V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

Rozměr: px
Začít zobrazení ze stránky:

Download "V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :"

Transkript

1 Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku a objemu lynu je konstantní : Nebo ro dva stavy lynu, očáteční a koncový : - diagramu je tento roces znázorněn hyerbolou sojující body obou stavů lynu, je to tzv. izoterma : Další informace o ději získáme rozborem.věty termodynamické a veličin v ní vystuujících. Při izotermickém ději se mění objem (nař. ři izotermické exanzi se zvětšuje), lyn tedy koná ráci. Podle úvah v minulé kaitole by řitom měla klesat kinetická energie molekul (řeměňuje se na ráci), měla by klesat i vnitřní energie lynu. Z odmínky o konstantní telotě ovšem lyne, že ři tomto ději se vnitřní energie lynu nemění : U 3 konst Diferenciál konstantní veličiny je samozřejmě nulový : a odle.věty termodynamiky musí latit : o znamená, že možný úbytek vnitřní energie ři ráci lynu je ihned (a během rocesu růběžně) dolňován dodávanou energií teelnou. Lze říci, že tak vlastně robíhá dokonalá řeměna teelné energie na ráci. Důležitou otázkou je ovšem realizace takového rocesu, ři kterém je do lynu dodáváno telo, aniž dochází ke zvýšení jeho teloty.

2 dnešní době si lze ředstavit automatizovaný, očítačem řízený systém jakýsi termostat, který by omocí telotních senzorů uvnitř lynu hlídal jeho telotu tak, že kdyby v důsledku exanze a ráce lynu začala telota klesat (tj. objevila by se neatrná diferenciální odchylka od ožadované hodnoty), zanulo by se ihned nějaké ohřívací těleso a do lynu by byla dodávána teelná energie, dokud by se telota nezvýšila Jak si však oradili vědci minulosti bez těchto moderních omůcek? Princiiálně stejný účinek jako elektronická regulace bude mít dokonalý teelný styk (bez ztrát, s nekonečně velikou teelnou vodivostí) sledovaného lynu se zdrojem teelné energie o konstantní telotě rovné ožadované telotě (tzv. ohřívač, teelný rezervoár). Účinek ohřívače lze dobře ochoit v souvislosti s dříve uvedeným oisem vratného děje jako sledu (skoro)rovnovážných stavů : ři změně takového stavu dojde k (nekonečně) malé změně stavových veličin zde k diferenciálnímu oklesu teloty lynu z ůvodní teloty, a roto z ohřívače bude řecházet telo do neatrně chladnějšího lynu, až se oět teloty vyrovnají a nastane další (skoro)rovnovážný stav se stejnou telotou a oněkud odle stavové rovnice odlišným tlakem a objemem. Děj samozřejmě okračuje dále : rotože lyn stále racuje, telota oět neatrně klesá, teelná energie řechází do lynu a telota se oět vyrovnává atd. takovém usořádání se tak ři ráci lynu automaticky dolňuje telo z teelného rezervoáru, aby nahradilo vykonanou ráci, a roto telota a vnitřní energie lynu zůstávají konstantní. říadě izotermické komrese, kdy se objem lynu zmenšuje, rotože je ístem v racovním válci stlačován, je rinci stabilizace teloty stejný, ouze telo a ráce mají oačná znaménka, a tedy oačný směr řechodu : ráce lynu je záorná konají ji vnější síly a tím by měla růst kinetická energie lynu, a tedy i vnitřní energie. by se tak nestalo, musí nyní teelná energie z lynu odcházet do okolí lyn tedy musí mít oět dokonalý teelný styk s teelným jímačem teloty, který bude odebírat telo (tzv. chladič). K teelnému toku do chladiče dochází nyní ři diferenciálním zvýšení teloty lynu jako důsledku ráce sil okolí a výsledkem je oět stabilizace teloty a vnitřní energie lynu.

