Téma 5 Spojitý nosník

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Téma 5 Spojitý nosník"

Transkript

1 Sttik stveních konstukcí..očník kářského studi Tém 5 Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Příčinkové čáy nhodié ztížení n sojitém nosníku Pohyivé ztížení n sojitém nosníku Kted stvení mechniky Fkut stvení ŠB - Technická univezit Ostv

2 Sojitý nosník Sojitý nosník je stticky neučitý římý nosník říčně ztížený. á vzy : oti svisému osunu řídně vzyu oti ootočení v kjníchm odoovýc hém odech u osuvné vetknutí. Stueň sttické neučitost i : n s v k je očet oí v k je očet vetknutí Podeření sojitého nosníku v říčné úoze O... / st. 95 Zákdní vstnosti sojitého nosníku / 7

3 Sojitý nosník odvození třímomentové ovnice Siová metod zákdní koky odvození třímoment ové ovnice : učení stuně odeání n s sttické neučitost i n vnitřních vze vožení nhzení odených vze s kouů momentovým i intekcem i řídně ekcemi u vetknut í fomuce odmínek. řetvánýc h Pvní tři koky siové metody ři řešení sojitého nosníku O... / st. 97 Řešení sojitého nosníku siovou metodou / 7

4 Odvození třímomentové ovnice Přetváná odmínk: K odvození třímomentové ovnice O... / st. 97 Řešení sojitého nosníku siovou metodou / 7

5 5 / 7 ýočet koncových ootočení Postý nosník jko vek stticky neučité konstukce Koncové defomce ostého nosníku O..7. / st. je : votočivý smě otočení Po

6 / 7 Odvození třímomentové Ceyonovy ovnice momenty. ohyové neznámé jsou mimáně ovnici v kždé i neučitost sttické stuni jeho odovídá nosník o sojitý očet ovnic votoči vé ootočení.7. o... n oznčení odovídá u znménko : Poznámky úvě : Po doszení je : oe vé Po je : - evé oe Po..: viz o. Ptí s n

7 Odvození třímomentové ovnice Nosník n o..c je jednou stticky neučitý.. Seství se ouze ovnice : Sojitý Po evý okj nosníku Po vý okj nosníku Po nosník odou : dný sojením o..... očet ovnic je : je : je. je - - kát stticky neučtý K úvě třímomentové ovnice o kouové odeření okjů O... / st. 98 Řešení sojitého nosníku siovou metodou 7 / 7

8 Odvození třímoment. ovnice nosník s řevisými konci Ohyové momenty nosníku nd kjními odomi jsou ři ztížení řevisých konců nenuové ři dném ztížení de o..5. záoné. Lze je učit ze ztížení řevisých konců. K úvě třímomentové ovnice o řevisé konce O..5. / st. 99 Řešení sojitého nosníku siovou metodou 8 / 7

9 Pootočení vetknutí Přetváná Stejná Je zde P o vetknutí Odvození třímomentové ovnice vetknutí odmínk odmínk v místech ve tknutí jsou nenuové. n o Lze tí o o... s voženým tzv. nuovým oem. vé stně je vetknutí učit z o. o....c jsou nuová řešení d třímoment je : ohyové je odoně ových ovnic. : momenty v místech K sestvení řetváné odmínky n vetknutém okji O... / st. Řešení sojitého nosníku siovou metodou 9 / 7

10 / 7 Třímomentová ovnice o ůřez o oích oměnný : je Z Z se - i Oznčí : Po úvě : v kždém oi ůřez neměnný o je ovnici Z Z E E E E E E E

11 / 7 Třímomentová ovnice o konstntní ůřez ceého sojitého nosníku Předokd: v ceém nosníku je neměnný ůřez z hedisk mteiáového i geometického tj. E = konst. Třímomentová ovnice k má tv: Z Z

12 Ztěžovcí čeny T.. zoce o ztěžovcí čeny třímomentových ovnic P o ztěžovcí Z Z ztížení Pootočení se učí n E změnou te oty tí E čeny ři ostém nosníku siové ztížení : Řešení sojitého nosníku siovou metodou / 7

13 / 7 Sožky vnitřních si sojitého nosníku : tí momenty Po ohyové : tí síy í Po osouvjíc. momenty nosník ostý jko : ztížen Je nosníku. sojitého částí je - Nosník

14 Rekce sojitého nosníku Podo odděuje : n evé stně oe - n vé stně oe nosníku je v odě ohyový moment svisá ekce R. Po R tí : R / 7

15 5 / 7 Ztěžovcí čeny ři okesu odo. je : vetknutí ve odoy " vé votočivém ootočení Při je : vetknutí ve evé odoy " votočivém ootočení Při je : svisém osunu odo Při : o oích oměnný ůřez o ovnice vá Třímomento " " E E E E E E

16 Příkd. Zdání : h h m m Siové ztížení viz o..7. Ztížení změnou te oty m h m Zdání řešení říkdu. vní část O..7. / st. 5 Řešení sojitého nosníku siovou metodou / 7

17 Příkd. ouštění odo Zdání : - mm - m h m h h m 5mm m m 8m E 7 m kp Řešení říkdu. duhá část O..8. / st. Řešení sojitého nosníku siovou metodou 7 / 7

