Genetika: cvičení č. 1-2 DNA, RNA, replikace, transkripce, translace a genetický kód, mutace. KBI/GENE Mgr. Zbyněk Houdek

Rozměr: px
Začít zobrazení ze stránky:

Download "Genetika: cvičení č. 1-2 DNA, RNA, replikace, transkripce, translace a genetický kód, mutace. KBI/GENE Mgr. Zbyněk Houdek"

Transkript

1 Genetika: cvičení č. 1-2 DNA, RNA, replikace, transkripce, translace a genetický kód, mutace KBI/GENE Mgr. Zbyněk Houdek

2 Témata cvičení 1. DNA, RNA, replikace, transkripce, translace, genetický kód, centrální dogma mol. bio. 2. Mutace souvislost s gen. kódem (m. neměníci smysl, měnící smysl, tichá, nesmyslná m., substituce, inzerce ). 3. Mitóza, chromozómy, karyotyp, genomové mutace 4. Meióza 5. Mendelovy zákony monohybridismus, generace PF 1 F 2, úplná a neúplná dominance, štěpné poměry, dihybridismus, polyhybridismus, rozvětvovací metoda. 6. Genové interakce (reciproká interakce, dominantní epistáze, recesivní epistáze, inhibice, komplementarita, kompenzace), letální geny. 7. Dědičnost a pohlaví. 8. Genová vazba. 9. Dědičnost kvantitativních znaků (polygeny, prostředí), heritabilita (míra uplatnění genotypu na znaku). 10. HW zákon frekvence genotypů a fenotypů. 11. Dědičnost krevních skupin, HLA systém, mnohotný alelismus. 12. Rodokmeny, výpočty prognóz, typy dědičnosti u člověka.

3 Doporučená lit.: Alberts, B. a kol.: Základy buněčné biologie (1998) Kočárek, E.: Genetika (2008) Kubišta, V.: Buněčné základy životních dějů (1998) Otová, B. a kol.: Lékařská biologie a genetika (I. díl 2008) Pritchard, D., J. & Korf, B., J.: Základy lékařské genetiky (2007) Reischig, J.: Genetická praktika (1989) Reischig, J.: Obecná genetika. Praktická cvičení (2003) Rosypal, S.: Úvod do molekulární biologie (2003) Rosypal, S. a kol.: Nový přehled biologie (2003)

4 Genetická informace Genetická informace je obsažena ve sledu (pořadí) nukleotidů (nukleotidových sekvencí určitých funkčních typů NK).

5 DNA-deoxyribonukleová kys. skládá ze 4 typů deoxyribonukleotidů (adenin A, guanin G, thymin T, cytosin C). DNA je tvořena 2 vlákny, která jsou spojena ve dvoušroubovici, tak že proti A je navázáno (vodíkové můstky) T a proti G C. Na povrchu dvoušroubovice DNA se vytvářejí 2 nestejné žlábky (velký a malý), kam se váží bílkoviny. V páteři DNA jsou deoxyribózy, na kterou jsou navázány 2 fosfátové zbytky (1. na 3 C a 2. na 5 C). 1 řetězec DNA má tedy 2 konce, kde 1. začíná 3 C hydroxylem a 2. končí 5 C fosfátem. 5 GAATTC 3 3 CTTAAG 5 A - T C - G

6 Prostorová struktura DNA

7 RNA-ribonukleová kys. RNA-ribonukleová kys., která obsahuje A, G, C a U (uracil je chemicky podobný T v DNA). RNA se v b. vyskytuje jako malý polynukleotidový řetězec.

8 Přenos genetické informace Tento proces je zformulován v centrálním dogmatu molekulární biologie, což je postulát, který říká, že přenos je jedině možný z NK do NK nebo z NK do proteinu (Crick 1957/58).

9 Replikace DNA Replikace (obecně) tvorba kopií molekul NK zajišťující přenos GI z DNA do DNA a z RNA do RNA. K existujícímu řetězci DNA se na základě komplementarity bází přikládají odpovídající nukleotidy a postupně se spojují v nový řetězec, který je komplementární k původnímu. Vznikají tedy podle staré dvoušroubovice dvě zcela identické dvoušroubovice, z nichž žádná není celá nová, ale obsahuje 1 nový a 1 starý řetězec (semikonzervativní). Tuto reakci katalyzuje enzymový komplex DNA-polymeráza. Replikační komplex replikon postupuje po řetězci DNA, dvoušroubovice se rozvíjí a vzniká tzv. replikační vidlička. V každé replikační vidličce se tedy kopírují vedoucí řetězec, který se kopíruje plynule a druhý zpožďující se řetězec, který se kopíruje jako původní nesouvislý soubor fragmentů (Okazakiho fragmenty). V replikačních počátcích se typicky vyskytují sekvence s vysokým obsahem A a T.

10 Obr. replikace DNA Dalším proteinem potřebným při replikaci pro rozvití dvoušroubovice a vytvoření jednořetězcové úseku DNA (za štěpení ATP) je helikáza. Během replikace dochází ve šroubovici ke pnutí, které je uvolňováno topoizomerázou, která pracuje před replikační vidličkou, tak že přeruší jeden zřetězců dvoušroubovice a tím se o jeden závit rozvine a následně se tento přerušený řetězec spojí. RNA-primáza katalyzuje syntézu RNA-primeru, od jehož 3 konce se syntetizuje Okazakiho fragment.

