Chyby a nejistoty měření

Rozměr: px
Začít zobrazení ze stránky:

Download "Chyby a nejistoty měření"

Transkript

1 Moderní technologie ve stdi aplikované fyziky CZ..07/..00/ Chyby a nejistoty měření (doplňjící tet k laboratorním cvičení) Připravili: Petr Schovánek, Vítězslav Havránek

2 Obsah Obsah... Seznam ilstrací... Seznam tablek Úvod Měření ve fyzice Chyby měření Hrbé chyby Systematické chyby Náhodné chyby Veličiny a výrazy spojené s chybami Zaokrohlování Příklad zpracování měření Měřicí přístroje Analogové Čtení stpnice Příklad chyby analogového měřidla Digitální Příklad s chybo rozsah Příklad s chybo digit Nejistota měření Veličiny, výrazy a vztahy Nejistota typ A Příklad výpočt standardní nejistoty typ A Rozšířená nejistota Nejistota typ B Příklad sočt nejistot Nejistota vypočtené hodnoty Příklad výpočt nejistoty z fnkce... 7 Poděkování... 8 Požité zdroje... 8 Seznam ilstrací Obr.. Gassovo rozdělení... 7 Obr.. Intervaly pravděpodobnosti... 7 Obr. 3. Vliv počt měření n na hodnot... 7 Obr. 4. Tlošťka koncové měrky v řez... 6

3 Seznam tablek Tab.. Přehled vzorců... 6 Tab.. Zaokrohlování... 8 Tab. 3. Naměřené hodnoty... 8 Tab. 4. Analogová měřidla... 0 Tab. 5. Nejistota... 4 Tab. 6. Rozšiřjící koeficienty... 4 Tab. 7. Naměřená data

4 . Úvod Každé měření ve fyzice, ať již etenzivních (např. délka) nebo intenzivních (např. teplota) veličin, je zatíženo rčito nepřesností způsobeno nejrůznějšími negativními vlivy, které se v měřicím proces vyskytjí. To se projeví odchylko mezi naměřeno a sktečno hodnoto sledované veličiny. Výsledek měření se tak vždy pohybje v rčitém pravděpodobném rozsah (tzv. chybovém interval), o který se může sktečná hodnota veličiny odlišovat od naměřené. Účelem tohoto tet je přehledně vést základní teorii a postpy zpracování výsledků měření vzhledem k těmto nepřesnostem. Důraz je kladen na přehlednost a srozmitelnost. Uvedené příklady jso aplikovatelné hlavně v laboratorních cvičeních. Pro ostatní obory jso postpy a příklady požitelné bď přímo na základě fyzikální analogie, případně pomocí vhodného přizpůsobení. Relativně samostatno částí článk je přehled tříd přesnosti samotných měřicích přístrojů. S tím sovisí způsob odečt hodnot ze stpnic přístrojů, zvl. v analogovém provedení. Uvedeny jso také vztahy pro výpočet nejistoty nepřímo měřených veličin, které jso z naměřených hodnot vypočítávány. V vedených vzorových příkladech je kladen důraz i na formálně a věcně správný zápis výsledné hodnoty s rčeno nejistoto (příp. chybo).. Měření ve fyzice K vyhodnocení výsledků ve fyzikálních a technických měřeních můžeme volit různé přístpy. Při rčení nepřesnosti měření eistjí dva základní postpy: starší a jednodšší chybový, novější a komplenější vyhodnocení prostřednictvím nejistot měření. Preferována je drhá metoda. Přírčka vádí oba přístpy odděleně, neboť nejistoty měření vycházejí i z původní chybové koncepce a obsahjí ji, přičemž ve specifických případech je vyjádření samotné chyby postačjící. Chyby se vyjadřjí v absoltních nebo relativních hodnotách. Podle jejich působení lze chyby rozdělit na systematické, náhodné a hrbé. Podle svého zdroje se rozděljí na chyby přístroje, metody, pozorování a vyhodnocení. Nejistota měření charakterizje rozsah naměřených hodnot okolo výsledk měření, který lze zdůvodněně přiřadit k hodnotě měřené veličiny. Nejistota se týká 4