18 8 / 7 Příkd. ouštění odořešení : o doszení : Ptí : ovnic Sestvení E E E

19 9 / 7 Příkd. ouštění odookčování řešení kn R kn R kn R kn R kn kn kn knm knm knm : : úvě : Po : ekce síy Posouvjíc í je Řešením soustvy ovnic do ovnic Doszení

20 Příkd. Zdání řešení říkdu. O..9. / st. 9 Řešení sojitého nosníku siovou metodou / 7

21 Symetie sojitého nosníku Symetie sojitého nosníku ředokádá : symetii tvu - souměná sdužená oe mjí shodná ozětí shodné ůřezové ozměy symetii odeření - o konce sojitého nosníku jsou stejné kouově odeřené vetknuté neo řevisé Symetie ichého sudého se iší nosníku u : očtu oí očtu oí oohou osy symetie Symetie tvu odeření sojitého nosníku O... / st. yužití symetie sojitého nosníku / 7

22 Ztížení symetického sojitého nosníku Ztížení symetické ho sojitého nosníku může ýt : symetické - S ntisymet ické - A c oecné Ztížení oou ovin tvoří: d zcdové ozy se stejnými smysy d zcdové ozy s očnými smysy d c nemá ysy symetie ntisymet ie Zktky : SL symetické ztížení ichý očet oí AL ntisymet ické ztížení ichý očet oí SS symetické ztížení sudý očet oí AS ntisymet ické ztížení sudý očet oí yužití symetie sojitého nosníku Symetické ntisymetické oecné ztížení O... / st. / 7

23 SL : AL : Symetické ntisymetické ztížení jeho využití n SL s n s ns SS : ns AS: AL n SS s n s AS n s ns yužití symetie ři symetickém ntisymetickém ztížení sojitého nosníku O... / st. yužití symetie sojitého nosníku / 7

24 Příkd. Ztížení symetického sojitého nosníku se ozoží n ztížení : symetické ntisymet ické Smosttně se řeší sojitý symetický nosník o oě ztížení včetně vyhodnocen í ůěhu sožek vnitřních si ýsedné řešení výsedků řešení ntisymet ického je dáno symetické ho ztížení sueozic í stejného symetické nosníku Zdání řešení říkdu. vní část O... / st. yužití symetie sojitého nosníku / 7

25 Příkd. ýsedné ůěhy vnitřních si získné sueozicemi SL+AL Řešení říkdu. duhá část O... / st. 5 yužití symetie sojitého nosníku 5 / 7

26 / 7 Pohyivé ztížení n jednoduchém stticky neučitém nosníku v říčné úoze Příčinkové čáy n jednostnně vetknutém nosníku O... / st. 9 Pohyivé ztížení říčinkové čáy - P P s s s s R R R R je 5 o je 5 o je o

27 7 / 7 Pohyivé ztížení n jednoduchém stticky neučitém nosníku v říčné úoze Příčinkové čáy n ooustnně vetknutém nosníku O... / st. 9 Příčinkové čáy je : 5 o je : 5 o je : Po R R R R s s s s ξ ξ P P P

28 Příčinkové čáy n sojitém nosníku Příčinkové čáy n sojitém nosníku O..5. / st. 8 Příčinkové čáy nhodié ztížení n sojitém nosníku 8 / 7

29 Kinemtická metod Příčinková čá učité siové sedovné veičiny je shodná s ohyovou čou sojitého nosníku zůsoenou jednotkový m defomční m imuzem odovídjí cím sedovné veičině. De Bettiho věty tí : R R R R K odvození kinemtické metody O... / st. 9 Příčinkové čáy nhodié ztížení n sojitém nosníku 9 / 7

30 Příkd. [knm] R [kn] ztížení v. oi ztížení ve. oi -9-7 ztížení ve. oi ýočet etémních hodnot: m = +9 knm min = = -8 knm R m = = 8 kn R min = -7 kn Zdání říkdu. O..7. / st. Příčinkové čáy nhodié ztížení n sojitém nosníku / 7

31 Pohyivé vozido n sojitém nosníku Počáteční meziehá koncová ozice ohyivého vozid n sojitém nosníku O..8. / st. Pohyivé ztížení n sojitém nosníku / 7

32 Příkdy.5. Zdání říkdů.5. čáy mimáních i minimáních ohyových momentů O..9. / st. Pohyivé ztížení n sojitém nosníku / 7

33 Donu-d idge Winze Německo Ukázky konstukcí tvořených sojitým nosníkem / 7

34 Donu-d idge Winze Německo Ukázky konstukcí tvořených sojitým nosníkem / 7

35 Bogeneg idge Bogen Německo Ukázky konstukcí tvořených sojitým nosníkem 5 / 7

36 Kingstone Bidge Gsgo Skotsko Ukázky konstukcí tvořených sojitým nosníkem / 7

37 Kingstone Bidge Gsgo Skotsko Ukázky konstukcí tvořených sojitým nosníkem 7 / 7

38 Kingstone Bidge Gsgo Skotsko Ukázky konstukcí tvořených sojitým nosníkem 8 / 7

39 Nuseský most Ph Ukázky konstukcí tvořených sojitým nosníkem 9 / 7

40 Nuseský most Ph Ukázky konstukcí tvořených sojitým nosníkem / 7

41 Stv dánice D7 Ostv Ukázky konstukcí tvořených sojitým nosníkem / 7

42 Stv dánice D7 Ostv Ukázky konstukcí tvořených sojitým nosníkem / 7

43 Stv dánice D7 Ostv Ukázky konstukcí tvořených sojitým nosníkem / 7

44 ýzkumné enegetické centum ŠB-TU Ostv Ukázky konstukcí tvořených sojitým nosníkem / 7