11 Transkripce Přepisování GI z DNA do RNA jako primárního transkriptu. Dochází při ní k syntéze RNA, která je komplementární k DNA (gen). Geny rozdělujeme na strukturní (jejich přepisem vzniká mrna) a geny pro RNA proteosyntetického aparátu. Tento přepis je katalyzován enzymovým komplexem RNApolymerázou. RNA polymeráza se váže na DNA v místě promotoru. Dvoušroubovice DNA se rozvine a vznikne transkripční bublina. Přepisem vzniká mrna, která je jednovláknová. Především na konci molekuly se vytvoří 2 úseky navzájem komplementární, které vytvoří úzkou smyčku, kterou tvoří několik U a tím ukončí transkripci terminátor. Molekuly trna (<100 bází), rrna ( ) mají definovanou i terciární strukturu (také dvoušroubovicové úseky).

12 Negativní DNA řetězec (-DNA = kódující vlákno) slouží jako matrice pro syntézu RNA. Pozitivní DNA řetězec (+DNA= templát) je 2. ř. DNA o stejné sekvenci nukleotidů jako RNA, která je syntetizována na negativním ř. DNA.

13 Translace Syntéza molekuly bílkoviny využívající informace obsažené v molekule mrna. Probíhá na ribozomech (20 x 30 nm), které jsou tvořeny malou a velkou podjednotkou, které se spojují po navázání mrna ve funkční ribozom. Překladatel z jazyka nukleotidů do jazyka aminokys. je tvořen 2 složkami, 1. je soubor molekul trna, které nesou antikodón komplementární s příslušným kodónem mrna a na 2. konci váže příslušnou aminokys. 2. složkou je soubor enzymů aminoacyl-trna syntetáza, který dovede rozpoznat určitou aminokys. a k ní příslušnou trna a spojit je makroergní vazbou. Nukleotidová sekvence obsahuje informaci o primární struktuře proteinu a nazývá se kódující nukleotidová sekvence.

14 Translace

15 Genetický kód - terminační kodón - iniciační kodón Gly GGG Glu GAG Ala GCG Val GUG Gly GGA Glu GAA Ala GCA Val GUA Gly GGC Asp GAC Ala GCC Val GUC Gly GGU Asp GAU Ala GCU Val GUU Arg AGG Lys AAG Thr ACG Met AUG Arg AGA Lys AAA Thr ACA Ile AUA Ser AGC Asn AAC Thr ACC Ile AUC Ser AGU Asn AAU Thr ACU Ile AUU Arg CGG Gln CAG Pro CCG Leu CUG Arg CGA Gln CAA Pro CCA Leu CUA Arg CGC His CAC Pro CCC Leu CUC Arg CGU His CAU Pro CCU Leu CUU Trp UGG STOP UAG Ser UCG Leu UUG STOP UGA STOP UAA Ser UCA Leu UUA Cys UGC Tyr UAC Ser UCC Phe UUC Cys UGU Tyr UAU Ser UCU Phe UUU význam kód význam kód význam kód význam kód UGA - někdy slouží pro zařazení selenocysteinu (Sec)

16 Chemické vlastnosti aminokyselin v proteinech Hydrofóbní nepolární Alanin - Ala Valin - Val Leucin - Leu Prolin - Pro Glycin - Gly Cystein - Cys Selenocystein - Sec aminokyseliny Fenylalanin - Phe Izoleucin - Ile Tryptofan - Try Methionin - Met tvorba S-S můstků tvorba Se-Se můstků

17 Hydrofilní polární aminokys. Neutrální Asparagin - Asn Glutamin - Gln Serin - Ser Threonin - Thr Kyselé Kys. asparágová - Asp Kys. glutamová - Glu Alkalické Lysin - Lys Arginin - Arg Histidin - His Tyrosin - Tyr

18 Struktura aminokys. Aminokyseliny s alifatickým postranním řetězcem Glycin Gly (G), Alanin Ala (A), Valin Val (V), Leucin Leu (L), Isoleucin Ile (I) S karboxylovou nebo amidovou skupinou na postranním řetězci (kyselé skupiny) Kyselina asparagová Asp (D), Asparagin Asn (N), Kyselina glutamová Glu (E), Glutamin Gln (Q) S aminovou skupinou na postranním řetězci (basické skupiny) Arginin Arg (R), Lysin Lys (K) S aromatickým jádrem nebo hydroxylovou skupinou na postranním řetězci Histidin His (H), Fenylalanin Phe (F), Serin Ser (S), Threonin Thr (T), Tyrozin Tyr (Y), Tryptofan Trp (W) Se sírou v postranním řetězci Methionin Met (M), Cystein Cys (C) Iminokyseliny Prolin Pro (P)

19 Gen Základní jednotka genetické funkce (g. informace) vyznačující se fenotypovým projevem. Formy genu: úsek DNA- nebo RNA-řetězce (jen u RNA-virů), který kóduje primární strukturu polypeptidu jako translačního produktu (strukturní gen). Jako úsek DNA-řetězce přepisovaný do primární struktury trna, a dalších druhů RNA, které nejsou určeny k translaci. Jako úsek DNA- nebo RNA-řetězce plnící regulační fci, který je rozeznáván specifickým proteinem signalizujícím zahájení nebo zastavení určitého molekulárního děje (např. transkripce nebo translace).