5 nejen samotného měření, ale zahrnje také nepřesnost měřicích přístrojů, hodnoty požitých konstant, korekcí apod., na kterých celková nejistota výsledk závisí. 3. Chyby měření Tato klasická koncepce stanovení chybového interval byla dříve jedino možností jeho rčení, nyní bývá jedno ze sočástí zpracování nejistoty měření. Vzhledem k její důležitosti je zde vedena samostatně. Podle povahy a účink se dělí na tři kategorie. 3.. Hrbé chyby Hrbé chyby (jiné označení je vybočjící nebo odlehlé hodnoty) jso způsobeny výjimečno příčino, nesprávným zapsáním výsledk, náhlým selháním měřicí aparatry, nesprávným nastavením podmínek měření apod. Naměřená hodnota se značně liší od ostatních hodnot získaných při opakovaném měření. Takové měření je třeba ze zpracování vyločit, aby nezkreslovalo výsledek. 3.. Systematické chyby Systematická chyba se přičítá (násobí apod.) k měřené hodnotě; ovlivňje náměr konstantně jedním směrem, i když se velikost ovlivnění může časem měnit např. v důsledk stárntí měřicího přístroje. Chyb můžeme tedy matematicky z náměr korigovat, pokd ji známe. Problémem je tedy její identifikace a kvantifikace. Po následné korekci naměřených dat ale dostáváme správné výsledky měření. Odhalit přítomnost systematické chyby může být někdy náročné. Nejprve bychom si měli vědomit, zda systematická chyba nevyplývá přímo z metody měření. Zpravidla pak již není problém ji matematicky korigovat. Např. při nepřímém měření odpor voltmetrem a ampérmetrem se kompenzje dle zapojení bď spotřeba ampérmetr nebo voltmetr. Je-li však tato korekce menší než chyby způsobené nepřesností přístrojů, nemsíme kompenzaci započítávat. Další možností identifikace systematické chyby je srovnávací měření jino metodo. V některých případech nás může na systematicko chyb pozornit i nesohlas naměřených hodnot s matematickým modelem příslšného děje, tj. výsledky neodpovídají teoretickém průběh, např. nesohlasí význačné hodnoty jako je nlová apod. 5

6 3.3. Náhodné chyby Nejčastěji važjeme o sočt velkého množství malých ršivých účinků, které ovlivňjí výsledno hodnot. Statistická rozdělení elementárních zdrojů chyb moho být obecná, ve výsledném sočt se zpravidla přibližjí Gassov průběh rozdělení. Náhodno chyb z jednoho měření nemůžeme stanovit. Náměr msí být vícenásobný a zpracjeme jej statistickými metodami za předpoklad rčitého rozložení náhodných chyb. Minimální počet měření možňjící statistické zpracování je 5-0. Maimální počet měření bývá omezen časem, náklady apod. Více než 00-násobné opakování zpravidla již výrazněji nezpřesňje výsledek, jak vyplývá z obr Veličiny a výrazy spojené s chybami Následjící přehled vádí vzorce pro výpočet veličin požívaných v sovislosti se stanovením chyb: Správná hodnota měřené veličiny X i-tá hodnota veličiny i Absoltní chyba měření i X i i Relativní chyba měření i δi X Pravděpodobná hodnota veličiny při n měřeních i n Rozptyl (variance) ρ ( i) n Střední kvadratická chyba ρ ( i) n Směrodatná chyba ρn ( i) n Chyba aritmetického průměr n měření ρ ( i) n(n ) Pravděpodobná chyba aritmetického průměr θ ( i) 3 n(n ) Krajní chyba měření Tab.. Přehled vzorců κ 3 ( i) n(n ) 6

7 K rčení chyb se nejčastěji pracje s následjícími veličinami. Směrodatná chyba nám dává interval, v jakém se pro Gassovo rozložení naměřených hodnot každé jednotlivé měření vyskytne s pravděpodobností 68 %, což můžeme zapsat ρn,+ ρ n ; viz obr.. Výsledek měření pak vádíme pomocí chyby měření výrazem ± ρ. Pravděpodobná chyba aritmetického průměr θ definje takový ± θ interval kolem pravděpodobné hodnoty, že správná hodnota X leží s 50% pravděpodobností v tomto interval. Protože poloviční jistota někdy nestačí, zavádíme také krajní chyb měření κ, což je interval, v jehož rozmezí se nachází správná hodnota s pravděpodobností %. 7

8 3.5. Zaokrohlování Údaj z měřícího přístroje nebo výsledek výpočt zpravidla obsahje jiný počet desetinných míst než odpovídá přesnosti měření. Výsledek tedy msíme zaokrohlit a zaokrohljeme také velikost chybového interval. Hodnota výsledk se standardně zaokrohlje podle cifry v nižším řád než je chybový interval, tj. od 0 do 4 poslední platná cifra zůstane a od 5 výše přičteme jedničk. Hodnot chybového interval zaokrohljeme nahor na jedn platno cifr, ale v případě, že interval začíná číslicí nebo, tak na dvě cifry a to rovněž nahor. V desetinné části hodnoty, která nemá dostatečný počte platných cifer, msíme v zápis výsledk doplnit nly podle řád chyby, viz následjící tablka s přehledem zaokrohlování: 0,3456± ,3456± ± ± ± ± ± ± ± ± ± ± ± 0.9 3± 3.5± ± 0.9 Tab.. Zaokrohlování 3.6. Příklad zpracování měření Opakovaným měřením jsme získali deset hodnot s přesností na dvě platné cifry, viz následjící tablka. Určete chyb měření. č. m. i hodnot i Tab. 3. Naměřené hodnoty 8