45 ýzkumné enegetické centum ŠB-TU Ostv Ukázky konstukcí tvořených sojitým nosníkem 5 / 7

46 ýzkumné enegetické centum ŠB-TU Ostv Ukázky konstukcí tvořených sojitým nosníkem / 7

47 ýzkumné enegetické centum ŠB-TU Ostv Ukázky konstukcí tvořených sojitým nosníkem 7 / 7

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

Zjednodušená styčníková metoda

Zjednodušená styčníková metoda Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového

Více

Téma 4 Výpočet přímého nosníku

Téma 4 Výpočet přímého nosníku Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uivezit lov v Pze Pedgogiká fkult SEMINÁRNÍ PRÁCE Z POLYNOMICÉ ALGEBRY ZVOLENÝ POLYNOM / CIFRI Zdáí: Zvol olyom f ( x) stuě 6 tkový y 6 f ( ) { 87868}. Uči všehy kořey s ásoostí. Vyováí: Zdáí vyhovuje

Více

Matematicko - kartografická analýza rakouských topografických map ze III. vojenského mapování. Monika echurová

Matematicko - kartografická analýza rakouských topografických map ze III. vojenského mapování. Monika echurová Miscellne Geoghic 1 Kted geogfie, ZU v Plzni, 006 s. 9-1 Mtemticko - ktogfická nlýz kouských toogfických m ze III. vojenského mování Monik echuová mcechuo@kge.zcu.cz Kted geogfie Zádoeské univezity v Plzni,

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika 02a Racionální čísla. Text a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika 02a Racionální čísla. Text a příklady. Čílo ojektu CZ..07/..00/4.074 Název školy Movké gymnázium Bno..o. Auto Temtiká olt Mg. Mie Chdimová Mg. Vě Jeřáková Mtemtik 0 Rionální číl. Text říkldy. Ročník. Dtum tvoy.. 0 Anote ) o žáky jko text látky,

Více

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4.

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4. h MECHNIK + y 2 F Vy F 2y 1 FV V F 1y F 3y F3 3 - x F 1x F 3x F 4x 0 F 2x F 4y F4 F Vx + x F FRy 4 - y FRy F l FRy C D FRy I 2 III 6 V 1 3 5 7 D II 4 IV C c Z Z Ing. Rdek Šeek 2012 MECHNIK 1. OSH 2. MECHNIK

Více

ř řč č Í ř č ú Í ř č š č č ř č ď č š Ž č š ň č ř š ř ú ř ř ř Í š Ý š š ří ó š ď ř š ř š Ž Ž Á š Í ó š ř š ř č ň čš ř Ž č č š Ď ř Ž říč ď ó ď č ň Í š Š Á š ř ř ř ó č ř š ř Š Ť ř č č ř ň č ř ňš č É Ž Ř ÚŽ

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

3.1.7 Kyvadlo. Předpoklady: 3106

3.1.7 Kyvadlo. Předpoklady: 3106 37 Kyvado ředpokady: 306 edaoická poznámka: Ceý obsah hodiny není možné stihnout za 45 minut Je třeba se ozhodnout, co je podstatné: testování vzoce paktickým sestojováním kyvade, povídání o kyvadových

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

ý ý ý íú í ě Á ý ž ů ěí ě ž ý ó ý ý ú í ý ž ý ě í ýě ýýš í ú íú ěž ý ý íě ň ě í š ě ý íů ě ý ž ý ý í ě ý íí ě ý Á ý ě í ý ě ý í í ý í ě Č ď ů ě š ě ě ň í ú í ýě í í ě í š ě í í í ě ě ý š ý ž ěž ě ší ňž

Více

Ý Ž Š Š Š Ť ů ú ý ž ý ž ý Š ý ú Ž ů ý ů Ž Ž š Ú š ř ý Ž ř ů Ú ů ý ý ž ý ú ů ů Ó ý ř Ó ýš Í ú Ý Ž Š Š Š Š ú ů ý ž ý Ž ý ý ú Ž ů ý ú Ž Ž š ú š ř ý Ž ř ů Í Ú ů š ý ž ó ý ž ý ý ý ř ý ó Ř Ý ř ů ú ý ž ý ž Š

Více

1. práce z mechaniky statika, pružnost a pevnost

1. práce z mechaniky statika, pružnost a pevnost 1. práe z mehniky sttik, pružnost pevnost 1) vetknutý nosník D: =1200N, =950N, =410Nm, =60, =80mm, =240mm, =320mm, mteriá: 11343, nmáhání: sttiké, odéník nežto s poměrem strn 1:2 2) vetknutý nosník D:

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

š š Í š Ú ž ž Í Ú ů Í š ů ú ů š ú ú ď š ú š ů š ú ď š ú ú Č ú ú ú š ž ň š Č Í š ú ú ú ú ú š š š ž ú ú ú ň ž ú ú ž Ž ú Ž Ž ú ú ú ň ú Ů š ú Í š š ž š Ž Í š ú ž ď š ď ž É Ž ó Ž š Ž ú ú Í ú ů ú Í ú ž ú ú Ú

