Chyby a nejistoty měření

Rozměr: px
Začít zobrazení ze stránky:

Download "Chyby a nejistoty měření"

Transkript

1 Moderní technologie ve stdi aplikované fyziky CZ..07/..00/ Chyby a nejistoty měření (doplňjící tet k laboratorním cvičení) Připravili: Petr Schovánek, Vítězslav Havránek

2 Obsah Obsah... Seznam ilstrací... Seznam tablek Úvod Měření ve fyzice Chyby měření Hrbé chyby Systematické chyby Náhodné chyby Veličiny a výrazy spojené s chybami Zaokrohlování Příklad zpracování měření Měřicí přístroje Analogové Čtení stpnice Příklad chyby analogového měřidla Digitální Příklad s chybo rozsah Příklad s chybo digit Nejistota měření Veličiny, výrazy a vztahy Nejistota typ A Příklad výpočt standardní nejistoty typ A Rozšířená nejistota Nejistota typ B Příklad sočt nejistot Nejistota vypočtené hodnoty Příklad výpočt nejistoty z fnkce... 7 Poděkování... 8 Požité zdroje... 8 Seznam ilstrací Obr.. Gassovo rozdělení... 7 Obr.. Intervaly pravděpodobnosti... 7 Obr. 3. Vliv počt měření n na hodnot... 7 Obr. 4. Tlošťka koncové měrky v řez... 6

3 Seznam tablek Tab.. Přehled vzorců... 6 Tab.. Zaokrohlování... 8 Tab. 3. Naměřené hodnoty... 8 Tab. 4. Analogová měřidla... 0 Tab. 5. Nejistota... 4 Tab. 6. Rozšiřjící koeficienty... 4 Tab. 7. Naměřená data

4 . Úvod Každé měření ve fyzice, ať již etenzivních (např. délka) nebo intenzivních (např. teplota) veličin, je zatíženo rčito nepřesností způsobeno nejrůznějšími negativními vlivy, které se v měřicím proces vyskytjí. To se projeví odchylko mezi naměřeno a sktečno hodnoto sledované veličiny. Výsledek měření se tak vždy pohybje v rčitém pravděpodobném rozsah (tzv. chybovém interval), o který se může sktečná hodnota veličiny odlišovat od naměřené. Účelem tohoto tet je přehledně vést základní teorii a postpy zpracování výsledků měření vzhledem k těmto nepřesnostem. Důraz je kladen na přehlednost a srozmitelnost. Uvedené příklady jso aplikovatelné hlavně v laboratorních cvičeních. Pro ostatní obory jso postpy a příklady požitelné bď přímo na základě fyzikální analogie, případně pomocí vhodného přizpůsobení. Relativně samostatno částí článk je přehled tříd přesnosti samotných měřicích přístrojů. S tím sovisí způsob odečt hodnot ze stpnic přístrojů, zvl. v analogovém provedení. Uvedeny jso také vztahy pro výpočet nejistoty nepřímo měřených veličin, které jso z naměřených hodnot vypočítávány. V vedených vzorových příkladech je kladen důraz i na formálně a věcně správný zápis výsledné hodnoty s rčeno nejistoto (příp. chybo).. Měření ve fyzice K vyhodnocení výsledků ve fyzikálních a technických měřeních můžeme volit různé přístpy. Při rčení nepřesnosti měření eistjí dva základní postpy: starší a jednodšší chybový, novější a komplenější vyhodnocení prostřednictvím nejistot měření. Preferována je drhá metoda. Přírčka vádí oba přístpy odděleně, neboť nejistoty měření vycházejí i z původní chybové koncepce a obsahjí ji, přičemž ve specifických případech je vyjádření samotné chyby postačjící. Chyby se vyjadřjí v absoltních nebo relativních hodnotách. Podle jejich působení lze chyby rozdělit na systematické, náhodné a hrbé. Podle svého zdroje se rozděljí na chyby přístroje, metody, pozorování a vyhodnocení. Nejistota měření charakterizje rozsah naměřených hodnot okolo výsledk měření, který lze zdůvodněně přiřadit k hodnotě měřené veličiny. Nejistota se týká 4