9 Rozdíly mezi hodnoto [ 9] 5.3 a ostatními jso výrazně vyšší než vzájemné rozdíly mezi ostatními hodnotami, toto měření proto vyločíme jako zatížené hrbo chybo. Zůstane tedy n 9 hodnot. n i ( ).96 () n 9 i ρ ( i) n(n ) (.9.96) 9( 9 ) +(.4.96) + +(.3.96) ± ρ.97± 0.6 Hodnoty, 6, 7, 8 a 0 jso menší než pravděpodobná hodnota,, 3, 4 a 5 větší, což vytváří přibližně poloviny; pravděpodobná hodnota je tedy mediánem sobor. Směrodatná chyba vytváří interval: ρ n ( i) () n (.9.96) 9 +(.4.96) + +(.3.96) ρn,+ρn , ,.43 V tomto interval neleží hodnoty 5, 7 a 6. je na hranici, tedy 67 % hodnot v něm leží. Můžeme proto předpokládat, že naměřený sobor přibližně vyhovje Gassov rozložení četnosti hodnot a výsledek je platný. Uvedené algoritmy bývají standardní sočástí programového vybavení vědeckých kalklaček a tablkových procesorů. V části statistika nalezneme fnkce 9

10 AVERAGE pro pravděpodobno hodnot, STDEV pro chyb aritmetického průměr apod. 4. Měřicí přístroje Měřicí přístroje dělíme z hlediska zobrazení údajů na analogové a digitální. Do první skpiny patří přístroje s mechanickým pohybem rčky kazatele (příp. stpnice vůči rysce). Digitální přístroje kazjí přímo číselno hodnot. Do této skpiny zahrnjeme i elektronická měřidla, která rčk nebo slopec jen zobrazjí na displeji. 4.. Analogové Důležité veličiny analogových měřidel jso shrnty v tab. 4. Měřicí rozsah (ma. hodnota, ktero můžeme měřit) M Ma. absoltní chyba Třída přesnosti měřidla T 00 M Normované hodnoty třídy přesnosti Tab. 4. Analogová měřidla Laboratorně naměřeno tříd přesnosti přístroje výrobci zaokrohljí na normované hodnoty v příslšném dekadickém řád. Ve výpočtech se pak važje kladná i záporná chyba. Fyzikální rozměr % se zpravidla třídy přesnosti nepíše. 4.. Čtení stpnice Při odečt se snažíme získat co nejpřesnější výsledek. Dbáme, aby byl přístroj v předepsané poloze (vodorovně, svisle nebo s předepsaným sklonem, což je zpravidla vyznačeno značko na stpnici). Ukazatel měřené veličiny se na stpnici často nekryje s žádným dílkem, ale leží např. mezi k-to a (k+ ) -ní dělicí čárko. Čtená hodnota tedy leží mezi nimi a 0

11 její velikost odhadjeme v desetinách dílk. Řídíme se přitom následjícími empirickými zásadami:. Je-li dělení stpnice hsté a má-li dělicí čárky (rysky) tlsté (široké), odhadjeme poloviny dílků a chyba odhad je ± 0.5 velikosti dílk.. Jso-li dělicí čárky dostatečně tenké proti jejich vzdálenostem, můžeme odhadovat desetiny nejmenších dílků stpnice a chyba je ± dílk. 3. Je-li stpnice opatřena noniem, tj. pomocno stpnicí s n-tinovým dělením, čteme přesně n -tiny dílk hlavní stpnice a odhadjeme poloviny n-tin, což je i velikost chyby odhad. Další chyba může vzniknot při odečt hodnoty vlivem paralay. Pokd rčka neleží v rovině stpnice a nepozorjeme ji kolmo, promítá se do nesprávné polohy. Přesnější přístroje mají pod rčko zrcátko; při správném úhl pohled msí rčka zastiňovat svůj obraz Příklad chyby analogového měřidla T.5. Měřidlo naměřilo na rozsah M 30 hodnot 4.5 a má tříd přesnosti MT (3) δ Hodnota 4.5± 0.8, relativní chyba měření je 5 %.