Více

princip: části: Obr. B.1: Rozdělení částí brzdového zařízení.

princip: části: Obr. B.1: Rozdělení částí brzdového zařízení. B Brdění siničníc voide Definování ákdníc ojmů oždvků n rdění siničníc voide vycáí meinárodníc ředisů, nř. EHK č. 13 H. Zde jsou definovné oždvky n void edisk rdění. B.1 Zákdní ojmy Brdové říení součási,

Více

Vysoká škola báňská Technická univerzita Ostrava

Vysoká škola báňská Technická univerzita Ostrava Vysoká škola báňská Technická univezita Ostava FS Konstukce stojních částí tekutinových systémů Jiří Havlík Ostava 007 Skitum je učeno o. očník bakalářského studia obou Hydaulické a neumatické stoje a

Více

Kopie z www.dschuchlik.cz

Kopie z www.dschuchlik.cz ó š ó Ň Ť ú š ú š š š ř Ú ó ú ň ú š řš ř řš ř ú ú ú ú ř ú ň ů ů š ň ú š řš ú ř ó š Ý Á ů ú úř š ň š ú š š š š ťť ř ň ů ř ř ř š ů ů ů řš ř ú ú ř ň ř ů ř ř ú ř ř ú ú ř ř ú ří š š ř ů ú Ú ř ú ÚČ ú ú ú š ů

Více

INTERAKTIVNÍ ÚŘEDNÍ DESKA (IUD) Případová studie

INTERAKTIVNÍ ÚŘEDNÍ DESKA (IUD) Případová studie INTERAKTIVNÍ ÚŘEDNÍ DESKA (IUD) Přídová tudie Nevýody tlý tištěný úřední deek - nedottečný oto o viulii vše dokumentů nektuálnot tištěný vyvěšený dokumentů čová náočnot n eonál outvná kontol ou kždodenní

Více

É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

Křížová válečková ložiska Cross-Roler Ring Kompaktní, velice tuhá válečková ložiska s vynikající přesností otáčení

Křížová válečková ložiska Cross-Roler Ring Kompaktní, velice tuhá válečková ložiska s vynikající přesností otáčení Křížová válečková ložiska Coss-Role Ring Kompaktní, velice tuhá válečková ložiska s vynikající přesností otáčení CATALOG No. 382-1CZ Obsah Křížová válečková ložiska Coss-Role Ring Konstukce a vlastnosti...

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. ING. JIŘÍ KYTÝR, CSc. ING. PETR FRANTÍK, Ph.D. STATIKA I MODUL BD03-MO1 ROZŠÍŘENÝ PRŮVODCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. ING. JIŘÍ KYTÝR, CSc. ING. PETR FRANTÍK, Ph.D. STATIKA I MODUL BD03-MO1 ROZŠÍŘENÝ PRŮVODCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. PETR FRANTÍK, Ph.D. STATIKA I MODUL BD3-MO ROZŠÍŘENÝ PRŮVODCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evroský sociální fond Praha & EU: Investujeme do vaší udoucnosti Ekonomika odniku Katedra ekonomiky, manažerství a humanitních věd akulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Vztahy

Více

V. Stacionární proudové pole... 2 V.1. Elektrický proud... 2 V.2. Proudová hustota... 2 V.3. Rovnice kontinuity proudu... 3 V.4.

V. Stacionární proudové pole... 2 V.1. Elektrický proud... 2 V.2. Proudová hustota... 2 V.3. Rovnice kontinuity proudu... 3 V.4. tconární rouové oe ektrcký rou Prouová hustot ovnce kontnuty rouu 4 Ohmův zákon v ferencáním tvru 5 oueův zákon 5 6 Anoge eektrosttckého stconárního rouového oe 6 7 Pomínky n rozhrní 7 8 Oor rezstorů řzených

Více

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II 1.3.5 Řešení slovníh úloh pomoí Vennovýh igrmů II Přepokly: 1304 Pegogiká poznámk: Ieální je poku tto hoin vyje n vičení. Postup stuentů je totiž velmi iniviuální ěljí velké množství hy, oěht elou tříu

Více

Stacionární magnetické pole

Stacionární magnetické pole Stacionání magnetické poe Vzájemné siové působení vodičů s poudem a pemanentních magnetů Magnetické jevy - známy od středověku, přesnější poznatky 19. stoetí. Stacionání magnetické poe: zdojem je nepohybující

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

Á Á ň ň ť Í Ť ň Í ř ň ř ř ň Í Ť Ě ň Č Ť Á Í Á Ť Í Á Ď ř ř ň Í ť ť ň ň Ě Í ů Í Í ř Ě ř Ě Ť ň Ť Ý ň ň Ť ň ň ň ň Ě ť Í Á Ť Ť ň Ť ř ú ň Í Ť Í Ť ň Á ň Ž ď Ě ň Ě Í Ů ň Ť ň ň Í Ě Ť ň ř Í Ť Í ň ň Č Ť ť ň ň ř ň

Více

29. OBJEMY A POVRCHY TĚLES

29. OBJEMY A POVRCHY TĚLES 9. OBJEMY A POVRCHY TĚLES 9.. Vypočítejte poch kádu ABCDEFGH, jestliže ) AB =, BC = b, BH = u b) AB =, BH = u, odchylk AG EH je ϕ H G Poch kádu učíme podle zoce: S = b + c + bc ( ) c E F D b C ) A B u

Více

Technická dokumentace Ing. Lukáš Procházka

Technická dokumentace Ing. Lukáš Procházka Tehniká dokumente ng Lukáš Proházk Tém: hlvní část dokumentu, orázky, tulky grfy 1) Osh hlvní části dokumentu ) Orázky, tulky grfy ) Vzore rovnie Hlvní část dokumentu Hlvní část dokumentu je řzen v následujíím

Více

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc.

