Zákony hromadění chyb.

Rozměr: px
Začít zobrazení ze stránky:

Download "Zákony hromadění chyb."

Transkript

1 Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky a kartografie. Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a kartogra 1 / 27

2 Obsah přednášky 1 Chyby a jejich dělení 2 Zákon hromadění náhodných chyb 3 Zákon hromadění skutečných chyb 4 Zákon hromadění středních chyb Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a kartogra 2 / 27

3 1. Úvod V přírodních vědách nás zajímají jak kvalitativní tak kvantitativní charakteristiky. Kvantitativní charakteristiky zpravidla určovány měřením: délka, úhel, čas, odrazivost... Při opakovaném měření získáme různý výsledek rušivé vlivy. Zvýšení přesnosti: lepší metodika, přesnější přístroj, snížení vlivu okolních chyb. Výsledek měření náhodnou veličinou. Cílem vyrovnání nalezení nejspolehlivější hodnoty (střední hodnota) a stanovení meze spolehlivosti (chyba). Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a kartogra 3 / 27

4 Chyby a jejich dělení 2. Veličina a její chyba Přibližná x (měřená) a skutečná X (neznámá) Skutečná chyba ε ε = X x ε > X > x ε < X < x. Určení skutečné hodnoty X = x + ε. Odhad skutečné chyby ε x ε = X x ε x. Platí x ε X X x+ε x X = x ± ε x. Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a kartogra 4 / 27

5 Chyby a jejich dělení 3. Veličina a její chyba Jedno měření = žádné měření Skutečná chyba Skutečná hodnota x 1 = X ε 1, x 2 = X ε 2,..., x n = X ε n ε i = X x i. (1) X = x i + ε i. X nebývá známa, místo ní zavádíme vyrovnanou hodnotu x. Oprava Relativní chyba v i = x x i. (2) ε r = ε X. (3). Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a kartogra 5 / 27

6 Chyby a jejich dělení 4. Typy chyb Existují čtyři základní skupiny chyb: 1 Omyly Špatná metodika, nesprávný postup, omyl. 2 Hrubé chyby Měření za nepříznivých okolností. Odstranění opakovaným měřením, možno detekovat v datech. Každá metoda a postup má stanovenu přesnost: chyby v mezích jsou nevyhnutelné, nad tyto meze hrubé. 3 Náhodné chyby Náhodné hodnoty, vzájemně nezávislé. 4 Systematické chyby c Podobné hodnoty, vzájemně závislé. Náhodné a systematické chyby patří mezi nevyhnutelné chyby, nelze je eliminovat žádnou měřickou technikou. Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a kartogra 6 / 27

7 Chyby a jejich dělení 5. Náhodné a systematické chyby Náhodné chyby Náhodný charakter, proměnlivé za stejných podmínek, stejné metodice. Vzájemně nezávislé, nelze jejich hodnoty předvídat. E( ) =. Systematické chyby c Nabývají podobných hodnot, ovlivněny nějakým faktorem v podobné míře. Mají stejnou systematickou složku, vzájemně závislé (korelované). Konstantní: stejná velikost a znaménko, nelze vyloučit měřením/výpočtem: x 1 = X c, x 2 = X c,..., x n = X c Proměnlivé: Hodnoty rámcově proměnlivé, avšak nikoliv zcela náhodné, E(c) = c. Skutečná chyba ε i = i + c i. (4) Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a kartogra 7 / 27

8 Zákon hromadění náhodných chyb 6. Zákon hromadění náhodných chyb Náhodné chyby jednotlivě nepodléhají zákonitostem, jako celek pro ně platí pravidla jako u náhodných jevů. Tři Gaussovy zákonitosti: Z1: Malé chyby se vyskytují častěji než velké chyby. Z2: Chyby nad určitou mez se nevyskytují. Z3: Pravděpodobnost vzniku kladné/záporné chyby je stejná. Elementární chyba δ Náhodná chyb vzniká lineární kombinací většího počtu elementárních chyb δ různé velikosti, jejichž znaménko je náhodné (sečtou se či odečtou). Velká chyba: střet elementárních chyb s kladnými znaménky. Malá chyba: střet elementárních chyb s různými znaménky. m ε = δ j. (5) Veličina x i = X ε i, ε i = j=1 m m δ j,i x i = X j=1 Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a kartogra 8 / 27 j=1 δ j,i