3 Poznámka: eoreticky jsou chladič i ohřívač v rinciu stejné velké teelné rezervoáry, tj. relativně velká tělesa s velkým obsahem vnitřní energie, aby říjem či výdej tela nezůsobil změnu jejich teloty. echnické rovedení chladiče i ohřívače bude ovšem odlišné. yočítejme nyní konkrétně omocí.věty ráci vykonanou lynem a řijaté telo ři izotermickém ději z očátečního stavu (,, ) do konečného stavu (,, ) : Q Protože nedochází ke změně teloty, nelze oužít běžné vztahy ro telo dodané látce ři ohřevu, ale můžeme oužít vztah ro ráci : Q d Dosadíme za tlak ze stavové rovnice : dostaneme : Q d d ln můžeme zasat jednodušeji : d ln o Q ln ráce a telo ři izotermickém ději Při izotermické exanzi bude konečný objem větší, a tedy vykonaná ráce i řijaté telo jsou kladné : Q izotermická exanze Při izotermické komresi je tomu naoak : Q izotermická komrese 3

4 ) Děj izochorický ( = ) Za ředokladu konstantního objemu se nyní stavová rovnice ro dané množství lynu změní na Gay- Lussacův zákon o rozínavosti lynu : Nebo ro dva stavy lynu, očáteční a koncový : - diagramu je tento děj znázorněn římkou sojující body obou stavů, rovnoběžnou s osou tlaků je to tzv. izochora. Podmínku realizace tohoto děje konstantní objem lynu jednoduše zajistí evný neměnný objem nádoby, ve které je lyn umístěn. Konstantní objem lynu ovšem znamená jeho nulový řírůstek (diferenciál), a tedy znemožní ráci lynu : d Podle.věty ak latí : o znamená, že veškerá dodaná teelná energie se římo mění na řírůstek vnitřní energie, ohřev lynu je za těchto odmínek nejefektivnější, tj. na zvýšení teloty o jednotkový telotní rozdíl ( K) se sotřebuje 4

5 nejmenší množství tela. Jinak řečeno, molární teelná kaacita má nejmenší možnou hodnotu, a jestliže s její omocí vyjádříme dodané telo : d Dostaneme tím nový, dobře oužitelný vztah ro řírůstek (změnu) vnitřní energie, který se rovná tomuto telu : d změna vnitřní energie Jestliže ak tento výraz orovnáme se vztahem dříve odvozeným ro ideální lyn : 3 d Dostaneme konkrétní velikost ro molární teelnou kaacitu ři konstantním objemu : 3 ato hodnota latí ouze za odmínky latnosti dříve uvedeného Maxwellova rozdělení ro ideální jednoatomový lyn, kdy lze zanedbat řísěvek energie rotačního ohybu molekuly. Pro běžné dvouatomové molekuly (kyslík, dusík, vodík, ) ak latí : 5 složitější molekuly ak mají teelnou kaacitu ještě vyšší. Kdybychom chtěli vyočítat dodané telo a zvýšení vnitřní energie lynu ři nějakém izochorickém ději z očátečního stavu (,, ) do konečného stavu (,, ), rovedli bychom integraci tj. součet diferenciálních veličin : Q U d elkové dodané telo by se samozřejmě řevedlo na celkové zvýšení vnitřní energie, bez vykonání jakékoliv ráce. 3) Děj izobarický ( = ) Za ředokladu konstantního tlaku se stavová rovnice ro zadané množství lynu změní na Gay- Lussacův zákon o roztažnosti lynu : 5

6 Nebo ro dva stavy lynu, očáteční a koncový : - diagramu je tento děj oět znázorněn římkou sojující body obou stavů, rovnoběžnou s osou je to tzv. izobara. Podmínku realizace tohoto děje konstantní tlak lynu je možno zajistit oužitím válce s ístem, na který bychom zvenku (vnější síly) ůsobily konstantní silou (svislý íst by mohlo nař. zvenku zatěžovat závaží zvolené hmotnosti). likujeme dále na izobarický děj.větu termodynamiky, jejíž žádný člen nyní nebude nulový : Dodávaná teelná energie se tedy sotřebuje nejen na zvýšení vnitřní energie, ale i na konání ráce lynem - ohřev lynu je méně efektivní než za konstantního objemu, tj. na zvýšení teloty o jednotkový telotní rozdíl se sotřebuje větší množství tela, tedy molární teelná kaacita je větší : d Dosaďme tento výraz do.věty solu se známými vztahy ro ráci lynu a zvýšení vnitřní energie : d d d 6