20 Alela Varianta genu o určité unikátní nukleotidové sekvenci. Dominantní a. svou funkcí potlačuje projev jiné recesivní a. téhož genu. Standardní a. je alela genu převládájící v přírodní populaci. Mutantní a. je alela změněná mutací.

21 Polymerázovářetězová reakce (PCR) PCR (Polymerase chain reaction) byla vyvinuta v Cetus Corporation v Emeryville v Kalifornii (Saiki a Mullis v roce 1986 Nobelova cena). Jedná se o enzymatickou amplifikaci DNA in vitro syntézou mnoha kopií vybrané sekvence DNA v cyklické reakci o třech teplotních fázích (Saiki et al., 1988; Schutzbank et al., 1993; White et al., 1992). 1. DNA je nejprve denaturována (95 C / s) na dvě jednovláknové templátové (matricové) molekuly DNA. Nukleotidová sekvence cílové DNA nemusí být známa, ale musí být známé alespoň sekvence krátkých úseků na obou koncích cílové amplifikované DNA. 2. Oligonukleotidové sondy (primery), které hybridizují (obvykle mezi 50 C a 55 C) na obou stranách cílové DNA (annealing ). Nadbytek primerů a přítomnost všech čtyř deoxyribonukleosidtrifosfátů. 3. Primeryřídí syntézu nových vláken (70-74 C, s). Jejich syntézu katalyzuje termostabilní DNA polymeráza (například Taq z bakterie Thermus aquaticus) od 5 konce ke 3 konci vždy začínající od primerů. Během prvního cyklu syntéza nového vlákna pokračuje dále až za sledovanou sekvenci, ale následné cykly již amplifikují převážně pouze úsek mezi dvěma vybranými sondami (primery). Počet cyklů se obvykle pohybuje v rozmezí 15 30, přičemž se v každém cyklu množství molekul oproti předcházejícímu cyklu zdvojnásobí.

22 Princip polymerázovéřetězové reakce Pomocí PCR můžeme získat jak kopii genomové DNA, cdna (analyzovaný vzorek může být DNA i RNA). Nejdostupnější metodou detekce produktů PCR je elektroforéza v agarosovém gelu (barvivo Ethidium bromid). Na úrovni lidské DNA lze např. identifikovat sekvence (mutantní úseky DNA) podmiňující vznik dědičných onemocnění, určovat genetickou identitu jedinců, paternitu neboli rodičovství, prokazovat původ biologického materiálu v soudním lékařství apod. Dále se používá pro identifikaci různých druhů mikroorganizmů (patogenů).

23 Úkoly: Napište komplementární řetězec k uvedenému řetězci DNA: 5 CGTACGGTTCGATGCACTGTACTGC 3 3 GCATGCCAAGCTACGTGACATGACG 5 Napište vlákno mrna vzniklé transkripcí molekuly DNA, pokud antikódujícířetězec (matrice, negativní) je ten uvedený, ne doplněný: GCAUGCCAAGCUACGUGACAUGACG Najděte iniciační a kodon a ukončení translace na uvedeném vlákně: GCAUGCCAAGCUACGUGACAUGACG Napište pořadí aminokys., které budou v peptidovémřetězci vzniklém translací mrna: Met, Pro, Ser, Tyr, Val, Thr

24 Úkoly: Pokud je v daném úseku molekuly DNA 287 A a 351 C, kolik tam bude ostatních bází? Kolik tam bude purinů a kolik pyrimidinů? 287 T, 351 G Purinů (A, G) 638 Pyrimidinů (C, T) 638 Jak bude vypadat úsek vzniklý transkripcí dané části DNA? A G T G A T A C U A

25 Mutace Mutace jsou změny v genotypu organismu oproti normálu. Velká většina mutací je naprosto náhodných, cílená mutageneze se používá téměř výhradně pro vědecké účely. Pravděpodobnost jedné takovéto chyby se pohybuje v řádech asi 10-7 (spontánní mutace). Pravděpodobnost vzniku mutace se zvyšuje působením některých fyzikálních nebo chemických činitelů (mutagenů záření, silná oxidačního činidla). Genové mutace jsou změny v genetické informaci, které proběhly v jednom genu a nenarušily stavbu chromozómu (změna fenotypové vlastnosti-nádorová onemocnění). Chromozómové mutace vedou ke zlomům a k přestavbám struktury chromozómů (větší skupiny genů, jsou pozorovatelné mikroskopem). Genomové mutace jsou změny v počtu chromozómů (aneuploidie ztráta nebo nadbytečná přítomnost některých jednotlivých chromozómů monozomie, trizomie u čl. Downům syndrom; polyploidie početní změny sad chromozómů. Organismy jsou do jisté míry schopny mutace v DNA opravit.

26 Mutace genové Transice je záměna purinového nukleotidu za purinový a pyrimidinového za pyrimidinový. Transverze je záměna purinového nukleotidu za pyrimidový a naopak. Mutace neměníci smysl (samesense mutation), kdy je i přes mutaci zařazena stejná aminokyselina. Jsou způsobeny substitucemi na třetí pozici kodonu. Tichá mutace (silent mutation) se změnou v kodonu, která se neprojevuje ve funkci polypeptidového řetězce. Mutace měnící smysl (missense mutation), které mění smysl polypeptidového vlákna, které způsobí zařazení odlišné aminokyseliny při proteosyntéze. Nesmyslné mutace (nonsense mutation), které zapříčiní vznik předčasného terminačního kodonu v sekvenci DNA. Výsledkem je zcela nefunkční protein. Substituce je náhrada báze původní sekvence bází jinou. U delece jde o ztrátu jednoho nebo více nukleotidů původní sekvence. Adice (inzerce) -zařazení jednoho nebo více nadbytečných nukleotidových párů.