9 Zákon hromadění náhodných chyb 7. Ukázka rozložení chyb Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a kartogra 9 / 27

10 Zákon hromadění náhodných chyb 8. Základní soubor a rozložení chyb Veličinu X určujeme z konečného počtu měření tvořící aproximaci základního souboru. Rozložení hodnot přibližně odpovídá Gaussovu rozdělení. Střední hodnoty chyb a veličin Předpoklad působení náhodných chyb E(δ) =, E(ε) =, E(x) = X. (6) n i=1 lim ε i n n i=1 =, lim x i n = X. Předpoklad působení systematických chyb n i=1 lim ε i n n i=1 = c, lim x i n = X c. Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a1 kartogra / 27

11 Zákon hromadění náhodných chyb 9. Ukázka polohy c: systematické chyby Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a11 kartogra / 27

12 Zákon hromadění náhodných chyb 1. Přesnost veličiny X Hodnotu veličiny X lze odhadnout (měřit) různými metodami s různými hodnotami elementární chyby. Každou z metod lze charakterizovat různým souborem hodnot ε i. Za přesnější označujeme takovou metodu, která má vůči jiné metodě menší rozptyl x i kolem střední hodnoty. Hodnotu rozptylu lze měřit střední chybou σ, σ 2 = V (x). průměrnou chybou, pravděpodobnou chybou. Variance V (x) Druhý centrální moment V (x) = E(x E(x)) 2 = E( 2 ) = σ 2. U skutečných chyb definujeme základní střední (kvadratickou) chybu m m 2 = E(x X) 2 = E(ε 2 ) m = E(ε 2 ). Mocnina základní střední chyby je střední hodnota ze čtverce skutečné chyby. Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a12 kartogra / 27

13 Zákon hromadění náhodných chyb 11. Vlastnosti základní střední chyby Charakterizuje soubor hodnot jako celek, hodnotí jeho přesnost. Čím větší hodnota m, tím menší přesnost. Platí i při výskytu systematických chyb, bývá nazývána úplnou variancí. Pozor: E( 2 ) E(ε 2 ) E(ε 2 ) = E(( + c) 2 ) = E( c + c 2 ) Pak Platí E(ε 2 ) = E( 2 ) + 2E( )E(c) + E(c 2 ) m 2 = σ 2 + c 2. (7) Základní střední chyba obsahuje vliv náhodné i systematické složky. Čtverec základní střední chyby je součtem čtverců variance a střední hodnoty systematické složky (poloha centra). Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a13 kartogra / 27

14 Zákon hromadění náhodných chyb 12. Další charakteristiky přesnosti Empirická střední chyba m Náhodná veličina, spočtená z konečného souboru n měření. Odmocnina z průměrné hodnoty čtverce chyb n i=1 m = ε2 i. (8) n Mezní chyba ε α Největší přípustná chyba. Volena jako 2-3 násobek základní střední chyby (do intervalu padne 95% měření). ε α 2m, 3m. (9) Průměrná chyba v První moment, průměrná hodnota absolutní chyby. v = E( ε ). (1) Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a14 kartogra / 27

15 Zákon hromadění skutečných chyb 13. Zákon hromadění skutečných chyb Ukazuje vliv chyb vstupních veličin na jejich funkce. Jeho znalost umožňuje volit metody a přístroje poskytující výsledek s požadovanou přesností. Předpoklad: chyby vstupních veličin vzájemně nezávislé. Dána: Funkce f n proměnných x 1, x 2,..., x n, diferencovatelná, spojitá y = f (x 1, x 2,..., x n ). Vstupní chyby argumentů ε 1, ε 2,..., ε n. Hledáme: Chybu funkce ε f. Odvození diferenciálem nebo Taylorovým rozvojem. Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a15 kartogra / 27