7 K úravě druhého členu na ravé straně oužijeme stavovou rovnici : kterou diferencujeme, tj. vyočítáme diferenciál (řírůstek) ravé i levé strany : d d Dostaneme tak : d d d d Porovnáním obou stran tak vznikne vztah ro molární teelnou kaacitu ři konstantním tlaku : Mayerův vztah Pro jednoatomový lyn tedy bude latit : 5 3 ro dvouatomové molekuly : 7 5 Pro výočet dodaného tela, vykonané ráce a změny vnitřní energie ři nějakém izobarickém ději ze stavu (,, ) do stavu (,, ) bychom, jako v ředcházejících dějích, rovedli integraci elementárních veličin : d Q d U d současně ro ráci musí latit (využijeme stavovou rovnici) : d d 7

8 Stejný vztah bychom také dostali odle.věty odečtením rvních dvou výrazů ro telo a změnu vnitřní energie, nebo římým dosazením ze stavové rovnice do ředchozího výrazu ro ráci. Zatím jsme rozkoumali tři významné termodynamické děje a jsou to vlastně všechny možnosti, kdy může být jedna ze tří stavových veličin význačná konstantní. e dvou říadech jsme ak dostali zvláštní tvary.věty, ouze se dvěma členy ři izotermickém ději byl nulový řírůstek vnitřní energie a ři izochorickém ději byla nulová vykonaná ráce. Může nás tedy naadnout, že by mohla existovat možnost - nulového dodaného tela a takový termodynamický děj se ukázal být velmi důležitým. 4) Děj adiabatický ímto ojmem označujeme termodynamický děj, ři kterém není lynu dodávaná žádná teelná energie a samozřejmě žádné telo ani není odebíráno obecně říkáme, že je nulová výměna tela termodynamické soustavy s okolím. oho lze dosáhnout dokonalou teelnou izolací stěn, které obkloují lyn - jejich teelná vodivost tedy musí být nulová. (Povšimněte si, že to je rávě oačná odmínka, než byla u izotermického děje, kdy jsme ožadovali dokonalou teelnou rostunost stěn.).věta termodynamická má tedy v říadě adiabatického děje také jednoduchý tvar : Plyn nyní koná ráci ouze na úkor vnitřní energie, a můžeme roto tuto ráci jednoduše vyjádřit ouze omocí telotní změny lynu : d elková ráce vykonaná lynem ři nějakém adiabatickém ději z očátečního stavu (,, ) do konečného stavu (,, ) ak bude integrálem těchto elementárních rací : d 8

9 ýsledek této integrace je samozřejmě jednoduchý : ráce ři adiabatickém ději Při konání kladné ráce lynem, tj. zvětšování objemu, se jeho telota snižuje, tj. vnitřní energie klesá : adiabatická exanze ráce sil okolí ak zahřívá lyn, tedy zvyšuje jeho vnitřní energii : adiabatická komrese Při adiabatickém ději není zřejmě konstantní žádná ze stavových veličin mění se obecně tlak, telota i objem lynu a ři jejich výočtech tedy musíme oužívat obecný tvar stavové rovnice : Na dalších řádcích si však ukážeme, jak lze z této rovnice vyloučit libovolnou roměnnou a dostat zjednodušený tvar stavové rovnice vhodný ro dvourozměrné grafy, nař. ro - diagram. Naišme znovu.větu : d za ráci oužijme standardní výraz : d d Za telotu na ravé straně dosaďme ze stavové rovnice : vyočítejme její diferenciál (jako funkce dvou roměnných a ) : d d( ) d d Po vynásobení a řevedení na levou stranu máme : d d d Použijeme-li Mayerův vztah : ak dostáváme : 9