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc. Molekulová fyzik Reálný lyn Prof. RNDr. Enuel Svood, CSc. Reálný lyn Existence vzájeného silového ůsoení ezi částicei (tzv. vn der Wlsovské síly) Odudivá síl ezi částicei (interkce řekryvová) ři dosttečně

Více

Í é š é ř é Šč č Í š š é ř ý é ý ý ů č é ď č š é ř ř Ž é ů č ď č š é ř č é Í č č š é ř é č é ď ď é ř é é č é é Š é č č Í č š č é ř ý č é ů š ř ý ý ú ř é ř é é é ř č Í š ř ď č ř é é ř é é é ď ů é ů Č ď

Více

Š č Ú č š ž č č č š č ž Ž č č ž š š č č č č š č č ž š č ž č č š š ú ž č č ó č ď š š š š š ž ň č Ž ž š ž č č š š Ř š ž č š š č š šš žň ó š Ž ň ž č š ň č š č š č č č č Ž č č ú š č ď š ž š ď č Ú š š ž č š

Více

Ý š é š ó š ž š žé ó Š é ď Ý é é ž é ž š ž Ť é š é é Ř š é ď é ž é ž é é ž Ť é ď é šš é ž é ž é ž ů ž ž é Ť Ť Ř š é ž ž ď Ú š é ž š š ž š é ž š é é š ž é ž é ž ů é ž é ž é Č é é ž š š é é Ř š ž Ž š é é

Více

ď ď ď š Ý š š É Ý šš š š š šš š š š š Ě š Ó ď šš š šš ď Ě šš š šš Ě š Ě Ě Ú š š š Ě š š ď Ě š š Ž š Ě š Č š Ý ď š š ď š Ý Ť š š š š š Ý š ď ď š š Á Á É š š š Ž šš ď ř ň ř ř š Ý ď š š š š š š Ť Ě š Ť š

Více

š Ý š š Ú ž ž š ž š š ž š Í š š ž š Ú ž ž ž šš ž ž ž šš ž ž š ž ž š š ž ž ž šš ž ň Č ž ž ž ž šš ž ž ž š š š ó š š ž š ž š ž Ú ž š ž š š Ú ň š š ó š ž š ž š Ž ň š š š š š š š ž š š ž š š š š š š š š š š

Více

ó Č ř Č Ž ú ř ř ř Ž ř ř ů ů Š ř ů ň ů ř Í ů ř š Ž ř ž ž šš ž ú ó ů ú š ů ů š š ů ů ž ž ú ú ů š ů ř š ř š ž ú ú ů ň ů ř ů ř ř ř ř ř ů ú ř š ř ů ř ň ř ú ž ň ú Í É Š š Í š ú š š Č ř ž ú ú ď ř Ú Í Ý Ý ů Ž

Více

ó š Ž šť Č Č š ů š ž š š š ž Ž š š š š š š š š š Ú Í Š Ě Ú Í š É Ý Á Š Š ú ň Í š Ý š ň Š É É š š š ň Š š Ů š ž ž š Í Ž š ú Č Á š Č š š š ú ú š ží ž ň š Ť Á š Ř Ě Š Ě Á Á Á š ž š ž š ž š š š ú š Í š š š

Více

A) Dvouvodičové vedení

A) Dvouvodičové vedení A) Dvouvodičové vedení vedení symetické (shodné impednce vodičů vůči zemi) vede vění od MHz do mx. stovek MHz, dominntní vid TEM běžné hodnoty vové impednce: 3 Ω, 6 Ω impednce se zvětší, pokud se zmenší

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 S Á ČK Y NA PS Í E XK RE ME N TY SÁ ČK Y e xk re m en t. p o ti sk P ES C Sá čk y P ES C č er né,/ p ot is k/ 12 m y, 20 x2 7 +3 c m 8.8 10 bl ok

Více

O B Z V L Á Š T N Í C I N a l o ň s k é m M a z i k o n g r e s u v y s t o u p i l p r o f e s o r D u c h s k r á t k o u p ř e d n á š k o u M-a z i K a d d a, k t e r o u n á s u p o z o r ň o v a

Více

Geometrická optika. Aberace (vady) optických soustav

Geometrická optika. Aberace (vady) optických soustav Geometická optika Abeace (vady) optických soustav abeace (vady) optických soustav jsou odchylky zobazení eálné optické soustavy od zobazení ideální optické soustavy v důsledku abeací není obazem bodu bod,

Více

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku Stveí sttik.ročík klářského studi osá stveí kostruke osé stveí kostruke ýpočet rekí ýpočet vitříh sil přímého osíku osá stveí kostruke slouží k přeosu ztížeí ojektu do horiového msívu ěmž je ojekt zlože.