5 nejen samotného měření, ale zahrnje také nepřesnost měřicích přístrojů, hodnoty požitých konstant, korekcí apod., na kterých celková nejistota výsledk závisí. 3. Chyby měření Tato klasická koncepce stanovení chybového interval byla dříve jedino možností jeho rčení, nyní bývá jedno ze sočástí zpracování nejistoty měření. Vzhledem k její důležitosti je zde vedena samostatně. Podle povahy a účink se dělí na tři kategorie. 3.. Hrbé chyby Hrbé chyby (jiné označení je vybočjící nebo odlehlé hodnoty) jso způsobeny výjimečno příčino, nesprávným zapsáním výsledk, náhlým selháním měřicí aparatry, nesprávným nastavením podmínek měření apod. Naměřená hodnota se značně liší od ostatních hodnot získaných při opakovaném měření. Takové měření je třeba ze zpracování vyločit, aby nezkreslovalo výsledek. 3.. Systematické chyby Systematická chyba se přičítá (násobí apod.) k měřené hodnotě; ovlivňje náměr konstantně jedním směrem, i když se velikost ovlivnění může časem měnit např. v důsledk stárntí měřicího přístroje. Chyb můžeme tedy matematicky z náměr korigovat, pokd ji známe. Problémem je tedy její identifikace a kvantifikace. Po následné korekci naměřených dat ale dostáváme správné výsledky měření. Odhalit přítomnost systematické chyby může být někdy náročné. Nejprve bychom si měli vědomit, zda systematická chyba nevyplývá přímo z metody měření. Zpravidla pak již není problém ji matematicky korigovat. Např. při nepřímém měření odpor voltmetrem a ampérmetrem se kompenzje dle zapojení bď spotřeba ampérmetr nebo voltmetr. Je-li však tato korekce menší než chyby způsobené nepřesností přístrojů, nemsíme kompenzaci započítávat. Další možností identifikace systematické chyby je srovnávací měření jino metodo. V některých případech nás může na systematicko chyb pozornit i nesohlas naměřených hodnot s matematickým modelem příslšného děje, tj. výsledky neodpovídají teoretickém průběh, např. nesohlasí význačné hodnoty jako je nlová apod. 5

6 3.3. Náhodné chyby Nejčastěji važjeme o sočt velkého množství malých ršivých účinků, které ovlivňjí výsledno hodnot. Statistická rozdělení elementárních zdrojů chyb moho být obecná, ve výsledném sočt se zpravidla přibližjí Gassov průběh rozdělení. Náhodno chyb z jednoho měření nemůžeme stanovit. Náměr msí být vícenásobný a zpracjeme jej statistickými metodami za předpoklad rčitého rozložení náhodných chyb. Minimální počet měření možňjící statistické zpracování je 5-0. Maimální počet měření bývá omezen časem, náklady apod. Více než 00-násobné opakování zpravidla již výrazněji nezpřesňje výsledek, jak vyplývá z obr Veličiny a výrazy spojené s chybami Následjící přehled vádí vzorce pro výpočet veličin požívaných v sovislosti se stanovením chyb: Správná hodnota měřené veličiny X i-tá hodnota veličiny i Absoltní chyba měření i X i i Relativní chyba měření i δi X Pravděpodobná hodnota veličiny při n měřeních i n Rozptyl (variance) ρ ( i) n Střední kvadratická chyba ρ ( i) n Směrodatná chyba ρn ( i) n Chyba aritmetického průměr n měření ρ ( i) n(n ) Pravděpodobná chyba aritmetického průměr θ ( i) 3 n(n ) Krajní chyba měření Tab.. Přehled vzorců κ 3 ( i) n(n ) 6

7 K rčení chyb se nejčastěji pracje s následjícími veličinami. Směrodatná chyba nám dává interval, v jakém se pro Gassovo rozložení naměřených hodnot každé jednotlivé měření vyskytne s pravděpodobností 68 %, což můžeme zapsat ρn,+ ρ n ; viz obr.. Výsledek měření pak vádíme pomocí chyby měření výrazem ± ρ. Pravděpodobná chyba aritmetického průměr θ definje takový ± θ interval kolem pravděpodobné hodnoty, že správná hodnota X leží s 50% pravděpodobností v tomto interval. Protože poloviční jistota někdy nestačí, zavádíme také krajní chyb měření κ, což je interval, v jehož rozmezí se nachází správná hodnota s pravděpodobností %. 7

8 3.5. Zaokrohlování Údaj z měřícího přístroje nebo výsledek výpočt zpravidla obsahje jiný počet desetinných míst než odpovídá přesnosti měření. Výsledek tedy msíme zaokrohlit a zaokrohljeme také velikost chybového interval. Hodnota výsledk se standardně zaokrohlje podle cifry v nižším řád než je chybový interval, tj. od 0 do 4 poslední platná cifra zůstane a od 5 výše přičteme jedničk. Hodnot chybového interval zaokrohljeme nahor na jedn platno cifr, ale v případě, že interval začíná číslicí nebo, tak na dvě cifry a to rovněž nahor. V desetinné části hodnoty, která nemá dostatečný počte platných cifer, msíme v zápis výsledk doplnit nly podle řád chyby, viz následjící tablka s přehledem zaokrohlování: 0,3456± ,3456± ± ± ± ± ± ± ± ± ± ± ± 0.9 3± 3.5± ± 0.9 Tab.. Zaokrohlování 3.6. Příklad zpracování měření Opakovaným měřením jsme získali deset hodnot s přesností na dvě platné cifry, viz následjící tablka. Určete chyb měření. č. m. i hodnot i Tab. 3. Naměřené hodnoty 8

