SÍL OENT SÍLY - 10-3. Silové ůsobení na hmotné objekty 3.1 Síla a její osuvné účinky V této kaitole si oíšeme vlastnosti silových účinků ůsobících na konstrukce a reálné mechanické soustavy. Zavedeme kvantitativní

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

Termomechanika 4. přednáška

Termomechanika 4. přednáška ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů

Více

Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky

Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky Příklad 1 Plynová turbína pracuje dle Ericsson-Braytonova oběhu. Kompresor nasává 0,05 [kg.s- 1 ] vzduchu (individuální plynová konstanta 287,04 [J.kg -1 K -1 ]; Poissonova konstanta 1,4 o tlaku 0,12 [MPa]

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

III. STRUKTURA A VLASTNOSTI PLYNŮ

III. STRUKTURA A VLASTNOSTI PLYNŮ III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo

Více

7.5.13 Rovnice paraboly

7.5.13 Rovnice paraboly 7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,

Více

Termodynamické potenciály

Termodynamické potenciály Kapitola 1 Termodynamické potenciály 11 Vnitřní energie a U-formulace Fyzikání význam vnitřní energie: v průběhu adiabatického děje je vykonaná práce rovna úbytku vnitřní energie Platí pro vratné i pro

Více

ZÁKLADNÍ POZNATKY Hydrostatika Kapaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná napětí, jsou dokonale pružné.

ZÁKLADNÍ POZNATKY Hydrostatika Kapaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná napětí, jsou dokonale pružné. ZÁKLDNÍ POZNTKY Hydrostatika Kaaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná naětí, jsou dokonale ružné. Tlak v kaalině F, F. S S tlaková síla Pascalův zákon : Tlak je na všech místech

Více

Směrová kalibrace pětiotvorové kuželové sondy

Směrová kalibrace pětiotvorové kuželové sondy Směrová kalibrace ětiotvorové kuželové sondy Matějka Milan Ing., Ústav mechaniky tekutin a energetiky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, milan.matejka@fs.cvut.cz Abstrakt: The

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním

Více

Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K 11 plynných prvků Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 H 2 20 He 4.4 Ne 27 Ar 87 Kr 120 Xe 165 Rn 211 N 2 77 O 2 90 F 2 85 Cl 2 238 1 Plyn

Více

8. Termodynamika a molekulová fyzika

8. Termodynamika a molekulová fyzika 8. erodynaika a olekulová fyzika Princi energie je záležitost zkušenosti. Pokud by tedy jednoho dne ěla být jeho všeobecná latnost zochybněna, což v atoové fyzice není vyloučeno, stal by se náhle aktuální

Více

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze ermodynamika par Fázové změny látky: Přivádíme-li pevné fázi látky teplo, dochází při jisté teplotě a tlaku ke změně pevné fáze na fázi kapalnou (tání) Jestliže spojíme body tání při různých tlacích, získáme

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním

Více

EKONOMETRIE 4. přednáška Modely chování spotřebitele

EKONOMETRIE 4. přednáška Modely chování spotřebitele EKONOMETRIE 4. řednáška Modely chování sotřebitele Rozočtové omezení Sotřebitel ři svém rozhodování resektuje tzv. rozočtové omezení x + x y, kde x i množství i-té sotřební komodity, i cena i-té sotřební

Více