Více

ů š š ů Ú ů š É š š ů ť É Ž ů Í ó ň š š É Ú š Ů Ž Í š ů ňš Í ů ů š Š Š ó ů Í Ž Č š š š Č Č š Ů Í Í Í Í š š š Ž Ů š Š ů Ů Í Š Š š Č Ž ů Ž š Ú ó É Ž É Ú Ž Í š Í Ú ů Ú š Ú š Ú ů Ž Ú ů Ž š š š ů Í Ů š Ů Ú

Více

Ochrana před úrazem elektrickým proudem Společná hlediska pro instalaci a zařízení. 1. Definice

Ochrana před úrazem elektrickým proudem Společná hlediska pro instalaci a zařízení. 1. Definice ČSN EN 61 140 Ochrn před úrzem elektrickým proudem Společná hledisk pro instlci zřízení Tto mezinárodní norm pltí pro ochrnu osob zvířt před úrzem elektrickým proudem. Je určen pro poskytnutí zákldních

Více

Rovinné nosníkové soustavy II

Rovinné nosníkové soustavy II Prázý Prázý Prázý Ství sttik,.roík kláského stui Rovié osíkové soustvy II Trojklouový rám (osík) Trojklouový olouk (osík) Trojklouový rám s táhlm Trojklouový olouk s táhlm Ktr ství mhiky Fkult ství, VŠB

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

š Ď ň ň Ď š Ž ň Í Ž ď Ú ňš ň Ř š ň ť Ó š Č Í ň Č Š ť Ť Ť š ŤÍ Í š Ť ň Ž š ň Ž ň ň š Ť š Ď š ší š ň É ť ď Ž Í ť Ý Í ň Ž ť Ť Ň š š ť Š Í ň ňš Í ň š š ň Í Ť Ď Ť ť ď ň š ň Ť ň Ď Ž š Ž šš ť Í ň ň Ž Ť Ť ň ů

Více

Frézování. Rovinné plochy frézujeme válcovými a čelními frézami, resp. frézovacími hlavami.

Frézování. Rovinné plochy frézujeme válcovými a čelními frézami, resp. frézovacími hlavami. Frézování je výrobní metod, omocí níž obrábíme rovinné nebo zkřivené ochy vícebřitým nástrojem frézou rovádí se většinou n stroji, který se nzývá frézk. 1.1.1 Chrkteristik výrobní metody Hvní rotční ohyb

Více

Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci. Zde budou normové hodnoty vypsány do tabulky!!!

Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci. Zde budou normové hodnoty vypsány do tabulky!!! Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci jméno: stud. skupina: příjmení: pořadové číslo: datum: Materiály: Lepené lamelové dřevo třídy GL 36h : norma ČSN EN 1194 (najít si hodnotu modulu

Více

Kopie z www.dsholding.cz

Kopie z www.dsholding.cz Ú š ř ú š ÚČ ú ř ř ú ř ú ú ú ú ú ú ů ň ů ř ů ř ů ř ů ů ř ú ů ň ň ů ú ř ů ň ň ú ř ů ú ú ň ú ú ň ř š ř ú ú ů ú ů ů ů šť ú ů ú ř ř ú ú ú š ř ů ú ú š š š š ú ú ú šš Č ú ů ů ú šš ú š šť ř ú ů Ý ú ů ů ů ů Ú

Více

Č Ě É ČÁ ř Ž č č Ó č ř Š ř Ž č ř Č č Č č Ú Ž Č Č Ú ř ž č Ž Á Ú Ř ř ř č š Ž č Ž ř š š ř č č Ě Úč ř š ř Ž Ž ř Ž Ž Š č č č ř č ř š ř úč úč Ě ř Ú č č š š ř š ř š Ž š č ť č ň Ú Ž č Ž š š Ž ň č ř š ř Ú č ř č

Více

Ý Ť Ť ť Ž Í Ž Ť Ť Ť Ť š Ž Ť š š Ť Ť Ž Ť Ý Ť š Ť š š š Ť š Ťš Ť Í š š š š Ž Ť Ť š š š Ť š š Ť š š Ť š Ť ď Ť Í Š Ť š Ť Ó Ť š Ť š Ť Š š š šť š Ť š š Ť Í ď š š š Ť š Í Ú š Š š š š š ř š š Ťš Ť š ť š š Š Ť

Více

š ó ř ú ÚČ Í ř ČÍ ř š Č ř ú ú ž ž ó ž ř ů ž ř ž ř ž ů ž ů ň ž ů ů ů ů ů ž ř ů ř ú ú ž ž ř ž ž ž ň ř ů ř ň ň ř š ú ú ů ú ů ž ů ú ž ó ž ú ř ž ňš ř řš ž ř ú ú ž ž ň ř ů ř ž ř ř ř ž ž ú ř ú ú ž ú ř ů ů ř š