9 Rozdíly mezi hodnoto [ 9] 5.3 a ostatními jso výrazně vyšší než vzájemné rozdíly mezi ostatními hodnotami, toto měření proto vyločíme jako zatížené hrbo chybo. Zůstane tedy n 9 hodnot. n i ( ).96 () n 9 i ρ ( i) n(n ) (.9.96) 9( 9 ) +(.4.96) + +(.3.96) ± ρ.97± 0.6 Hodnoty, 6, 7, 8 a 0 jso menší než pravděpodobná hodnota,, 3, 4 a 5 větší, což vytváří přibližně poloviny; pravděpodobná hodnota je tedy mediánem sobor. Směrodatná chyba vytváří interval: ρ n ( i) () n (.9.96) 9 +(.4.96) + +(.3.96) ρn,+ρn , ,.43 V tomto interval neleží hodnoty 5, 7 a 6. je na hranici, tedy 67 % hodnot v něm leží. Můžeme proto předpokládat, že naměřený sobor přibližně vyhovje Gassov rozložení četnosti hodnot a výsledek je platný. Uvedené algoritmy bývají standardní sočástí programového vybavení vědeckých kalklaček a tablkových procesorů. V části statistika nalezneme fnkce 9

10 AVERAGE pro pravděpodobno hodnot, STDEV pro chyb aritmetického průměr apod. 4. Měřicí přístroje Měřicí přístroje dělíme z hlediska zobrazení údajů na analogové a digitální. Do první skpiny patří přístroje s mechanickým pohybem rčky kazatele (příp. stpnice vůči rysce). Digitální přístroje kazjí přímo číselno hodnot. Do této skpiny zahrnjeme i elektronická měřidla, která rčk nebo slopec jen zobrazjí na displeji. 4.. Analogové Důležité veličiny analogových měřidel jso shrnty v tab. 4. Měřicí rozsah (ma. hodnota, ktero můžeme měřit) M Ma. absoltní chyba Třída přesnosti měřidla T 00 M Normované hodnoty třídy přesnosti Tab. 4. Analogová měřidla Laboratorně naměřeno tříd přesnosti přístroje výrobci zaokrohljí na normované hodnoty v příslšném dekadickém řád. Ve výpočtech se pak važje kladná i záporná chyba. Fyzikální rozměr % se zpravidla třídy přesnosti nepíše. 4.. Čtení stpnice Při odečt se snažíme získat co nejpřesnější výsledek. Dbáme, aby byl přístroj v předepsané poloze (vodorovně, svisle nebo s předepsaným sklonem, což je zpravidla vyznačeno značko na stpnici). Ukazatel měřené veličiny se na stpnici často nekryje s žádným dílkem, ale leží např. mezi k-to a (k+ ) -ní dělicí čárko. Čtená hodnota tedy leží mezi nimi a 0

11 její velikost odhadjeme v desetinách dílk. Řídíme se přitom následjícími empirickými zásadami:. Je-li dělení stpnice hsté a má-li dělicí čárky (rysky) tlsté (široké), odhadjeme poloviny dílků a chyba odhad je ± 0.5 velikosti dílk.. Jso-li dělicí čárky dostatečně tenké proti jejich vzdálenostem, můžeme odhadovat desetiny nejmenších dílků stpnice a chyba je ± dílk. 3. Je-li stpnice opatřena noniem, tj. pomocno stpnicí s n-tinovým dělením, čteme přesně n -tiny dílk hlavní stpnice a odhadjeme poloviny n-tin, což je i velikost chyby odhad. Další chyba může vzniknot při odečt hodnoty vlivem paralay. Pokd rčka neleží v rovině stpnice a nepozorjeme ji kolmo, promítá se do nesprávné polohy. Přesnější přístroje mají pod rčko zrcátko; při správném úhl pohled msí rčka zastiňovat svůj obraz Příklad chyby analogového měřidla T.5. Měřidlo naměřilo na rozsah M 30 hodnot 4.5 a má tříd přesnosti MT (3) δ Hodnota 4.5± 0.8, relativní chyba měření je 5 %.