16 Zákon hromadění skutečných chyb 14. Odvození zákonu hromadění skutečných chyb Platí f + ε f = f (x 1 + ε 1, x 2 + ε 2,..., x n + ε n ) Taylorův rozvoj, neuvažujeme chyby vyšších řádů, existence derivací f + ε f = f (x 1, x 2,..., x n )/ + / ε 1 + / ε / ε n + R 2 x 1 x 2 x n Pak ε f = / x 1 Zákon hromadění skutečných chyb: n / ε f = x i ε 1 + / ε / ε n + R 2 x 2 x n i=1 ε i. (11) Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a16 kartogra / 27

17 Zákon hromadění skutečných chyb 15. Varianta: levá strana také funkcí Složitější případ, levá strana vztahu též funkcí Pak f + g / g(f ) = f (x 1, x 2,..., x n). ε f = f (x 1, x 2,..., x n)/ + / ε 1 + / ε / ε n + R 2. x 1 x 2 x n Modifikovaná varianta zákona hromadění skutečných chyb Použití: kosínová věta ε f = 1 / g c = a 2 + b 2... ε c = 1 2 (...) 1/2 ε a +... n i=1 c 2 = a 2 + b 2... ε c = 1 [(2a +...)εa c / ε i. (12) x i Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a17 kartogra / 27

18 Zákon hromadění skutečných chyb 16. Obrácená úloha Určení skutečných chyb argumentů tak, aby chyba funkce nepřekročila za danou hodnotu. Chyby vstupních hodnot opět nezávislé. Rovnice o více proměnných, lze řešit pouze při stanovení vhodných počátečních podmínek. Dána: Funkce f n proměnných x 1, x 2,..., x n, diferencovatelná, spojitá y = f (x 1, x 2,..., x n). Chyba funkce ε f. Hledáme: Chyby argumentů ε 1, ε 2,..., ε n. Dvě základní varianty: Princip stejného vlivu, Rovnost odhadu absolutních chyb. Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a18 kartogra / 27

19 Zákon hromadění skutečných chyb 17. Princip stejného vlivu Platí ε f = / x 1 ε 1 + / ε / ε n x 2 x n Podmínka: jednotlivé členy rozvoje se uplatní stejnou hodnotou / ε 1 = / ε 2 =... = / ε n. x 1 x 2 x n Pak Výsledný vztah ε f = n / ε i. x i ε i = ε f n x i /. (13) V některých případech nelze použít, příliš vysoké požadavky přesnosti na argumenty. Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a19 kartogra / 27

20 Zákon hromadění skutečných chyb 18. Rovnost odhadu absolutních chyb Předpokládáme, že všechny argumenty mají být určeny se stejnou hodnotou skutečné chyby. Vliv jednotlivých členů bude různý. Podmínka ε 1 = ε 2 =... = ε n = ε. Pak Výsledný vztah ε f = ε( / + / x 1 x 2 n / ε f = ε x i i=1 ε =. n i=1 ε f x i / / ). x n. (14) Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a2 kartogra / 27

21 Zákon hromadění středních chyb 19. Zákon hromadění středních chyb Skutečné chyby v praxi nebývají, na rozdíl od středních chyb, známy. Předpoklady: Sudé rozdělení pravděpodobnosti, E(ε i ) = Chyby jsou vzájemně nezávislé. Funkce jsou spojité a diferencovatelné. Dána: Funkce f n proměnných x 1, x 2,..., x n, diferencovatelná, spojitá y = f (x 1, x 2,..., x n). Vstupní chyby argumentů m 1, m 2,..., m n. Hledáme: Chybu funkce m f. Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a21 kartogra / 27