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

Í ř ě ě ě š ř ů č ý ř ě é Ž é Ý ě úč ý ř é ý Ž ř ě ý ž éč ř é é ž ř é ý ě ř ř ě é č č ý ě š ř Ž ř ž ž ř ě é ž é ý ě š ř ý ž Ž ů ý č é ř ě ě ř č ř ř Ž ř ř Í Ž ý ě ž Ž ě ř ž Ž ř ě é ě ř č Ž é ř ě ů ř ž ě

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

á ě ř š ě š Ů Ž Ž Ů Ů á á á ŠÍ ř ě ř á á ř ě á Ů á ěř Š á á Ů ř ŠÍ Í Í Éá á ú á ř á ě ěž á ň á á Š á Ů á ó ř ň Ž á ň Č ů ř á Íě á ů ú ě á á á É ě Ý ě á á ě Ž ě ěř Ú čá Ů ě š á áž Ů Ž ř á ě ň á á á Ž Š

Více

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004. STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje

Více

ó Č ŠŤ Č š ž š ý š ů š ž š š š Ž š š š š ý š š ů š š š š š Ú Í Š Ě Ú š ý š š ú ň Š ň Š ý ň š Ů Í ň Š Í ý š Š š ň Š š ů Š ž ý ý Ž ý ý ýš ý ž Č š ú Á Í Á É Ý ý š ý š š š ú ú š ý ž ž ň ú ý Š ÉŽ Š Ě Í š Ř

Více

období: duben květen - červen

období: duben květen - červen období: duben květen - červen U S N E S E N Í Z A S T U P I T E L S T V A Z v e e j n é h o z a s e d á n í Z a s t u p i t e l s t v a o b c e d n e 2 8. 4. 2 0 1 1 Z O s c h v á l i l o z á v ^ r e X

Více

Teoretický souhrn k 2. až 4. cvičení

Teoretický souhrn k 2. až 4. cvičení SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko

Více

Ď Ů Ň ž Ů ž ň ž ž ž Č Č Ď Č ž Ě ž ž ž ž ň ž ž ž ž ž ž ž Ě ň ž ž ž ž Ďž ň ž Č Č ň Č Ď Ě Ň Č Ň ž ž ž Ů ň Ň ž ň ň ž ň ň ň ž ň ž Č ž ž Ř ž ž ž ž ň ž ž ž ž Ř ž ň ž ž ž ž ž ž ž Ě Ě Ě Č ž Ď Ř ž ň ň Ř ž ž ž ž

Více

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o o b d o b í : X e r v e n e c s r p e n z á í 2 0 1 1 U S N E S E N Í Z A S T U P I T E L S T V A Z v e e j n é h o z a s e d á n í Z a s t u p i t e l s t v a o b c e d n e 3 0. 6. 2 0 1 1 p r o s t e

Více

ě ý š ě ř ě ř ř Č ý ď Á Ňď řš Ť ž ř ó é ň ú ě ů Ú ě ř é ř ý ě ř š ř ě Š É ŘÍ š ř Á ú Ě É ý š ě ř ě ě é ř ž ě ú ě š ž é ě š ě ý é ý ř ř ů ř ž ý ě ňů ř ž š é ý ě š ř ž ý ě ňů ř ř ž ě š ě ě ý ř ý ů ř ý ě

Více

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15 9 - Zpětná vz Michel Šeek Atomtické řízení 2015 16-3-15 Atomtické řízení - Kernetik rootik Proč řídit? Řídicí sstém msí zjistit stilit chování Klsické poždvk n chování přípstná stálená reglční odchlk při

Více

Ing. Lukáš Kadula Oddělení BESIP Ministerstvo dopravy

Ing. Lukáš Kadula Oddělení BESIP Ministerstvo dopravy Bodové hodnocení řidičů sttistické ukztele Ministerstv doprvy d vlá vlády Čeé eé republiky pro bezpeč bezpečnost silnič silničního provozu 25. listopdu 29 Ing. Lukáš Kdul ddělení BESIP Ministerstvo doprvy

Více

É á ž ž ý Ů Ů ý Ů ř ž š ě á ň č ř ž ý Ů Ž É Á á á š á ř ú ř Č ě š ř š ň ů ě ěž ý ů á ří ář č ě Ů ář Á á ř č á á Č á ě ÍÁ á č ř áž Š ě á ě á á á Š ř řá ě ě ý ř á á á ý ě ě Ž á ž ý č á á ý ů á č č ě č á

Více

Odolnost vozidel proti smyku

Odolnost vozidel proti smyku TU Lierci akuta strojní atedra ozide a motorů ooé dopraní a manipuační stroje II 04 Odonost ozide proti smyku Odonost ozide proti smyku Smyk porušení ronoáy si půsoícíc na ozido oční skouznutí přední nápray

Více

skripta MZB1.doc 8.9.2011 1/81

skripta MZB1.doc 8.9.2011 1/81 skript MZB.doc 8.9. /8 skript MZB.doc 8.9. /8 Osh Osh... Zlomk... Dělitelnost v množině přirozených čísel... Trojčlenk... 9 Výrz s mocninmi s celočíselným eponentem ()... Výrz s mocninmi s rcionálním eponentem...

Více

č í í žá é ý í í č é ý á íč ř íž é ě ýš á áš ů š í ů ří š á č á ě Š ří é í š ž í ř í é č í č ž í í á á í ě Ž é č á á á ý ě í í á íč č ř ří í š í á ě í ž í čí á ž í á ě í ý č ý ě ý ě í ř í ě ř š ě í í ě

Více

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..