12 4.4. Digitální Měřidla s digitálním výstpem kazjí přímo číselno hodnot, tdíž odpadají chyby pozorovatele spojené s odečítáním ze stpnice (způsobené např. paralao), přepočítáváním údajů dle rozsah atd. Chyb přístroje dávají výrobci jako sočet dvo členů a to dvěma způsoby: ± ( % chyby čtení + % chyby rozsah), nebo ± ( % chyby čtení + počet digitů s nejmenší váho (LSB)). Zjednodšeně je možno vádět jejich tříd přesnosti jako analogových přístrojů. Displeje jso charakterizovány svojí délko - počtem zobrazených cifer. Je-li za tímto číslem zlomek /, pak je před vedeným počtem normálních číslicovek ještě další s omezeným rozsahem, která může zobrazovat jen hodnoty 0 nebo. Jeli dodatkem zlomek 3/4, pak první číslicovka může zobrazovat čísla od 0 až do případně 8 dle rozsahů měřidla Příklad s chybo rozsah Digitální mltimetr s 4/ místným displejem a přesností ± 0. % ± 0.05 % dává na rozsah M 00 V napětí V. Na tomto rozsah tedy může zobrazit nejvyšší hodnot V. čtení + rozsah (4) [V] 75.00± 0.3 [V]

13 4.6. Příklad s chybo digit Digitální mltimetr s 33/4 místným displejem a přesností ± 0.08 % ± 3 naměřil na rozsah M 60 ma hodnot i ma. Nejvyšší zobrazitelná hodnota prod je ma. Nejnižší digit (LSB) má velikost 0.0 ma. i i čtení +M LSB (5) [ma] i 5.09± 0.04 [ma] 5. Nejistota měření V sočasnosti se při měření vyjadřje převážně jeho nejistota. Na rozdíl od výše vedené chybové koncepce jde o komplenější posození měření, važjeme o nejistotách celého měřicího řetězce. Tento můžeme rozdělit na články: fyzikální jev - etalon - kalibrační postp - měřidlo - ršivé vlivy při měření. článk. Mnohdy se však v řetězci výrazně platňje nepřesnost poze jednoho jeho Nejistoty jso typ A nebo B dle svého charakter, viz dále. Více nejistot v měřicím řetězci se zpravidla sčítá geometricky, někdy provádíme výpočet krajních hodnot interval nejistoty. 3

14 5.. Veličiny, výrazy a vztahy Výpočt nejistot se týkají následjící parametry, viz tab. 5. Nejistota typ A / B A / B Koeficient nejistoty typ A k A Rozšířená nejistota typ A a koeficient rozšíření SkS A Tab. 5. Nejistota 5.. Nejistota typ A Tato nejistota je, stejně jako výše vedené chyby, způsobena mnoha malými náhodnými vlivy. Je-li počet měření n alespoň 0, rčení nejistoty je stejné jako v případě jednodchého stanovení chyby, viz výše. Při menším počt násobíme chyb koeficientem k A z tablky 6, se zmenšjícím se n totiž klesá věrohodnost nejistoty, což koeficient kompenzje. poč. m. n koef. k A Tab. 6. Rozšiřjící koeficient 5.3. Příklad výpočt standardní nejistoty typ A Naměřená data jso v tab. 7 a rčjeme interval standardní nejistoty. č. m. i hodnota i Tab. 7. Naměřená data n i ( ).97 (6) n 0 i 4

15 A ks ρ ( i) n(n ) 0( 0 ) [(.9.97) +(.4.97) + +(.3.97) ] ± A.0± Rozšířená nejistota O rozšířených nejistotách S mlvíme, pokd interval nejistoty vynásobíme konstanto rozšíření k S. Pro k S do něj spadá 95 % hodnot z n měření a pro k 3 celých 99.7 % (pro k je to 68 %). S S A 5.5. Nejistota typ B Nejistota B typ nemá náhodný charakter. Při opakovaných měřeních na sebe pozorní trvalým výskytem. Tto nejistot stanovíme z charakter měření, bez statistického výpočt, tj. jde o nedokonalosti způsobené měřicími přístroji, techniko, metodami, konstantami, podmínkami, za kterých měření probíhá, popř. vlivem operátora. Při jejím rčení tedy odhadjeme maimální rozsah odchylek od naměřené hodnoty tak, aby v něm sktečná hodnota s velko pravděpodobností ležela. V případě, že máme stanoveno více nejistot v měřicím řetězci, výsledno nejistot dostaneme jejich geometrickým sočtem. Korelace mezi jednotlivými zdroji nejistot typ B se nebere v úvah Příklad sočt nejistot Měříme komparačně středovo tlošťk čočky, tj. porovnáváme její tlošťk s koncovými (Johansonovými) měrkami pomocí číslicového úchylkoměr (hodinek). 5