12 4.4. Digitální Měřidla s digitálním výstpem kazjí přímo číselno hodnot, tdíž odpadají chyby pozorovatele spojené s odečítáním ze stpnice (způsobené např. paralao), přepočítáváním údajů dle rozsah atd. Chyb přístroje dávají výrobci jako sočet dvo členů a to dvěma způsoby: ± ( % chyby čtení + % chyby rozsah), nebo ± ( % chyby čtení + počet digitů s nejmenší váho (LSB)). Zjednodšeně je možno vádět jejich tříd přesnosti jako analogových přístrojů. Displeje jso charakterizovány svojí délko - počtem zobrazených cifer. Je-li za tímto číslem zlomek /, pak je před vedeným počtem normálních číslicovek ještě další s omezeným rozsahem, která může zobrazovat jen hodnoty 0 nebo. Jeli dodatkem zlomek 3/4, pak první číslicovka může zobrazovat čísla od 0 až do případně 8 dle rozsahů měřidla Příklad s chybo rozsah Digitální mltimetr s 4/ místným displejem a přesností ± 0. % ± 0.05 % dává na rozsah M 00 V napětí V. Na tomto rozsah tedy může zobrazit nejvyšší hodnot V. čtení + rozsah (4) [V] 75.00± 0.3 [V]

13 4.6. Příklad s chybo digit Digitální mltimetr s 33/4 místným displejem a přesností ± 0.08 % ± 3 naměřil na rozsah M 60 ma hodnot i ma. Nejvyšší zobrazitelná hodnota prod je ma. Nejnižší digit (LSB) má velikost 0.0 ma. i i čtení +M LSB (5) [ma] i 5.09± 0.04 [ma] 5. Nejistota měření V sočasnosti se při měření vyjadřje převážně jeho nejistota. Na rozdíl od výše vedené chybové koncepce jde o komplenější posození měření, važjeme o nejistotách celého měřicího řetězce. Tento můžeme rozdělit na články: fyzikální jev - etalon - kalibrační postp - měřidlo - ršivé vlivy při měření. článk. Mnohdy se však v řetězci výrazně platňje nepřesnost poze jednoho jeho Nejistoty jso typ A nebo B dle svého charakter, viz dále. Více nejistot v měřicím řetězci se zpravidla sčítá geometricky, někdy provádíme výpočet krajních hodnot interval nejistoty. 3

14 5.. Veličiny, výrazy a vztahy Výpočt nejistot se týkají následjící parametry, viz tab. 5. Nejistota typ A / B A / B Koeficient nejistoty typ A k A Rozšířená nejistota typ A a koeficient rozšíření SkS A Tab. 5. Nejistota 5.. Nejistota typ A Tato nejistota je, stejně jako výše vedené chyby, způsobena mnoha malými náhodnými vlivy. Je-li počet měření n alespoň 0, rčení nejistoty je stejné jako v případě jednodchého stanovení chyby, viz výše. Při menším počt násobíme chyb koeficientem k A z tablky 6, se zmenšjícím se n totiž klesá věrohodnost nejistoty, což koeficient kompenzje. poč. m. n koef. k A Tab. 6. Rozšiřjící koeficient 5.3. Příklad výpočt standardní nejistoty typ A Naměřená data jso v tab. 7 a rčjeme interval standardní nejistoty. č. m. i hodnota i Tab. 7. Naměřená data n i ( ).97 (6) n 0 i 4

15 A ks ρ ( i) n(n ) 0( 0 ) [(.9.97) +(.4.97) + +(.3.97) ] ± A.0± Rozšířená nejistota O rozšířených nejistotách S mlvíme, pokd interval nejistoty vynásobíme konstanto rozšíření k S. Pro k S do něj spadá 95 % hodnot z n měření a pro k 3 celých 99.7 % (pro k je to 68 %). S S A 5.5. Nejistota typ B Nejistota B typ nemá náhodný charakter. Při opakovaných měřeních na sebe pozorní trvalým výskytem. Tto nejistot stanovíme z charakter měření, bez statistického výpočt, tj. jde o nedokonalosti způsobené měřicími přístroji, techniko, metodami, konstantami, podmínkami, za kterých měření probíhá, popř. vlivem operátora. Při jejím rčení tedy odhadjeme maimální rozsah odchylek od naměřené hodnoty tak, aby v něm sktečná hodnota s velko pravděpodobností ležela. V případě, že máme stanoveno více nejistot v měřicím řetězci, výsledno nejistot dostaneme jejich geometrickým sočtem. Korelace mezi jednotlivými zdroji nejistot typ B se nebere v úvah Příklad sočt nejistot Měříme komparačně středovo tlošťk čočky, tj. porovnáváme její tlošťk s koncovými (Johansonovými) měrkami pomocí číslicového úchylkoměr (hodinek). 5