10 d d ovnici vydělíme molární kaacitou ři konstantním objemu a součinem. : d d Zavedeme ještě novou veličinu : Poissonova konstanta rozdělíme členy na obě strany : d d znikl tak seciální tvar diferenciální rovnice o dvou roměnných, které jsou searovány, tj. odděleny, každá na jedné straně rovnice. K vyřešení této rovnice stačí rovést její integraci omocí určitého integrálu v mezích od očátečního stavu lynu (,, ) do konečného stavu (,, ) : d d Primitivní funkce na obou stranách jsou stejného druhu : ln ln Dostaneme tedy : ln ln ln ln Po roznásobení a oužití znalostí o logaritmech : ln ln ln ln a o řevedení členů : ln ln ln ln a o sdružení logaritmů: ] ln [ ] ln [

11 ovnost logaritmů znamená ovšem také rovnost funkcí : nebo obecněji - neboť očáteční i koncový stav byly libovolné : Poissonova rovnice Dostali jsme tak obecnou rovnici adiabaty. Protože Poissonova konstanta je větší než, je křivka adiabaty v - diagramu strmější než izoterma. Dosazením ze stavové rovnice lze získat další varianty rovnice adiabaty ro jiné dvě roměnné : Poznámka: diabatickému ději se bude také blížit rychle robíhající děj v teelně neizolované termodynamické soustavě (lynu), rotože telo nestačí řecházet do lynu. Čím je tedy roces rychlejší, tím více se řibližuje adiabatickému ději (ale tím více se odchyluje od kvazistacionárnosti, tedy také od vratnosti a od latnosti stavové rovnice) (konec kaitoly) K. usňák, verze /5

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2 Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA YSOKÉ UČENÍ ECHNICKÉ BRNĚ FAKULA SAEBNÍ PAEL SCHAUER APLIKOANÁ FYZIKA MODUL ERMODYNAMIKA SUDIJNÍ OPORY PRO SUDIJNÍ PROGRAMY S KOMBINOANOU FORMOU SUDIA Recenzoval: Prof. RNDr. omáš Ficker, CSc. Pavel Schauer,

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

1.5.2 Mechanická práce II

1.5.2 Mechanická práce II .5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a

Více

21.1 VRATNÉ A NEVRATNÉ DĚJE 21.2 ENTROPIE. Probíhá-li v uzavřeném systému nevratný děj, entropie S systému vždy roste a nikdy neklesá.

21.1 VRATNÉ A NEVRATNÉ DĚJE 21.2 ENTROPIE. Probíhá-li v uzavřeném systému nevratný děj, entropie S systému vždy roste a nikdy neklesá. 21 Entroie AnonymnÌ n is na zdi v jednè kav rniëce na Pecan Street v Austinu v Texasu n m sdïluje: Ñ»as je z sob, jak B h zajistil, aby se vöechno nestalo najednouì.»as m takè smïr: nïkterè dïje se odehr

Více

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci

Více

PRŮTOK PLYNU OTVOREM

PRŮTOK PLYNU OTVOREM PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy

Více

Kinetick teorie plyn

Kinetick teorie plyn 0 Kinetick teorie lyn P edstavte si, ûe jste se r vï vr tili z lyûa skè t ry do romrzlè chaty; co udïl te nejd Ìv? NejsÌö zatoìte v kamnech ó a roë? ÿeklo by se, ûe kamna zv öì obsah vnit nì (ÑteelnÈì)

Více

III. Základy termodynamiky

III. Základy termodynamiky III. Základy termodynamiky 3. ermodynamika FS ČU v Praze 3. Základy termodynamiky 3. Úvod 3. Základní ojmy 3.3 Základní ostuláty 3.4 Další termodynamické funkce volná energie a volná entalie 3.5 Kritérium

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou

Více

Teplota a nultý zákon termodynamiky

Teplota a nultý zákon termodynamiky Termodynamika Budeme se zabývat fyzikou oisující děje, ve kterých se telota nebo skuenství látky (obecně - stav systému) mění skrze řenos energie. Tato část fyziky se nazývá termodynamika. Jak záhy uvidíme,