16 Jde o přesné (přesnější než posvným měřítkem nebo mikrometrem) komparační měření mechanických sočástí mezi dvěma hroty, z nichž jeden je pevný a drhý, posvný, náleží k úchylkoměr. měrky jso položeny na sebe a mají nepřesnost B ±0.5 µm,, úchylkoměr má B ± µm, a deformaci hrotů během měření odhadneme na B3 ±0.3 µm. B B B B (7) Výsledná nejistota měření B ±.3 µm. Výpočet požijeme pro orientaci před vlastním měřením, případně pokd máme měření jen jedno. Pokd je statistická chyba vícenásobného měření výrazně nižší než výše vypočtená, msíme zvážit, zda nejso hodnoty zatíženy systematicko chybo a dle toho stanovit nejistot výsledk. Tlošťk čočky můžeme měřit také posvným měřítkem nebo mikrometrem. Nejistot stanovíme mechanických měřidel z dělení stpnice, viz výše, případně z údajů o kalibraci. Pro měřidla s digitálním výstpem požijeme standardní zde vedený postp Nejistota vypočtené hodnoty Při nepřímém měření, kdy je výsledek dán výpočtem, nejistot stanovíme dle příslšných matematických operací. 6

17 za z a zy z y ( ) +( y y ) z± y z + y z y z y ( ) y +( y ) (8) z a z a z U složitějších fnkcí je jednodšší dosadit do vzorce krajní hodnoty a z nich rčit výsledný interval. Konstanty ( π apod.) dosazjeme o řád přesnější, než je předpokládaná nejistota výsledk Příklad výpočt nejistoty z fnkce Změřili jsme úhel α 0'0."+ - 0." a přepon c.00000± Jako má délk protilehlá odvěsna a?. + ac sinα sin( + 60 ) a sin( ) (9) a sin( + 60 ) a ±

18 Ale naopak pro odvěsn délky a ± a přepon c ± 0 dostáváme možno nejistot úhl α 88 59'5"; 89 00' 04" α 88 59'58"+ - 6", což je šedesátinásobek předchozí nejistoty. Poděkování Tento podpůrný stdijní tet vznikl za finanční podpory Evropského sociálního fond v ČR v rámci projekt CZ..07/..00/ Moderní technologie ve stdi Aplikované fyziky. Požité zdroje []MELOUN M., MILITKÝ J.: Statistické zpracování eperimentálních dat. East Pblishing, Praha, 998. []VÍTOVEC J.: Stanovení nejistot měření. ČMÚ, Praha, 993. [3]HAASZ V.: Elektrická měření. ČVUT, Praha, 003. [4]ANDĚL J.: Statistické metody. MatFyzPress, Praha,

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Chyby měřidel a metody měření vybraných fyzikálních veličin

Chyby měřidel a metody měření vybraných fyzikálních veličin Chyby měřidel a metody měření vybraných fyzikálních veličin Jaké měřidlo je vhodné zvolit? Pravidla: Přesnost měřidla má být pětkrát až desetkrát vyšší, než je požadovaná přesnost měření. Např. chceme-li

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

Resolution, Accuracy, Precision, Trueness

Resolution, Accuracy, Precision, Trueness Věra Fišerová 26.11.2013 Resolution, Accuracy, Precision, Trueness Při skenování se používá mnoho pojmů.. Shodnost měření, rozlišení, pravdivost měření, přesnost, opakovatelnost, nejistota měření, chyba

Více

Počítání s neúplnými čísly 1

Počítání s neúplnými čísly 1 Aproximace čísla A: Počítání s neúplnými čísly 1 A = a ± nebo A a, a + Aproximace čísla B: B = b ± β nebo B b β, b + β nebo a A a+ nebo b β B b + β Součet neúplných čísel odvození: a + b β A + B a+ + (b

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Bezpečnost práce, měření fyzikálních veličin, chyby měření

Bezpečnost práce, měření fyzikálních veličin, chyby měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 1 Bezpečnost práce, měření fyzikálních

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Stanovení základních materiálových parametrů Vzor laboratorního protokolu Titulní strana: název experimentu jména studentů v pracovní skupině datum Protokol:

Více

Vyjadřování nejistot

Vyjadřování nejistot ÚČEL Účelem stanovení nejistot při měření je zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny. Nejistota měření zjištěná při kalibraci je základem pro zjištění

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Měření fyzikálních veličin

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Měření fyzikálních veličin Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Měření fyzikálních

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.5 Karosářské Know how (Vědět jak) Kapitola

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: II Název: Měření odporů Pracoval: Pavel Brožek stud. skup. 12 dne 28.11.2008 Odevzdal

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Korekční křivka napěťového transformátoru

Korekční křivka napěťového transformátoru 8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro

Více

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno:

1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: C OSCILÁTO 20-4. Navrhněte C oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: - rozsah frekvencí: f 60 Hz, f 600Hz - operační

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla

První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla Měření délky První jednotky délky Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla stopa asi 30 cm palec asi 2,5 cm loket (vídeňský) asi 0,75

Více

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postp KP 1.1.3/06/13 TRACKER (LASER TRACKER LEICA) Praha říjen 013 KP