27 Úkoly: V 1. řádku je sekvence normální alely, ve 2. ř. je stejná sekvence poškozená mutací. O jakou mutaci se jedná? TGT GTA ATA CCG GGT TTG ACC TGT TTA ATA CCG GGT TTG ACC substituce TGT GTA ATA CCG GGT TTG ACC TGT GTA ATA CGG GTT TGA CC delece s posunem čtecího rámce TGT GTA ATA CCG GGT TTG ACC TGT GTA ATA GGT TTG ACC delece celého tripletu bez posunu čtecího rámce TGT GTA ATA CCG GGT TTG ACC TGT GTA ATA CCG GGT ATT GAC C inzerce s posunem čtecího rámce

28 Úkoly: Původní sekvence: - DNA: GCG TAC CAC TCC AGG TAG AAT + DNA: CGC ATG GTG AGG TCC ATC TTA RNA: CGC AUG GUG AGG UCC AUC UUA Aminokys.: Arg Met Val Arg Ser Ile Leu zač. Mutované sekvence: Del Inz DNA: GGT ACC ACT CCA GGT CAG AAT + DNA: CCA TGG TGA GGT CCA GTC TTA RNA: CCA UGG UGA GGU CCA GUC UUA Aminokys.: Pro Trp stop Gly Pro Val Leu

29 Opravy mutací Organismy jsou do jisté míry schopny mutace v DNA opravit: enzymové komplexy k těmto biochemickým reakcím. Fotoreaktivace opravy poškození způsobeného UV zářením v 2-řetězcové DNA kovalentní vazby mezi pyrimidiny (tyminy), opravný enzym se aktivuje denním světlem rozpojení a oprava DNA do původní struktury. Excisní oprava vystřižení poškozeného úseku a nahrazením správného úseku DNA (nukleázy, polymerázy a ligázy). Rekombinační oprava (málo probádaná) rekombinační výměna poškozených oblastí mezi 2 mol. DNA 1 opravená mol. a 1 mol. s kumulovanými poškozenými oblastmi.

30 Sekvenování NK Určení sekvence (pořadí) nukleotidů úseků DNA a RNA o několika stech bazí se provádí nejčastěji na principu konvenční Sangerovy metody (dideo-xynukleotidová, ddntp reakce) nebo nověji pomocí cyklického sekvenování na termocykleru bez nutnosti alkalické denaturace. Označené produkty sekvenační reakce se rozdělí a detekují na sekvenačním gelu pomocí elektroforézy. Původní metoda vyžadovala 4 samostatné sekvenační reakce a také samostatné dělení při elektroforéze pro každý jednotlivý nukleotid. Metoda má čtyři fáze: přiložení primeru k analyzovanému fragmentu DNA, označení primeru, prodlužování primeru o další komplementární baze syntézou pomocí T7 DNA polymerasy, ukončení reakce inkorporací dideoxynukleotidu. Značení primerů se provádělo pomocí radioizotopů. Moderní sekvenování je plně automatizováno. Místo radioaktivního značení se používá značení fluoresceinem, místo značení primerů se používá značení terminátorů reakce (ddntp), reakce se provádí na termocykleru pomocí Taq DNA polymerasy, všechny čtyři reakce je možno provést v jedné zkumavce a elektroforetické dělení je také z jednoho vzorku. Laserová detekce emise čtyř různých fluorescenčních barev se provádí pomocí fotonásobiče a velmi citlivého detektoru přímo z gelu. Počítačem je řízený posuv, fokusace, optimální laserový paprsek a vyhodnocení získaných dat. K dispozici je specializovaný software.

31 Jak vlastně Sangerovo sekvenování funguje? 1. Připrava směsi fragmentů z původní DNA molekuly, které se liší v délce vždy o jediný nukleotid (např. z DNA o délce 100 nukleotidů je nutné generovat řetězce dlouhé 99, 98, 97, 96, 95. Třeba tak, že se DNA vhodným enzymem nahlodá od jednoho konce). Sangerovo vylepšení PCR procedury spočívá v tom, že přimíchal do reakční směsi malé množství modifikovaných dideoxynukleotidů (ochromeny tím, že jim chybí vazebná skupina - po jejich zabudování do řetězce nemá polymeráza kam připojit následující nukleotid je pravděpodobné, že řetězec DNA bude v určité fázi syntézy předčasně ukončen). Takto generované různě dlouhé fragmenty je poté třeba analyzovat. K tomu se používá nejčastěji elektroforéza. Fragmenty DNA nesoucí náboj (obsahují přece kyselinu fosforečnou) migrují směrem k příslušné elektrodě gelovou matricí, která funguje jako molekulové síto. Krátké fragmenty se prodírají gelem rychleji než ty dlouhé, čímž dochází k separaci. Když je DNA separována, zbývá už jen číst sekvenci. Sanger použil další trik - flurorescenčního značení. Fluorescenční detektor zaznamenává fluorescenci, jejíž barva je určena jediným terminálním dideoxynukleotidem. A to nejdůležitější - terminální dideoxynukleotid je zabudován do fragmentu na základě komplementarity k původní sekvenované DNA. Příklad: Při separaci vypadne z kolony první fragment označený zeleně (A), pak detekujeme fragment označený červeně (T), modrým (C) a černým (G). Tak lze ze znalosti pořadí (délky) DNA fragmentů a barvy jejich fluorescence bezchybně vyvodit celou původní sekvenci. Jestliže se stejná změna vyskytuje v populaci systematicky ve větší frekvenci než jedno procento, nazývá se to DNA polymorfismus. Prvním hmatatelným výsledkem sekvenování DNA je možnost porovnat individuální DNA vzhledem k průměrné populaci, nebo lépe řečeno, zařadit ji do příslušných genotypů.