Více

Teplovzdušné motory motory budoucnosti

Teplovzdušné motory motory budoucnosti Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Telovzdušné motory motory budoucnosti Text byl vyracován s odorou rojektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 1 STAVOVÉ VELIČINY TERMODYNAMICKÝCH SOUSTAV

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 1 STAVOVÉ VELIČINY TERMODYNAMICKÝCH SOUSTAV VYSOKÉ UČEÍ ECHICKÉ V BRĚ FAKULA SAVEBÍ PAVEL SCHAUER APLIKOVAÁ FYZIKA MODUL SAVOVÉ VELIČIY ERMODYAMICKÝCH SOUSAV SUDIJÍ OPORY PRO SUDIJÍ PROGRAMY S KOMBIOVAOU FORMOU SUDIA Recenzoval: Prof. RDr. omáš

Více

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď)

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) Jméno: _ podpis: ročník: č. studenta Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) 1. JEDNOTKA PASCAL JE DEFINOVÁNÁ JAKO a. N.m.s b. kg.m-1.s-2 c. kg.m-2 d. kg.m.s 2. KALORIMETRICKÁ

Více

7.5.13 Rovnice paraboly

7.5.13 Rovnice paraboly 7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,

Více

ZÁKLADNÍ POZNATKY Hydrostatika Kapaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná napětí, jsou dokonale pružné.

ZÁKLADNÍ POZNATKY Hydrostatika Kapaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná napětí, jsou dokonale pružné. ZÁKLDNÍ POZNTKY Hydrostatika Kaaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná naětí, jsou dokonale ružné. Tlak v kaalině F, F. S S tlaková síla Pascalův zákon : Tlak je na všech místech

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

EKONOMETRIE 4. přednáška Modely chování spotřebitele

EKONOMETRIE 4. přednáška Modely chování spotřebitele EKONOMETRIE 4. řednáška Modely chování sotřebitele Rozočtové omezení Sotřebitel ři svém rozhodování resektuje tzv. rozočtové omezení x + x y, kde x i množství i-té sotřební komodity, i cena i-té sotřební

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální

Více

SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE

SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE Záadočeská univerzita v Plzni Fakulta edagogická Dilomová ráce SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE COMPARISON OF SELECTED EFFECTS IN REAL GAS - MODELS, ANIMATIONS Jiří Prušák Plzeň

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

8. Termodynamika a molekulová fyzika

8. Termodynamika a molekulová fyzika 8. erodynaika a olekulová fyzika Princi energie je záležitost zkušenosti. Pokud by tedy jednoho dne ěla být jeho všeobecná latnost zochybněna, což v atoové fyzice není vyloučeno, stal by se náhle aktuální

Více

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3 MECHANIKA IDEÁLNÍCH PLYNŮ Studijní text ro řešitele FO a ostatní zájemce o fyziku Bohumil ybíral Obsah Předmluva 3 Základní veličiny a zákony ideálního lynu 4 Stavové veličiny lynu 4 eličiny oisující lyn

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy 6. Vliv zůsobu rovozu uzlu transformátoru na zemní oruchy Zemní oruchou se rozumí sojení jedné nebo více fází se zemí. Zemní orucha může být zůsobena řeskokem na izolátoru, růrazem evné izolace, ádem řetrženého

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-2-3-14 III/2-2-3-15 III/2-2-3-16 III/2-2-3-17 III/2-2-3-18 III/2-2-3-19 III/2-2-3-20 Název DUMu Ideální plyn Rychlost molekul plynu Základní rovnice pro tlak ideálního

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Základy elektrických pohonů, oteplování,ochlazování motorů

Základy elektrických pohonů, oteplování,ochlazování motorů Základy elektrických ohonů, otelování,ochlazování motorů Určeno ro studenty kombinované formy FS, ředmětu Elektrotechnika II an Dudek únor 2007 Elektrický ohon Definice (dle ČSN 34 5170): Elektrický ohon

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

F4 SÍLA, PRÁCE, ENERGIE A HYBNOST

F4 SÍLA, PRÁCE, ENERGIE A HYBNOST F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Prvními velmi důležitými ojmy jsou mechanická ráce a otenciální energie