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

Měření odporu ohmovou metodou

Měření odporu ohmovou metodou ěření odporu ohmovou metodou Teoretický rozbor: ýpočet a S Pro velikost platí: Pro malé odpory: mpérmetr však neměří pouze proud zátěže ale proud, který je dán součtem proudu zátěže a proudu tekoucího

Více

Zadání. Pracovní úkol. Pomůcky

Zadání. Pracovní úkol. Pomůcky Pracovní úkol Zadání 1. Změřte ohniskovou vzdálenost tenké ploskovypuklé (plankonvexní) čočky jednak Besselovou metodou, jednak metodou dvojího zvětšení. 2. Z následujících možností vyberte jednu: a. Změřte

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: ME II 4.7.1. Kontrola,měření a opravy obvodů I Obor: Mechanik - elekronik Ročník: 2. Zpracoval: Ing. Michal Gregárek Střední průmyslová škola Uherský Brod,

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Členění podle 505 o metrologii

Členění podle 505 o metrologii Členění podle 505 o metrologii a. etalony, b. pracovní měřidla stanovená (stanovená měřidla) c. pracovní měřidla nestanovená (pracovní měřidla) d. certifikované referenční materiály Etalon: je ztělesněná

Více

6 Měření transformátoru naprázdno

6 Měření transformátoru naprázdno 6 6.1 Zadání úlohy a) změřte charakteristiku naprázdno pro napětí uvedená v tabulce b) změřte převod transformátoru c) vypočtěte poměrný proud naprázdno pro jmenovité napětí transformátoru d) vypočtěte

Více

5.1 Definice, zákonné měřící jednotky.

5.1 Definice, zákonné měřící jednotky. 5. Měření délek. 5.1 Definice, zákonné měřící jednotky. 5.2 Měření délek pásmem. 5.3 Optické měření délek. 5.3.1 Paralaktické měření délek. 5.3.2 Ryskový dálkoměr. 5.4 Elektrooptické měření délek. 5.4.1

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013 Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Úloha č. 5 Název: Měření osciloskopem Pracoval: Jiří Kozlík dne: 17.10.2013 Odevzdal dne: 24.10.2013 Pracovní úkol 1. Pomocí

Více

Elektrotechnická měření a diagnostika

Elektrotechnická měření a diagnostika Chyby měření analogovými přístroji Absolutní a relativní chyba Třída přesnosti Ověřování MP Ověřování MP Ověřování MP Ověřování MP Ověřování MP Chyby digitálních měřících přístrojů příklad

Více

Kontrolní metrologická střediska

Kontrolní metrologická střediska Kontrolní metrologická střediska AKREDITOVANÁ KALIBRAČNÍ LABORATOŘ PRO CEJCHOVÁNÍ A KALIBRACI PŘÍSTROJŮ PRO MĚŘENÍ ELEKTRICKÝCH VELIČIN hgff PROVOZ ELEKTROTECHNICKÝCH DÍLEN Kalibrační laboratoř se zabývá

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postp KP 1.1.3/0/13 SOUŘADNICOVÝ MĚŘICÍ STROJ (CMM) PORTÁLOVÝ Praha

Více

SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1 (Měření délek) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. říjen 2015 1 Geodézie 1 přednáška č.5 MĚŘENÍ DÉLEK Podle

Více

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek LABORATORNÍ ZKOUŠKY Jednou z hlavních součástí grantového projektu jsou laboratorní zkoušky elastomerových ložisek. Cílem zkoušek je získání pracovního diagramu elastomerových ložisek v tlaku a porovnání

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

MĚŘENÍ A ORÝSOVÁNÍ. Střední odborná škola a Gymnázium Staré Město. Lubomír Petrla III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název DUMu

MĚŘENÍ A ORÝSOVÁNÍ. Střední odborná škola a Gymnázium Staré Město. Lubomír Petrla III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název DUMu MĚŘENÍ A ORÝSOVÁNÍ Název školy Střední odborná škola a Gymnázium Staré Město Číslo projektu CZ.1.07/1.5.00/34.1007 Autor Lubomír Petrla Název šablony III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Více

DMS 680. Univerzální délkoměr. kalibrace měřidel dle směrnic ISO 9000

DMS 680. Univerzální délkoměr. kalibrace měřidel dle směrnic ISO 9000 DMS 680 Univerzální délkoměr kalibrace měřidel dle směrnic ISO 9000 2 Univerzální délkoměr DMS 680 Pro pravidelnou kalibraci měřidel, měrek, pracovních měřidel a etalonů - naprostá shoda Abbého principu.