32

Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.

Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu. Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové

Více

Molekulární genetika IV zimní semestr 6. výukový týden ( )

Molekulární genetika IV zimní semestr 6. výukový týden ( ) Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetika IV zimní semestr 6. výukový týden (5.11. 9.11.2007) Nondisjunkce u Downova syndromu 2 Tři rodokmeny rodin s dětmi postiženými

Více

Molekulární genetika (Molekulární základy dědičnosti)

Molekulární genetika (Molekulární základy dědičnosti) Molekulární genetika (Molekulární základy dědičnosti) Struktura nukleové kyseliny Cukerná pentóza: 2-deoxy-D-ribóza D-ribóza Fosfátový zbytek: PO 4 3- Purin Pyrimidin Dusíkatá báze Adenin Guanin Tymin

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Molekulární genetika (Molekulární základy dědičnosti) 0 Gen - historie 1909 Johanssen

Více

Molekulárn. rní genetika

Molekulárn. rní genetika Molekulárn rní genetika Centráln lní dogma molekulárn rní biologie cesta přenosu genetické informace: DNA RNA proteiny výjimkou reverzní transkripce retrovirů: RNA DNA Chemie nukleových kyselin dusíkaté

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

Virtuální svět genetiky 1. Translace

Virtuální svět genetiky 1. Translace (překlad) je druhým krokem exprese genetické informace a ukončuje dráhu DNA > RNA > protein. probíhá mimo jádro, v cytoplazmě na ribozómech. Výchozími látkami pro translaci je 21 standardních aminokyselin,

Více

Molekulární genetika

Molekulární genetika Molekulární genetika Upozornění: ukončení semestru ZÁPOČTOVÝ TEST a) Dědičnost krevně skupinových systémů (AB0, MN, Rh) b) Přepis úseku DNA do sekvence aminokyselin c) Populační genetika výpočet frekvence

Více

Populační genetika. ) a. Populační genetika. Castle-Hardy-Weinbergova zákonitost. Platí v panmiktické populaci za předpokladu omezujících podmínek

Populační genetika. ) a. Populační genetika. Castle-Hardy-Weinbergova zákonitost. Platí v panmiktické populaci za předpokladu omezujících podmínek Poulační genetika Poulační genetika ORGANISMUS Součást výše organizované soustavy oulace POPULACE Soubor jedinců jednoho druhu Genotyově heterogenní V určitém čase má řirozeně vymezený rostor Velký očet

Více

základní znaky živých systémů (definice života výčtem jeho vlastností) složitá organizace a řád regulace a udržování vnitřní homeostázy získávání a

základní znaky živých systémů (definice života výčtem jeho vlastností) složitá organizace a řád regulace a udržování vnitřní homeostázy získávání a definice života živý organismus je přirozeně se vyskytující sám sebe reprodukující systém, který vykonává řízené manipulace s hmotou, energií a informací základní znaky živých systémů (definice života

Více

Dědičnost x proměnlivost Neboli heredita je schopnost organismů vytvářet potomky se stejnými nebo podobnými znaky. Je to jedna ze základních

Dědičnost x proměnlivost Neboli heredita je schopnost organismů vytvářet potomky se stejnými nebo podobnými znaky. Je to jedna ze základních Mgr. Zbyněk Houdek Doporučenálit.: Alberts, B. a kol.: Základy buněčné biologie (1998) Kočárek, E.: Genetika (2008) Kubišta, V.: Buněčné základy životních dějů (1998) Otová, B. a kol.: Lékařská biologie

Více

Molekulárn. rní. biologie Struktura DNA a RNA

Molekulárn. rní. biologie Struktura DNA a RNA Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace

Více

b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?

b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky? 1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

Struktura a funkce nukleových kyselin

Struktura a funkce nukleových kyselin Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu

Více

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D. Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec

Více

Translace (druhý krok genové exprese)

Translace (druhý krok genové exprese) Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace

Více

Molekulární genetika. DNA = deoxyribonukleová kyselina. RNA = ribonukleová kyselina

Molekulární genetika. DNA = deoxyribonukleová kyselina. RNA = ribonukleová kyselina Přehled GMH Seminář z biologie GENETIKA Molekulární genetika Základní dogma molekulární biologie Základním nosičem genetické informace je molekula DNA. Tato molekula se může replikovat (kopírovat). Informace

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny

Více

TRANSLACE - SYNTÉZA BÍLKOVIN

TRANSLACE - SYNTÉZA BÍLKOVIN TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy

Více

Tomáš Oberhuber. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Tomáš Oberhuber. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Buňka buňka je základní stavební prvek všech živých organismů byla objevena Robertem Hookem roku 1665 jednodušší

Více

MOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR)

MOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR) MOLEKULÁRNÍ BIOLOGIE 2. Polymerázová řetězová reakce (PCR) Náplň praktik 1. Izolace DNA z buněk bukální sliznice - izolační kit MACHEREY-NAGEL 2. PCR polymerázová řetězová reakce (templát gdna) 3. Restrikční

Více

Aminokyseliny. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín. Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití

Aminokyseliny. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín. Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Aminokyseliny Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 18.7.2012 3. ročník čtyřletého G Určování postranních řetězců aminokyselin

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

NUKLEOVÉ KYSELINY. Základ života

NUKLEOVÉ KYSELINY. Základ života NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita

GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu

Více

Schéma průběhu transkripce

Schéma průběhu transkripce Molekulární základy genetiky PROTEOSYNTÉZA A GENETICKÝ KÓD Proteosyntéza je složitý proces tvorby bílkovin, který zahrnuje proces přepisu genetické informace z DNA do kratšího zápisu v informační mrna

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,

Více

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní

Více

Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra

Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger

Více

REPLIKACE A REPARACE DNA

REPLIKACE A REPARACE DNA REPLIKACE A REPARACE DNA 1 VÝZNAM REPARACE DNA V MEDICÍNĚ Příklad: Reparace DNA: enzymy reparace nukleotidovou excizí Onemocnění: xeroderma pigmentosum 2 3 REPLIKACE A REPARACE DNA: Replikace DNA: 1. Podstata

Více

Molekulární základ dědičnosti

Molekulární základ dědičnosti Molekulární základ dědičnosti Dědičná informace je zakódována v deoxyribonukleové kyselině, která je uložena v jádře buňky v chromozómech. Zlomovým objevem pro další rozvoj molekulární genetiky bylo odhalení

Více

Struktura nukleových kyselin Vlastnosti genetického materiálu

Struktura nukleových kyselin Vlastnosti genetického materiálu Struktura nukleových kyselin Vlastnosti genetického materiálu V předcházejících kapitolách bylo konstatováno, že geny jsou uloženy na chromozomech a kontrolují fenotypové vlastnosti a že chromozomy se

Více

Josef Reischig, Jiří Hatina, Marie Ludvíková OBECNÁ GENETIKA. Praktická cvičení

Josef Reischig, Jiří Hatina, Marie Ludvíková OBECNÁ GENETIKA. Praktická cvičení Josef Reischig, Jiří Hatina, Marie Ludvíková OBECNÁ GENETIKA Praktická cvičení Popis průběhu spermatogeneze a meiózv u sarančat Spermatocyty I. řádu po proběhlé S fázi (2n, 4C) prochází prvním meiotickým

Více

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním 1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,

Více

Mutace jako změna genetické informace a zdroj genetické variability

Mutace jako změna genetické informace a zdroj genetické variability Obecná genetika Mutace jako změna genetické informace a zdroj genetické variability Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt

Více

Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací

Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci

Více

Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace

Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových

Více

Úvod do studia biologie. Základy molekulární genetiky

Úvod do studia biologie. Základy molekulární genetiky Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor

Více

Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni

Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni Otázka: Molekulární genetika a biologie Předmět: Biologie Přidal(a): Tomáš Pfohl Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni Zakladatel klasické genetiky - Johan Gregor Mendel

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto SUBSTITUČNÍ DERIVÁTY KARBOXYLOVÝCH O KYSELIN R C O X karboxylových kyselin - substituce na vedlejším uhlovodíkovém řetězci aminokyseliny - hydroxykyseliny

Více

15. Základy molekulární biologie

15. Základy molekulární biologie 15. Základy molekulární biologie DNA je zkratka pro kyselinu deoxyribonukleovou, která je nositelkou genetické informace všech živých buněčných organismů. Je tedy nezbytná pro život pomocí svých informací

Více

Centrální dogma molekulární biologie

Centrální dogma molekulární biologie řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových

Více

Proměnlivost organismu. Mgr. Aleš RUDA

Proměnlivost organismu. Mgr. Aleš RUDA Proměnlivost organismu Mgr. Aleš RUDA Faktory variability organismů Vnitřní = faktory vedoucí k proměnlivosti genotypu Vnější = faktory prostředí Příčiny proměnlivosti děje probíhající při meioze segregace

Více

Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny

Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny Otázka: Molekulární genetika, genetika buněk Předmět: Biologie Přidal(a): jeti52 Molekulární genetika: Do roku 1953 nebylo přesně známa podstata genetické informace, genů, dědičnosti,.. V roce 1953 Watson

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Translace, techniky práce s DNA Translace překlad z jazyka nukleotidů do jazyka aminokyselin dá se rozdělit na 5 kroků aktivace aminokyslin

Více

Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo

Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo Studijní materiály pro bioinformatickou část ViBuChu úloha II Jan Komárek, Gabriel Demo Adenin Struktura DNA Thymin 5 konec 3 konec DNA tvořena dvěmi řetězci orientovanými antiparalelně (liší se orientací