Více

ÚSTAV ORGANICKÉ TECHNOLOGIE

ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) B Měření secifického ovrchu sorbentů Vedoucí ráce: Doc. Ing. Bohumír Dvořák, CSc. Umístění ráce: S31 1 MĚŘENÍ SPECIFICKÉHO POVRCHU SORBENTŮ 1. CÍL PRÁCE

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

7. Fázové přeměny Separace

7. Fázové přeměny Separace 7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Dynamické programování

Dynamické programování ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5

Více

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu . PI regulátor Čas ke studu: 5 mnut Cíl Po rostudování tohoto odstavce budete umět defnovat ojmy: PI člen, vnější a vntřní omezení, řenos PI členu osat čnnost PI regulátoru samostatně změřt zadanou úlohu

Více

Statistická analýza dat - Indexní analýza

Statistická analýza dat - Indexní analýza Statistiká analýza dat Indexní analýza Statistiká analýza dat - Indexní analýza Index mohou být:. Stejnorodýh ukazatelů. Nestejnorodýh ukazatelů Index se skládají ze dvou složek:... intenzita (úroveň znaku)...

Více

FYZIKÁLNÍ CHEMIE chemická termodynamika

FYZIKÁLNÍ CHEMIE chemická termodynamika FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd.

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd. SROVNÁVÁNÍ HODNOT STATSTCÝCH UKAZATELŮ - oisem a analýzou ekonomikýh jevů a roesů omoí statistikýh ukazatelů se zabývá hosodářská statistika - ílem je nalézt zůsoby měření ekonomiké skutečnosti (ve formě

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

GEOMETRICKÉ PROJEKCE. Petra Surynková, Yulianna Tolkunova

GEOMETRICKÉ PROJEKCE. Petra Surynková, Yulianna Tolkunova GEOMETRICKÉ PROJEKCE S VYUŽITÍM 3D POČÍTAČOVÉHO MODELOVÁNÍ Petra Surynková, Yulianna Tolkunova Článek ojednává o realizovaných metodách inovace výuky deskritivní geometrie na Matematicko-fyzikální fakultě

Více

Přehled otázek z fyziky pro 2.ročník

Přehled otázek z fyziky pro 2.ročník Přehled otázek z fyziky pro 2.ročník 1. Z jakých základních poznatků vychází teorie látek + důkazy. a) Látka kteréhokoli skupenství se skládá z částic molekul, atomů, iontů. b) Částice se v látce pohybují,

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Řetězy Vysokovýkonné IWIS DIN 8187

Řetězy Vysokovýkonné IWIS DIN 8187 Vysokovýkonné válečkové řetězy IWIS Přednosti a výhody Všechny komonenty jsou vyrobeny z vysokojakostních ušlechtilých ocelí s maximální řesností. V souladu s ředokládaným namáháním komonentu jsou teelně

Více

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace Princi iltrace Povrchová vs. hloubková iltrace» Dělení evných částic od tekutiny na orézní iltrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka Tyy

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

IV. Fázové rovnováhy dokončení

IV. Fázové rovnováhy dokončení IV. Fázové rovnováhy dokončení 4. Fázové rovnováhy Ústav rocesní a zracovatelské techniky 1 4.3.2 Soustava tuhá složka kaalná složka Dvousložková soustava s 2 Křivka rozustnosti T nenasycený roztok nasycený

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu Modelování Modelování, klasifikace a odvozování modelů» áhrada studovaného ojektu modelem na základě odonosti» Smsl» studium originálu rostřednictvím modelu» idealizovaný» jednodušší» dostunější All models

Více

Výpo ty Výpo et hmotnostní koncentrace zne ující látky ,

Výpo ty Výpo et hmotnostní koncentrace zne ující látky , "Zracováno odle Skácel F. - Tekáč.: Podklady ro Ministerstvo životního rostředí k rovádění Protokolu o PRTR - řehled etod ěření a identifikace látek sledovaných odle Protokolu o registrech úniků a řenosů

Více

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

FYZIKÁLNÍ CHEMIE I: 2. ČÁST Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie

Více

345674 3456.4 789:;< 38;?@;5A3 %$(%&*%,!%$(%-# #)!! +#$!! 5$%3 3%!!%5$% 33% % %%!3 % ++ ++!+3%!5++! 9 /0%%! 3%5$% +$%,++!"! $(!#$% $!&63 )! & )%$#-&*%!)$!,!$ $)) 3&43$3% )& $%3% &'$! &/%$3 +!$+ $!&45$

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební stavební obzor 9 10/2014 115 Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FRER doc. Ing. artina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební Článek oisuje exerimentální analýzu hybridních

Více

Aleš Lalík Septima A 2003/04 SPALOVACÍ MOTORY SEMINÁRNÍ PRÁCE FYZIKÁLNÍ SEMINÁŘ

Aleš Lalík Septima A 2003/04 SPALOVACÍ MOTORY SEMINÁRNÍ PRÁCE FYZIKÁLNÍ SEMINÁŘ Aleš Lalík Setima A 2003/04 SPALOVACÍ MOTORY SEMINÁRNÍ PRÁCE FYZIKÁLNÍ SEMINÁŘ Obsah. Úvod. Historie... 3 2. Základní ojmy 2. Zdvihový objem válce a zdvihový oměr... 5 2.2 Komresní oměr... 6 2.3 Střední

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY MODELOVÁÍ POPTÁVKY, ABÍDKY A TRŽÍ ROVOVÁHY Schéma tržní rovnováhy Modely otávky na trhu výrobků a služeb Formulace otávkové funkce Komlexní model Konstrukce modelu otávky Tržní otávka Dynamcké modely otávky

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec SŠT Mělník Číslo rojektu Označení materiálu ázev školy Autor Tematická oblast Ročník Anotace CZ..07/.5.00/34.006 VY_3_OVACE_H..05 ntegrovaná střední škola technická Mělník, K učilišti 566, 76 0 Mělník

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

3. Aktivní snímače. 3.1 Termoelektrické snímače

3. Aktivní snímače. 3.1 Termoelektrické snímače 3. Aktivní snímače 3.1 Termoelektrické snímače Termoelektrické snímače jsou založen na termoelektrickém jevu, který je zůsoben závislostí stkového otenciálu dvou různých kovů na telotě. V obvodu ze dvou

Více

Řetězy Bezúdržbové IWIS MEGAlife DIN 8187

Řetězy Bezúdržbové IWIS MEGAlife DIN 8187 Válečkový řetěz bezúdržbový IWIS MEGAlife Problém / Výchozí stav domazávání není možné vůbec nebo jen částečně čisté a suché okolní odmínky ztížený řístu k rovádění údržby znečištění zařízení a doravovaného

Více

ρ hustotu měřeného plynu za normálních podmínek ( 273 K, (1) ve které značí

ρ hustotu měřeného plynu za normálních podmínek ( 273 K, (1) ve které značí Měření růtou lynu rotametrem a alibrace ailárního růtooměru Úvod: Průtoy lynů se měří lynoměry, rotametry nebo se vyočítávají ze změřené tlaové diference v místech zúžení růřezu otrubí nař.clonou, Venturiho

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY

CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY V reakční kinetice jsme si ukázali, že zvratné reakce jsou charakterizovány tím, že probíhají současně oběma směry, tj. od výchozích látek k produktům

Více

RÁDIOVÉ URČOVÁNÍ POLOHY

RÁDIOVÉ URČOVÁNÍ POLOHY Přehled témat: UP 1a ÁDIOVÉ UČOVÁNÍ POLOHY 1. Úvod. Princiy rádiového určování olohy, tyy systémů určování olohy, alikace. 2. Časoměrné a fázoměrné systémy určování olohy, rinci měření časového zoždění,

Více

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu: Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el.

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el. Aplikace Gaussova zákona ) Po sestavení základní ovnice elektostatiky Základní vlastnosti elektostatického pole, pobané v minulých hodinách, popisují dvě difeenciální ovnice : () ot E konzevativnost el.

Více