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

2. POPIS MĚŘENÉHO PŘEDMĚTU

2. POPIS MĚŘENÉHO PŘEDMĚTU IEDL 3.EB 4 1/5 1. ZADÁÍ a) Změřte odpor předložených rezistorů porovnávací metodou pomocí ručkového voltmetru a odporové sady b) Měření proveďte jednou za podmínky = a jednou za podmínky = 0,2. c) Předložené

Více

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

Úloha č.2 Vážení. Jméno: Datum provedení: TEORETICKÝ ÚVOD

Úloha č.2 Vážení. Jméno: Datum provedení: TEORETICKÝ ÚVOD Jméno: Obor: Datum provedení: TEORETICKÝ ÚVOD Jednou ze základních operací v biochemické laboratoři je vážení. Ve většině případů právě přesnost a správnost navažovaného množství látky má vliv na výsledek

Více

DÉLKA 1) = ZÁKLADNÍ fyz. veličina, která udává rozměry tělesa nebo vzdálenost bodů

DÉLKA 1) = ZÁKLADNÍ fyz. veličina, která udává rozměry tělesa nebo vzdálenost bodů DÉLKA 1) = ZÁKLADNÍ fyz. veličina, která udává rozměry tělesa nebo vzdálenost bodů 2) Jiné názvy: výška, šířka, tloušťka, vzdálenost, dráha, rozměr, poloměr, průměr, hloubka,... 3) značka: l (d,h,r,s)

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.XI. Název: Měření stočení polarizační roviny

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.XI. Název: Měření stočení polarizační roviny Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úlohač.XI Název: Měření stočení polarizační roviny Vypracoval: Petr Škoda Stud. skup.: F14 Dne: 10.3.2006 Odevzdaldne:

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Měření vzdáleností. KGI/KAMET Alžběta Brychtová

Měření vzdáleností. KGI/KAMET Alžběta Brychtová Měření vzdáleností KGI/KAMET Alžběta Brychtová Minule... 5 základních úloh kartometrie měření vzdáleností, ploch, směrů, odečítání souřadnic, interpretace kartografického vyjádřené kvantity a kvality jevů

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin. 1 Pracovní úkoly 1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 35 K metodou bublin. 2. Měřenou závislost znázorněte graficky. Závislost aproximujte kvadratickou

Více

Akreditovaný subjekt: Technický a zkušební ústav stavební Praha, s.p. Odštěpný závod ZÚLP kalibrační laboratoř Čechova 59, 370 65 České Budějovice

Akreditovaný subjekt: Technický a zkušební ústav stavební Praha, s.p. Odštěpný závod ZÚLP kalibrační laboratoř Čechova 59, 370 65 České Budějovice List 1 z 10 Kalibrační listy podepisuje: Milan Pešek Jana Kutláková Vladimíra Všetečková vedoucí kalibrační laboratoře zástupce vedoucího kalibrační laboratoře zkušební technik Obor měřené veličiny: délka

Více

STŘEDNÍ PRŮMUSLOVÁ ŠKOLA V TEPLICÍCH

STŘEDNÍ PRŮMUSLOVÁ ŠKOLA V TEPLICÍCH STŘEDNÍ PRŮMUSLOVÁ ŠKOLA V TEPLICÍCH Strojní oddělení Protokol o provedeném měření Druh měření Měření a kontrola vnějších závitů číslo úlohy 1 Měřený předmět 3 vzorky závitů Měřil Jaroslav ŘEZNÍČEK (T.

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

VY_52_INOVACE_J 05 07

VY_52_INOVACE_J 05 07 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkoly 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: a. platinový odporový teploměr (určete konstanty R 0, A, B) b. termočlánek měď-konstantan (určete konstanty a,

Více

1. Úvod, odhad nejistot měření, chyba metody. 2. Přístroje pro měření proudu, napětí a výkonu - přehled; měřicí zesilovače;

1. Úvod, odhad nejistot měření, chyba metody. 2. Přístroje pro měření proudu, napětí a výkonu - přehled; měřicí zesilovače; . Úvod, odhad nejistot měření, chyba metody řesnost měření Základní kvantitativní charakteristika nejistoty měření Výpočet nejistoty údaje číslicových přístrojů Výpočet nejistoty nepřímých měření ozšířená

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.5 Název: Měření osciloskopem. Pracoval: Lukáš Ledvina

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.5 Název: Měření osciloskopem. Pracoval: Lukáš Ledvina Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úlohač.5 Název: Měření osciloskopem Pracoval: Lukáš Ledvina stud.skup.14 dne:23.10.2009 Odevzdaldne: Možný počet bodů

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ.1.07/1.5.00/34.0763 Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 Autor Ing. Antonín Kučera

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. IV Název: Měření malých odporů Pracoval: Matyáš Řehák stud.sk.: 13 dne: 10.10.2008 Odevzdal

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity RIEDL 3.EB-6-1/8 1.ZADÁNÍ a) Změřte indukčnosti předložených cívek ohmovou metodou při obou možných způsobech zapojení měřících přístrojů. b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 400