Více

TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE

TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE 1) Důležitým biogenním prvkem, obsaženým v nukleových kyselinách nebo ATP a nezbytným při tvorbě plodů je a) draslík b) dusík c) vápník d) fosfor 2) Sousedící nukleotidy

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Molekulární základy genetiky "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu

Více

Molekulární základy dědičnosti

Molekulární základy dědičnosti Mendelova genetika v příkladech Molekulární základy dědičnosti Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Stručná historie 1853-65

Více

Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248

Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM

Více

Jsme tak odlišní. Co nás spojuje..? Nukleové kyseliny

Jsme tak odlišní. Co nás spojuje..? Nukleové kyseliny Jsme tak odlišní Co nás spojuje..? ukleové kyseliny 1 UKLEVÉ KYSELIY = K anj = A ositelky genetických informací Základní význam pro všechny organismy V buňkách a virech Identifikace v buněčném jádře (nucleos)

Více

Nukleové kyseliny. DeoxyriboNucleic li Acid

Nukleové kyseliny. DeoxyriboNucleic li Acid Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou

Více

Molekulární základy dědičnosti

Molekulární základy dědičnosti Obecná genetika Molekulární základy dědičnosti Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním

Více

Organizace genomu eukaryot a prokaryot GENE Mgr. Zbyněk Houdek Stavba prokaryotické buňky Prokaryotické jádro nukleoid 1 molekula 2-řetězcové DNA (chromozom kružnicová struktura), bez jaderné membrány.

Více

Molekulární genetika, mutace. Mendelismus

Molekulární genetika, mutace. Mendelismus Molekulární genetika, mutace 1) Napište komplementární řetězec k uvedenému řetězci DNA: 5 CGTACGGTTCGATGCACTGTACTGC 3. 2) Napište sekvenci vlákna mrna vzniklé transkripcí molekuly DNA, pokud templátem

Více

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA). Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a

Více

Autoindex nad DNA sekvencemi

Autoindex nad DNA sekvencemi Autoindex nd DNA sekvenemi do. Ing. Jn Holub, Ph.D. ktedr teoretiké informtiky Fkult informčníh tehnologií České vysoké učení tehniké v Prze ENBIK 2014 10. 6. 2014 ENBIK 2014, 10. 5. 2014 J. Holub: Autoindex

Více

Úvod do studia biologie. Základy molekulární genetiky

Úvod do studia biologie. Základy molekulární genetiky Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2010 Mendel - podobor Genetiky (Genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann

Více

Obecná struktura a-aminokyselin

Obecná struktura a-aminokyselin AMINOKYSELINY Obsah Obecná struktura Názvosloví, třídění a charakterizace Nestandardní aminokyseliny Reaktivita - peptidová vazba Biogenní aminy Funkce aminokyselin Acidobazické vlastnosti Optická aktivita

Více

-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením:

-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením: Otázka: Molekulární základy dědičnosti Předmět: Biologie Přidal(a): Mulek NUKLEOVÉ KYSELINY -nositelkami genetické informace jsou molekuly nukleových kyselin tvořené řetězci vzájemně spojených nukleotidů,

Více

Bílkoviny - proteiny

Bílkoviny - proteiny Bílkoviny - proteiny Proteiny jsou složeny z 20 kódovaných aminokyselin L-enantiomery Chemická struktura aminokyselin R představuje jeden z 20 různých typů postranních řetězců R Hlavní řetězec je neměnný

Více

NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:

NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin: NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové

Více

Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.

Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti

Více

Polymerázová řetězová reakce

Polymerázová řetězová reakce Polymerázová řetězová reakce doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2013 Obsah přednášky 1) Co je to PCR, princip, jednotlivé kroky 2) Technické provedení PCR 3) Fyzikální

Více

jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu

jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu Translace a genetický kód Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny jedné aminokyseliny v molekule jednoho

Více

PROTEINY. Biochemický ústav LF MU (H.P.)

PROTEINY. Biochemický ústav LF MU (H.P.) PROTEINY Biochemický ústav LF MU 2013 - (H.P.) 1 proteiny peptidy aminokyseliny 2 Aminokyseliny 3 Charakteristika základní stavební jednotky proteinů geneticky kódované 20 základních aminokyselin 4 a-aminokyselina

Více

DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH. Michaela Nesvadbová

DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH. Michaela Nesvadbová DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH Michaela Nesvadbová Význam identifikace živočišných druhů v krmivu a potravinách povinností každého výrobce je řádně a pravdivě označit

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Základy genetiky, základní pojmy "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti NUKLEOVÉ KYSELINY

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti NUKLEOVÉ KYSELINY Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti NUKLEOVÉ KYSELINY 3 složky Nukleotidy dusík obsahující báze (purin či pyrimidin) pentosa fosfát Fosfodiesterová vazba. Vyskytuje se mezi

Více

Biosyntéza a metabolismus bílkovin

Biosyntéza a metabolismus bílkovin Bílkoviny Biosyntéza a metabolismus bílkovin lavní stavební materiál buněk a tkání Prakticky jediný zdroj dusíku pro heterotrofní organismy eexistují zásobní bílkoviny nutný dostatečný přísun v potravě

Více

Genetika zvířat - MENDELU

Genetika zvířat - MENDELU Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je

Více

ENZYMY A NUKLEOVÉ KYSELINY

ENZYMY A NUKLEOVÉ KYSELINY ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí

Více

Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny

Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU

Více

Lucie Kárná, Michal Křížek, Pavel Křížek

Lucie Kárná, Michal Křížek, Pavel Křížek genetika Genetický kód z pohledu matematiky Lucie Kárná, Michal Křížek, Pavel Křížek RNDr. Lucie Kárná, Ph.D. (*1969) vystudovala obor matematická analýza na Matematickofyzikální fakultě UK a v současnosti

Více

Nukleové kyseliny Milan Haminger BiGy Brno 2017

Nukleové kyseliny Milan Haminger BiGy Brno 2017 ukleové kyseliny Milan aminger BiGy Brno 2017 ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné

Více

Polymerázová řetězová reakce. Základní technika molekulární diagnostiky.