16 Jde o přesné (přesnější než posvným měřítkem nebo mikrometrem) komparační měření mechanických sočástí mezi dvěma hroty, z nichž jeden je pevný a drhý, posvný, náleží k úchylkoměr. měrky jso položeny na sebe a mají nepřesnost B ±0.5 µm,, úchylkoměr má B ± µm, a deformaci hrotů během měření odhadneme na B3 ±0.3 µm. B B B B (7) Výsledná nejistota měření B ±.3 µm. Výpočet požijeme pro orientaci před vlastním měřením, případně pokd máme měření jen jedno. Pokd je statistická chyba vícenásobného měření výrazně nižší než výše vypočtená, msíme zvážit, zda nejso hodnoty zatíženy systematicko chybo a dle toho stanovit nejistot výsledk. Tlošťk čočky můžeme měřit také posvným měřítkem nebo mikrometrem. Nejistot stanovíme mechanických měřidel z dělení stpnice, viz výše, případně z údajů o kalibraci. Pro měřidla s digitálním výstpem požijeme standardní zde vedený postp Nejistota vypočtené hodnoty Při nepřímém měření, kdy je výsledek dán výpočtem, nejistot stanovíme dle příslšných matematických operací. 6

17 za z a zy z y ( ) +( y y ) z± y z + y z y z y ( ) y +( y ) (8) z a z a z U složitějších fnkcí je jednodšší dosadit do vzorce krajní hodnoty a z nich rčit výsledný interval. Konstanty ( π apod.) dosazjeme o řád přesnější, než je předpokládaná nejistota výsledk Příklad výpočt nejistoty z fnkce Změřili jsme úhel α 0'0."+ - 0." a přepon c.00000± Jako má délk protilehlá odvěsna a?. + ac sinα sin( + 60 ) a sin( ) (9) a sin( + 60 ) a ±

18 Ale naopak pro odvěsn délky a ± a přepon c ± 0 dostáváme možno nejistot úhl α 88 59'5"; 89 00' 04" α 88 59'58"+ - 6", což je šedesátinásobek předchozí nejistoty. Poděkování Tento podpůrný stdijní tet vznikl za finanční podpory Evropského sociálního fond v ČR v rámci projekt CZ..07/..00/ Moderní technologie ve stdi Aplikované fyziky. Požité zdroje []MELOUN M., MILITKÝ J.: Statistické zpracování eperimentálních dat. East Pblishing, Praha, 998. []VÍTOVEC J.: Stanovení nejistot měření. ČMÚ, Praha, 993. [3]HAASZ V.: Elektrická měření. ČVUT, Praha, 003. [4]ANDĚL J.: Statistické metody. MatFyzPress, Praha,

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1 . ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,

Více

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota

Více

DODATEK. D0. Nejistoty měření

DODATEK. D0. Nejistoty měření DODATEK D4. Příklad výpočt nejistoty přímého měření D0. Nejistoty měření Výklad základů charakterizování přesnosti měření podaný v kap..3 je založen na pojmech chyba měření a správná hodnota měřené veličiny

Více

Chyby měřidel a metody měření vybraných fyzikálních veličin

Chyby měřidel a metody měření vybraných fyzikálních veličin Chyby měřidel a metody měření vybraných fyzikálních veličin Jaké měřidlo je vhodné zvolit? Pravidla: Přesnost měřidla má být pětkrát až desetkrát vyšší, než je požadovaná přesnost měření. Např. chceme-li

Více

Chyby měřidel a metody měření vybraných fyzikálních veličin

Chyby měřidel a metody měření vybraných fyzikálních veličin Chyby měřidel a metody měření vybraných fyzikálních veličin Viz oskenovaný text ze skript Sprušil, Zieleniecová: Úvod do teorie fyzikálních měření http://physics.ujep.cz/~ehejnova/utm/materialy_studium/chyby_meridel.pdf

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

Detailní porozumění podstatě měření

Detailní porozumění podstatě měření Nejistoty Účel Zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny Nejčastěji X X [%] X U X U [%] V roce 1990 byl vydán dokument WECC 19/90, který představoval

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 Teorie měření a regulace Praxe názvy 1. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. OBECNÝ ÚVOD - praxe Elektrotechnická měření mohou probíhat pouze při

Více

Chyby a neurčitosti měření

Chyby a neurčitosti měření Radioelektronická měření (MREM) Chyby a neurčitosti měření 10. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Základní pojmy Měření je souhrn činností s cílem určit hodnotu měřené veličiny

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

Přesnost a chyby měření

Přesnost a chyby měření Přesnost a chyby měření Výsledek každého měření se poněkud liší od skutečné hodnoty. Rozdíl mezi naměřenou hodnotou M a skutečnou hodnotou S se nazývá chyba měření. V praxi se rozlišují dvě chyby, a to

Více

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT Bc. David Pietschmann.