Více

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

Kalibrace odporového teploměru a termočlánku

Kalibrace odporového teploměru a termočlánku Kalibrace odporového teploměru a termočlánku Jakub Michálek 10. dubna 2009 Teorie Pro označení veličin viz text [1] s výjimkou, že teplotní rozdíl značím T, protože značku t už mám vyhrazenu pro čas. Ze

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 TS Matematika pro 2. stupeň ZŠ Terasoft Celá čísla Celý program pohádkový příběh Království Matematikán se závěrečným vyhodnocením Zobrazení čísel na ose Zápis čísel zobrazených na ose Opačná čísla na

Více

5. Měřidla. Měření délek. Měřidla přímá

5. Měřidla. Měření délek. Měřidla přímá 5. Měřidla Měření délek Základní pravidla správného měření: - měřit musíme přesnějším měřidlem, než je požadovaná přesnost rozměru součásti, například při toleranci součásti 0,2 mm použijeme měřidlo s

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω Měření odporu Elektrický odpor základní vlastnost všech pasivních a aktivních prvků přímé měření ohmmetrem nepříliš přesné používáme nepřímé měřící metody výchylkové můstkové rozsah odporů ovlivňující

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A]

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A] Pracovní úkol 1. Proměřte závislost magnetické indukce na proudu magnetu. 2. Pomocí kamery změřte ve směru kolmém k magnetickému poli rozštěpení červené spektrální čáry kadmia pro 8-10 hodnot magnetické

Více

Nejistota měření. Thomas Hesse HBM Darmstadt

Nejistota měření. Thomas Hesse HBM Darmstadt Nejistota měření Thomas Hesse HBM Darmstadt Prof. Werner Richter: Výsledek měření bez určení nejistoty měření je nejistý, takový výsledek je lépe ignorovat" V podstatě je výsledek měření aproximací nebo

Více

před použitím měřidla očistíme povrchy pracovních předmětů od pilin a jiných nečistot, které by mohly měřidlo poškodit a zkreslit výsledek

před použitím měřidla očistíme povrchy pracovních předmětů od pilin a jiných nečistot, které by mohly měřidlo poškodit a zkreslit výsledek Měření úhlů Základní pojmy V technické praxi se velikost rovinného úhlu udává ve stupních, které se dělí na minuty a vteřiny. Úhly se měří buď přímo úhloměry, úhelníky, úhlovými měrkami apod., nebo nepřímo

Více

Kódováni dat. Kódy používané pro strojové operace

Kódováni dat. Kódy používané pro strojové operace Kódováni dat Před zpracováním dat například v počítači je třeba znaky převést do tvaru, kterému počítač rozumí, tj. přiřadit jim určité kombinace bitů. Tomuto převodu se říká kódování. Kód je předpis pro

Více

4.2.6 Dělení napětí a proudu v elektrických obvodech (cvičení)

4.2.6 Dělení napětí a proudu v elektrických obvodech (cvičení) 4.2.6 Dělení napětí a proudu v elektrických obvodech (cvičení) Předpoklady: 4205 Pedagogická poznámka: Tato hodina nemá v klasické učebnici žádný ekvivalent. Osobně ji považuji za nutnou, studenti si jednak

Více

4. Zpracování signálu ze snímačů

4. Zpracování signálu ze snímačů 4. Zpracování signálu ze snímačů Snímače technologických veličin, pasivní i aktivní, zpravidla potřebují převodník, který transformuje jejich výstupní signál na vhodnější formu pro další zpracování. Tak

Více

RUČNÍ ZPRACOVÁNÍ KOVŮ I UOV Petr Svoboda

RUČNÍ ZPRACOVÁNÍ KOVŮ I UOV Petr Svoboda RUČNÍ ZPRACOVÁNÍ KOVŮ I UOV Petr Svoboda Měření I VY_32_INOVACE_OVS_3_01 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti 1 Název školy Název šablony Předmět Tematický

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF K Praktikum II Elektřina a magnetismus Úloha č. V Název: Měření osciloskopem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 1.1.28 Odevzdal dne:...

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. IV Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky

Více

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5 Řešení 1. Definujte tvrdost, rozdělte zkoušky tvrdosti Tvrdost materiálu je jeho vlastnost. Dá se charakterizovat, jako jeho schopnost odolávat vniku cizího tělesa. Zkoušky tvrdosti dělíme dle jejich charakteru

Více

MĚŘENÍ TLOUŠŤKY VRSTEV

MĚŘENÍ TLOUŠŤKY VRSTEV www.testima.cz - 1 - III 2004 Magneticko-indukční metoda Vířivé proudy Kalibrace a přesnost měření Vlivy na měření Geometrické meze měření Měření příliš malých dílů Vliv drsnosti povrchu Specielní aplikace

Více