Polymerázová řetězová reakce. Základní technika molekulární diagnostiky. Polymerázová řetězová reakce Základní technika molekulární diagnostiky. Kdo za to může? Kary Mullis 1983 Nobelova cena 1993 Princip PCR Polymerázová řetězová reakce (polymerase chain reaction PCR) umožňuje

Více

Nukleové kyseliny Replikace DNA Doc. MVDr. Eva Bártová, Ph.D.

Nukleové kyseliny Replikace DNA Doc. MVDr. Eva Bártová, Ph.D. Nukleové kyseliny Replikace DNA 2013 Doc. MVDr. Eva Bártová, Ph.D. Nukleové kyseliny 7% cytozin Monomer: NUKLEOTID, tvoří jej: uracil kyselina fosforečná pentóza (ribóza, deoxyribóza) tymin organická dusíkatá

Více

Deoxyribonukleová kyselina (DNA)

Deoxyribonukleová kyselina (DNA) Genetika Dědičností rozumíme schopnost rodičů předávat své vlastnosti potomkům a zachovat tak rozličnost druhů v přírodě. Dědičností a proměnlivostí jedinců se zabývá vědní obor genetika. Základní jednotkou

Více

Analýza DNA. Co zjišťujeme u DNA DNA. PCR polymerase chain reaction. Princip PCR PRINCIP METODY PCR

Analýza DNA. Co zjišťujeme u DNA DNA. PCR polymerase chain reaction. Princip PCR PRINCIP METODY PCR o zjišťujeme u DN nalýza DN enetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů), chromosomové aberace (numerické, strukturální) Polymorfismy konkrétní mutace,

Více

Nukleové kyseliny. obecný přehled

Nukleové kyseliny. obecný přehled Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace

Více

Inovace studia molekulární a buněčné biologie. reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie. reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. Z.1.07/2.2.00/07.0354 Předmět: KBB/OPSB íl přednášky: Dokončení problematiky Molekulární podstaty genetické informace, objasnění principu replikace

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy Genetiky

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Základy Genetiky "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy Genetiky ROSTLINNÁ BUŇKA aaaaaaaa jádro mitochondrie chromatin (DNA) aaaaaaaa aaaaaaa aaaaaaaa aaaaaaaa plastid

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:

Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: Vzdělávací materiál vytvořený v projektu VK ázev školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: ázev projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Eva Strnadová. Dostupné z Metodického portálu www.rvp.cz ;

Více

BIO: Genetika. Mgr. Zbyněk Houdek

BIO: Genetika. Mgr. Zbyněk Houdek BIO: Genetika Mgr. Zbyněk Houdek Nukleové kyseliny Nukleové kyseliny = DNA, RNA - nositelky dědičné informace. Přenos dědičných znaků na potomstvo. Kódují bílkoviny. Nukleotidy - základní stavební jednotky.

Více

velké fragmenty střední fragmenty malé fragmenty

velké fragmenty střední fragmenty malé fragmenty velké fragmenty střední fragmenty malé fragmenty Southern 1975 Northern Western denaturace DNA hybridizace primerů (annealing) (mají délku kolem 20 bází) syntéza nové DNA termostabilní polymerázou vstup

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace

Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace Nukleové kyseliny Úvod Makromolekulární látky, které uchovávají a přenášejí informaci. Jsou to makromolekulární látky uspořádané do dlouhých. Řadí se mezi tzv.. Jsou přítomny ve buňkách a virech. Poprvé

Více

Eva Benešová. Genetika

Eva Benešová. Genetika Eva Benešová Genetika Význam nukleotidů - Energetický metabolismus (oběh energie). - Propojení odpovědi buňky na hormony a další stimuly. - Komponenty enzymových kofaktorů a dalších metabolických intermediátů.

Více

MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI

MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI Maturitní téma č. 33 MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI NUKLEOVÉ KYSELINY - jsou to makromolekuly tvořené řetězci vzájemně spojených nukleotidů. Molekula nukleotidu sestává z : - pětiuhlíkatého monosacharidu

Více

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného

Více

a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy

a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy 1 Nukleové kyseliny Nukleové kyseliny (NK) sice tvoří malé procento hmotnosti buňky ale významem v kódování genetické informace a její expresí zcela nezbytným typem biopolymeru všech živých soustav a)

Více

Analýza DNA. Co zjišťujeme u DNA

Analýza DNA. Co zjišťujeme u DNA Analýza DNA Co zjišťujeme u DNA Genetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů, záměny), chromosomové aberace (numerické, strukturní) Polymorfismy konkrétní

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN Primární struktura primární struktura bílkoviny je dána pořadím AK jejích polypeptidových řetězců

Více