22 Zákon hromadění středních chyb 2. Odvození zákona hromadění středních chyb (1/2) Vyjdeme ze vztahu ε f = Umocníme na druhou a přeuspořádáme / ε 1 + / ε / ε n. x 1 x 2 x n ε f ε f = ( / ) 2 ( / ) 2 ( / ) ε 1 + ε ε n + 2 x 1 x 2 x n +2 / / / ε 1 ε 2... ε n +... x 1 x 2 x n Aplikujeme E E(ε f ε f ) = E [ ( / x 1 / 2E( x 1 ) ] 2 ε 1 + E / ε 1 )E( x 2 [ ( / ) ] [ 2 ( / ε E x 2 x n ε 2 )...E( / ε n) +... x n ) ] 2 ε n Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a22 kartogra / 27

23 Zákon hromadění středních chyb 21. Odvození zákona hromadění středních chyb (2/2) Platí Všechny smíšené členy vypadnou. Pak ( / m 2 f = x 1 m 2 i = E(ε 2 i ) E(ε i ) =. ) 2 ( / ) 2 ( / ) 2 m 1 + m m n +. x 2 x n Zákon hromadění středních chyb m 2 f = n ( / i=1 x i m i ) 2 (15) Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a23 kartogra / 27

24 Zákon hromadění středních chyb 22. Varianta: levá strana také funkcí (1/2) Složitější případ, levá strana vztahu též funkcí Pak g(f ) = f (x 1, x 2,..., x n). ( / ) g 2 ε f = ( / ) 2 ( / ) 2 ( / ) ε 1 + ε ε n + x 1 x 2 x n +2 / / / ε 1 ε 2... ε n +... x 1 x 2 x n Aplikace střední hodnoty E [ ( / ) ] g 2 ε f = E [ ( / x 1 / +2E( x 1 ) ] 2 ε 1 + E ε 1 )E( x 2 [ ( / ) ] [ 2 ( / ε E x 2 x n / ε 2 )...E( / ε n) +... x n ) ε n Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a24 kartogra / 27

25 Zákon hromadění středních chyb 23. Varianta: levá strana také funkcí (2/2) Pak m 2 f ( / ) g 2 ε f = ( / ) 2 ( / m 1 + x 1 x 2 ( / ) m n. x n m 2 ) Modifikovaná varianta zákona hromadění středních chyb m 2 f = ( g 1 n ( / / ) 2 ε x i f i=1 m i ) 2 (16) Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a25 kartogra / 27

26 Zákon hromadění středních chyb 24. Obrácená úloha Určení skutečných chyb argumentů tak, aby chyba funkce nepřekročila za danou hodnotu. Dána: Funkce f n proměnných x 1, x 2,..., x n, diferencovatelná, spojitá y = f (x 1, x 2,..., x n). Chyba funkce m f. Hledáme: Chyby argumentů m 1, m 2,..., m n. Dvě základní varianty: Princip stejného vlivu, Rovnost odhadu absolutních chyb. Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a26 kartogra / 27

27 Zákon hromadění středních chyb 25. Princip stejného vlivu Jednotlivé členy mají stejný vliv ( / x 1 ) 2 ( / m 1 = x 2 ) 2 ( / m 2 = x n m n ) 2 Pak Výsledný vztah ( / ) 2 m 2 f = n m i x i m i = m f. (17) n x i / Tomáš Bayer (PřírodovědeckáZákony fakultahromadění Univerzity Karlovy chyb. v Praze, Katedra aplikované geoinformatiky a27 kartogra / 27

SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc s využitím přednášky doc Ing Martina

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

Chyby a neurčitosti měření

Chyby a neurčitosti měření Radioelektronická měření (MREM) Chyby a neurčitosti měření 10. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Základní pojmy Měření je souhrn činností s cílem určit hodnotu měřené veličiny

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)*

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)* Modely analýzy a syntézy plánů MAF/KIV) Přednáška 10 itlivostní analýza 1 Analytické metody durace a konvexita aktiva dluhopisu) Budeme uvažovat následující tvar cenové rovnice =, 1) kde jsou současná

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Seminář z geoinformatiky Měření vodorovných úhlů Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Základním