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT Bc. David Pietschmann. VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projekt ázev projekt Číslo a název šablony Ator Tematická oblast Číslo a název materiál Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

Úloha č. 9a + X MĚŘENÍ ODPORŮ

Úloha č. 9a + X MĚŘENÍ ODPORŮ Úloha č. 9a X MĚŘENÍ ODPOŮ Úkol měření: 1. Na základě přímého měření napětí a prod rčete odpor neznámého vzork.. rčete absoltní a relativní nejistot odpor. 3. elikost neznámého odpor změřte dále metodo

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Literatura Elektrická měření - Přístroje a metody, Metrologie Elektrotechnická měření - měřící přístroje

Literatura Elektrická měření - Přístroje a metody, Metrologie Elektrotechnická měření - měřící přístroje Měření Literatura Haasz Vladimír, Sedláček Miloš: Elektrická měření - Přístroje a metody, nakladatelství ČVUT, 2005, ISBN 80-01-02731-7 Boháček Jaroslav: Metrologie, nakladatelství ČVUT, 2013, ISBN 978-80-01-04839-9

Více

Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny

Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny Fyzikální praktikum III 15 3. PROTOKOL O MĚŘENÍ V této kapitole se dozvíte: jak má vypadat a jaké náležitosti má splňovat protokol o měření; jak stanovit chybu měřené veličiny; jak vyhodnotit úspěšnost

Více

Počítání s neúplnými čísly 1

Počítání s neúplnými čísly 1 Aproximace čísla A: Počítání s neúplnými čísly 1 A = a ± nebo A a, a + Aproximace čísla B: B = b ± β nebo B b β, b + β nebo a A a+ nebo b β B b + β Součet neúplných čísel odvození: a + b β A + B a+ + (b

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

Manuální, technická a elektrozručnost

Manuální, technická a elektrozručnost Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních

Více

Bezpečnost práce, měření fyzikálních veličin, chyby měření

Bezpečnost práce, měření fyzikálních veličin, chyby měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 1 Bezpečnost práce, měření fyzikálních

Více

Resolution, Accuracy, Precision, Trueness

Resolution, Accuracy, Precision, Trueness Věra Fišerová 26.11.2013 Resolution, Accuracy, Precision, Trueness Při skenování se používá mnoho pojmů.. Shodnost měření, rozlišení, pravdivost měření, přesnost, opakovatelnost, nejistota měření, chyba

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 4 Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky Pracoval: Jakub Michálek

Více

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy )

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Kalibrace se provede porovnávací metodou pomocí kalibrovaného ocelového měřicího

Více

STATISTICKÉ CHARAKTERISTIKY

STATISTICKÉ CHARAKTERISTIKY STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Stanovení základních materiálových parametrů Vzor laboratorního protokolu Titulní strana: název experimentu jména studentů v pracovní skupině datum Protokol:

Více

Vyjadřování nejistot

Vyjadřování nejistot ÚČEL Účelem stanovení nejistot při měření je zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny. Nejistota měření zjištěná při kalibraci je základem pro zjištění

Více

1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V.

1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V. 1 Pracovní úkoly 1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V. 2. Změřte substituční metodou vnitřní odpor

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Základní měření s výchylkovými multimetry Laboratorní cvičení č. 1

Základní měření s výchylkovými multimetry Laboratorní cvičení č. 1 Základní měření s výchylkovými multimetry Laboratorní cvičení č. 1 Cíle cvičení: seznámit se s laboratorním zdrojem stejnosměrných napětí Diametral P230R51D, seznámit se s výchylkovým (ručkovým) multimetrem

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Měření fyzikálních veličin

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Měření fyzikálních veličin Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Měření fyzikálních

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Laboratorní práce (č.10)

Laboratorní práce (č.10) Laboratorní práce (č.10) Název:Měření ploch Integrovaná Střední škola technická Mělník (K učilišti 2566 276 01 Mělník ) Datum :25.4.2010 Třída :2T Vypracoval:Michal Rybnikár Hodnocení: Zadání: Určete velikost

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: II Název: Měření odporů Pracoval: Pavel Brožek stud. skup. 12 dne 28.11.2008 Odevzdal

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno:

1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: C OSCILÁTO 20-4. Navrhněte C oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: - rozsah frekvencí: f 60 Hz, f 600Hz - operační

Více

Vytyčení polohy bodu polární metodou

Vytyčení polohy bodu polární metodou Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.5 Karosářské Know how (Vědět jak) Kapitola

Více

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Korekční křivka napěťového transformátoru

Korekční křivka napěťového transformátoru 8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 2.p-1a.mt 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE DANIEL TUREČEK 2005 / 2006 1. 412 5. 14.3.2006 28.3.2006 5. STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE 1. Úkol měření 1. Určete velikost tíhového zrychlení pro Prahu reverzním

Více

SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc s využitím přednášky doc Ing Martina

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních

Více

Popisná statistika. Statistika pro sociology

Popisná statistika. Statistika pro sociology Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: 1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%.