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

MATEMATIKA A Metodický list č. 1

MATEMATIKA A Metodický list č. 1 Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači

Více

Návrh a vyhodnocení experimentu

Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav

Více

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartografické stupnice Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 16. 10. 2012 Stupnice

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Matematické modelování Náhled do ekonometrie. Lukáš Frýd Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Rozdělení náhodné veličiny

Rozdělení náhodné veličiny Rozdělení náhodné veličiny Náhodná proměnná může mít - diskrétní rozdělení (nabývá jen určitých číselných hodnot) - spojité rozdělení (nabývá libovolných hodnot z určitého intervalu) Fyzikální veličiny

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Čísla a číselné soustavy.

Čísla a číselné soustavy. Čísla a číselné soustavy. Polyadické soustavy. Převody mezi soustavami. Reprezentace čísel. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK.

Více

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%.

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%. Laboratorní úloha Snímač teploty R je zapojený podle schema na Obr. 1. Snímač je termistor typ B57164K [] se jmenovitým odporem pro teplotu 5 C R 5 00 Ω ± 10 %. Závislost odporu termistoru na teplotě je

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

Odhad stavu matematického modelu křižovatek

Odhad stavu matematického modelu křižovatek Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Numerická matematika Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Václav Bubník, xbubni01, sk. 60 FIT VUT v Brně, 2004 Obsah Numerická matematika...1 1. Teorie... 3 1.1 Diferenciální

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D.

Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D. Stanovení akustického výkonu Nejistoty měření Ing. Miroslav Kučera, Ph.D. Využití měření intenzity zvuku pro stanovení akustického výkonu klapek? Výhody: 1) přímé stanovení akustického výkonu zvláště při

Více

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých

Více

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

16. Goniometrické rovnice

16. Goniometrické rovnice @198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny

Více

Stochastické signály (opáčko)

Stochastické signály (opáčko) Stochastické signály (opáčko) Stochastický signál nemůžeme popsat rovnicí, ale pomocí sady parametrů. Hodit se bude statistika a pravděpodobnost (umíte). Tohle je jen miniminiminiopáčko, později probereme

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 1: Kondenzátor, mapování elektrického pole

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 1: Kondenzátor, mapování elektrického pole FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 5.5.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 1: Kondenzátor, mapování

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 5/ Určování astronomických zeměpisných

Více

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a MATEMATIKA B metodický list č. 1 Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači se seznámí

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Regrese používáme tehd, jestliže je vsvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Specifikace modelu = a + bx a závisle proměnná b x vsvětlující proměnná Cíl analýz Odhadnout hodnot

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu úloha/zadání název úlohy Inženýrská geodézie II 1/5 Určení nepřístupné vzdálenosti

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Úročení a časová hodnota peněz

Úročení a časová hodnota peněz Úročení a časová hodnota peněz V přednášce budou představeny základní pojmy z finanční matematiky. 1 Jednoduché úročení a diskontování V případě jednoduchého úročení nedochází k připisování úroku k původnímu

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Goniometrické rovnice

Goniometrické rovnice Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková

Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 1/99 Výpočet zeměpisné šířky z měřených

Více

Manuální, technická a elektrozručnost

Manuální, technická a elektrozručnost Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Lineární rovnice pro učební obory

Lineární rovnice pro učební obory Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Logaritmické rovnice a nerovnice

Logaritmické rovnice a nerovnice Přírodovědecká fakulta Masarykovy univerzity Logaritmické rovnice a nerovnice Bakalářská práce Brno 008 Lenka Balounová Prohlašuji, že jsem tuto práci vypracovala sama a čerpala jsem pouze z materiálů

Více

Přesnost a chyby měření

Přesnost a chyby měření Přesnost a chyby měření Výsledek každého měření se poněkud liší od skutečné hodnoty. Rozdíl mezi naměřenou hodnotou M a skutečnou hodnotou S se nazývá chyba měření. V praxi se rozlišují dvě chyby, a to

Více