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%. Laboratorní úloha Snímač teploty R je zapojený podle schema na Obr. 1. Snímač je termistor typ B57164K [] se jmenovitým odporem pro teplotu 5 C R 5 00 Ω ± 10 %. Závislost odporu termistoru na teplotě je

Více

Měření odporu ohmovou metodou

Měření odporu ohmovou metodou ěření odporu ohmovou metodou Teoretický rozbor: ýpočet a S Pro velikost platí: Pro malé odpory: mpérmetr však neměří pouze proud zátěže ale proud, který je dán součtem proudu zátěže a proudu tekoucího

Více

Členění podle 505 o metrologii

Členění podle 505 o metrologii Členění podle 505 o metrologii a. etalony, b. pracovní měřidla stanovená (stanovená měřidla) c. pracovní měřidla nestanovená (pracovní měřidla) d. certifikované referenční materiály Etalon: je ztělesněná

Více

Zadání. Pracovní úkol. Pomůcky

Zadání. Pracovní úkol. Pomůcky Pracovní úkol Zadání 1. Změřte ohniskovou vzdálenost tenké ploskovypuklé (plankonvexní) čočky jednak Besselovou metodou, jednak metodou dvojího zvětšení. 2. Z následujících možností vyberte jednu: a. Změřte

Více

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin.

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin. Číslo projektu CZ.107/1.5.00/34.0425 Název školy INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov Předmět Elektrická měření Tematický okruh Měření elektrických veličin Téma Měření

Více

Dá se ukázat, že vzdálenost dvou bodů má tyto vlastnosti: 2.2 Vektor, souřadnice vektoru a algebraické operace s vektory

Dá se ukázat, že vzdálenost dvou bodů má tyto vlastnosti: 2.2 Vektor, souřadnice vektoru a algebraické operace s vektory Vektorový počet.1 Eklidovský prostor E 3 Eklidovský prostor E 3 je prostor spořádaných trojic (tj. bodů), v němž je definována vzdálenost dvo jeho bodů A, B (značíme ji AB ). Vzdálenost bodů A = [a 1,

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

Kapitola Hlavička. 3.2 Teoretický základ měření

Kapitola Hlavička. 3.2 Teoretický základ měření 23 Kapitola 3 Protokol o měření Protokol o měření musí obsahovat všechny potřebné údaje o provedeném měření, tak aby bylo možné podle něj měření kdykoliv zopakovat. Proto protokol musí obsahovat všechny

Více

Elektrotechnická měření a diagnostika

Elektrotechnická měření a diagnostika Chyby měření analogovými přístroji Absolutní a relativní chyba Třída přesnosti Ověřování MP Ověřování MP Ověřování MP Ověřování MP Ověřování MP Chyby digitálních měřících přístrojů příklad

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Protokol měření. Kontrola a měření závitů

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Protokol měření. Kontrola a měření závitů Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Protokol měření Tolerování závitů Kontrola a měření závitů Řetězec norem, které se zabývají závity, zahrnuje

Více

2 Přímé a nepřímé měření odporu

2 Přímé a nepřímé měření odporu 2 2.1 Zadání úlohy a) Změřte jednotlivé hodnoty odporů R 1 a R 2, hodnotu odporu jejich sériového zapojení a jejich paralelního zapojení, a to těmito způsoby: přímou metodou (RLC můstkem) Ohmovou metodou

Více

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postp KP 1.1.3/06/13 TRACKER (LASER TRACKER LEICA) Praha říjen 013 KP

Více

6 Měření transformátoru naprázdno

6 Měření transformátoru naprázdno 6 6.1 Zadání úlohy a) změřte charakteristiku naprázdno pro napětí uvedená v tabulce b) změřte převod transformátoru c) vypočtěte poměrný proud naprázdno pro jmenovité napětí transformátoru d) vypočtěte

Více

První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla

První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla Měření délky První jednotky délky Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla stopa asi 30 cm palec asi 2,5 cm loket (vídeňský) asi 0,75

Více

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postp KP 1.1.3/0/13 SOUŘADNICOVÝ MĚŘICÍ STROJ (CMM) PORTÁLOVÝ Praha

Více

5.1 Definice, zákonné měřící jednotky.

5.1 Definice, zákonné měřící jednotky. 5. Měření délek. 5.1 Definice, zákonné měřící jednotky. 5.2 Měření délek pásmem. 5.3 Optické měření délek. 5.3.1 Paralaktické měření délek. 5.3.2 Ryskový dálkoměr. 5.4 Elektrooptické měření délek. 5.4.1

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. GUM: Vyjádření nejistot měření

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. GUM: Vyjádření nejistot měření KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE GUM: Vyjádření nejistot měření Chyby a nejistoty měření - V praxi nejsou žádná měření, žádné měřicí metody ani žádné přístroje absolutně přesné. - Výsledek měření

Více

Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D.

Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D. Stanovení akustického výkonu Nejistoty měření Ing. Miroslav Kučera, Ph.D. Využití měření intenzity zvuku pro stanovení akustického výkonu klapek? Výhody: 1) přímé stanovení akustického výkonu zvláště při

Více

Odvození rovnice pro optimální aerodynamické zatížení axiální stupně

Odvození rovnice pro optimální aerodynamické zatížení axiální stupně 1 Tato Příloha 801 je sočástí článk 19 Návrh axiálních a diagonálních stpňů lopatkových strojů, http://wwwtransformacni-technologiecz/navrh-axialnicha-diagonalnich-stpn-lopatkovych-strojhtml Odvození rovnice

Více

Kontrolní metrologická střediska

Kontrolní metrologická střediska Kontrolní metrologická střediska AKREDITOVANÁ KALIBRAČNÍ LABORATOŘ PRO CEJCHOVÁNÍ A KALIBRACI PŘÍSTROJŮ PRO MĚŘENÍ ELEKTRICKÝCH VELIČIN hgff PROVOZ ELEKTROTECHNICKÝCH DÍLEN Kalibrační laboratoř se zabývá

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: ME II 4.7.1. Kontrola,měření a opravy obvodů I Obor: Mechanik - elekronik Ročník: 2. Zpracoval: Ing. Michal Gregárek Střední průmyslová škola Uherský Brod,

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Stavba slovníku VIM 3: Zásady terminologické práce

Stavba slovníku VIM 3: Zásady terminologické práce VIM 1 VIM 2:1993 ČSN 01 0115 Mezinárodní slovník základních a všeobecných termínů v metrologii VIM 3:2007 International Vocabulary of Metrology Basic and General Concepts and Associated Terms Mezinárodní

Více

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek LABORATORNÍ ZKOUŠKY Jednou z hlavních součástí grantového projektu jsou laboratorní zkoušky elastomerových ložisek. Cílem zkoušek je získání pracovního diagramu elastomerových ložisek v tlaku a porovnání

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkoly 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: a. platinový odporový teploměr (určete konstanty R 0, A, B) b. termočlánek měď-konstantan (určete konstanty a,

Více

SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1 (Měření délek) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. říjen 2015 1 Geodézie 1 přednáška č.5 MĚŘENÍ DÉLEK Podle

Více

Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3)

Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Přesnost a správnost v metrologii V běžné řeči zaměnitelné pojmy. V metrologii a chemii ne! Anglický termín Measurement trueness Measurement

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013 Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Úloha č. 5 Název: Měření osciloskopem Pracoval: Jiří Kozlík dne: 17.10.2013 Odevzdal dne: 24.10.2013 Pracovní úkol 1. Pomocí

Více

POKYN PRO UVÁDĚNÍ SHODY A NEJISTOT MĚŘENÍ V PROTOKOLECH O ZKOUŠKÁCH

POKYN PRO UVÁDĚNÍ SHODY A NEJISTOT MĚŘENÍ V PROTOKOLECH O ZKOUŠKÁCH POKYN PRO UVÁDĚNÍ SHODY A NEJISTOT MĚŘENÍ V PROTOKOLECH O ZKOUŠKÁCH Obsah. ÚČEL 2 2. SOUVISEJÍCÍ PŘEDPISY 2 3. VYSVĚTLENÍ POJMU DEFINICE NEJISTOTA MĚŘENÍ 2 4. STANOVENÍ NEJISTOTY MĚŘENÍM 3 4. STANOVENÍ

Více

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. V1. Hallův jev Úkoly měření: 1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. Použité přístroje a pomůcky:

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

Návrh a vyhodnocení experimentu

Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav

Více

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO FYZIKÁLNÍ PRAKTIK Ústav fyziky FEI VT BRNO Spolupracoval Příprava Šuranský Radek Opravy Jméno Ročník Škovran Jan Předn. skup. B ěřeno dne 8.03.00 čitel Stud. skupina Kód 7 Odevzdáno dne 5.04.00 Hodnocení

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.5 Název: Měření osciloskopem. Pracoval: Lukáš Ledvina

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.5 Název: Měření osciloskopem. Pracoval: Lukáš Ledvina Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úlohač.5 Název: Měření osciloskopem Pracoval: Lukáš Ledvina stud.skup.14 dne:23.10.2009 Odevzdaldne: Možný počet bodů

Více