Více

ý ý ě ý ý ě ý ž š Ž ý ý š ě Ž ý ů ž ý Ž ý ý š ě ý š ž ů ý ě ě ý ž ž Ý ú ů ž š ý ž Ý ýš ž ů Ž ý ý š ě Ž š ů ě ě ý ž ě ý ě ý ž ý ž Í š ý ý ě ů ý ě ý Ž ě Ž ý ýš ý ý ý ů ě Í Ý ž ž ě ě ě ž ú ě ě ě ú ě ě ň ě

Více

Č š é ř ě š ř ř ř š šš é é ě š ě ě ě š é š š é š ř š ř ě Š é ř ě ř š ě é š ř ěř ř ě š é ě š ě Č éš š ř é š é ě ú é š ě š ř é š šť š ř š ř ě š š é ě š é ě ú é é Ř š š ďě ř š ě š ě ě š ě š š é ř ř ě š ř

Více

ŠKOLA JAKO MAGNET PRO ŢÁKY. vz n i k l a j a k o výstup projektu

ŠKOLA JAKO MAGNET PRO ŢÁKY. vz n i k l a j a k o výstup projektu M e t o d i c k á p ř í r u č k a p r o p r á c i s i n t e r a k t i vn í t a b u l í vz n i k l a j a k o výstup projektu ŠKOLA JAKO MAGNET PRO ŢÁKY S t ř e d n í š k o l a F. D. Rooseve l t a p r o

Více

ř ů ž ěř ř ů ř ý ý ř ů ů Č Č ú Í ř ř ě ř ě ý ž ě ěř ř ú ý ý Č ě ř ěř ú ě ý ý ř úč ě Á Á É ř Í ů ů ř ž ú ě ř ř ů ý Í ř ú Ž ý ú š ě Č ř ů Í ě ř ú ě ě ú ú ě ř ů ě ý ú ě ě ý ý Í ý ú Ť ý ř Ú ž ý ř ú ě ý ů ě

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmysová škoa a Vyšší odborná škoa technická Brno, Sokoská 1 Šabona: Inovace a zkvaitnění výuky prostřednictvím ICT Název: Téma: Autor: Číso: Anotace: echanika, pružnost pevnost Nosníky stejné

Více

Modelování kmitavých soustav s jedním stupněm volnosti

Modelování kmitavých soustav s jedním stupněm volnosti Modeování kmitavých soustav s jedním stupněm vonosti Zpracova Doc. RNDr. Zdeněk Haváč, CSc 1. Zákadní mode Zákadním modeem kmitavé soustavy s jedním stupněm vonosti je tzv. diskrétní podéně kmitající mode,

Více

Ě ČÁ Š š š éč Š ď Í Í Í č ů é ý éč Š ž é é č ú Š é ř š ž é ř ž č Č š ž ú č ý č ť é é é é é Č ž é č é ž é ž č ý ý ň č ž ž č č úč ř ů ř ř š ř č ý ý ů č é Š Í Ž é ž é ý ů č Š ý Č éč č ů ý ý ú Ť ž Í é Č é

Více

ř š ě ž ž ó đ ž ě ě ů ž ě ří ĺ Č ć ú Č ĺ š ř Ž Č ří ě Ž ř ĺ ą Č Č ď ž ě Ž ř ě ú š Ž Ú ě ř ř ĺ Š ř ř ĺ ĺ ĺ ž ĺ ě ĺ ě ĺ ž ř ř Ž ř ě ř Žš ě š ř Ú ú Š ě ě Ž ř Ž š ř ěž š š ů ř ř ů ż š ě ě ó š ĺ ě Ú ů ž ĺ ě

Více

Á É é Č é ř é ě é é ě ěř ů Á Ě š ý ý ř ý ř ě ě ý ě ó š ě é Ú Č Í ý ý ěř ř ř Č Č é š š ó ě ř ě ěř é ů Á É é Ř Á Ě Í Č é ě ý ě ř ý ž ě é ě ěž š žšř ů Í ř ý ý ě š žšř ů é šš ř ř ž Č šš ž é Á É é Č é ř é ě

Více

Á Ž É Š Í É Ě É Ě Ť Í š Ť Ť š Ť Ť š š š ň š Ť Ť Ó Í Ť š Í Ť ň š Ť Í Ť Ť Í Ž Ý š š ň š š ň ú Ť ň š š Ů Ť š Ť ň ň Ť Ť š Ů ď Ť Ě Ť Í š Ť Ť Ť Ť Ť Ť š ň Ť Ť Ť ť Ť Ů Ť Ť Ť ť ť š š Í Ť Í ď Í Í šš Ž š Ť ť Í Í

Více

Č Ú Í Á Ú Í Ú Ú Í Á Ě Č Ě Á Á Í Á Í Í Á Í Ý Í Í Á Í ž Í š š ž ť ž ž Í š š š ž š š Ý Č Í Á ú ý ó Č Č ž Í ř ř ž ž ř ř Č ř ý ž ř ž ř ž ý Í ú ů ý ř ř ú ř š š š š ř ž ž ř ý ý ř ý Č ý ž ý š Í ý ý ř Ú š š ž ť

Více

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el.

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el. Aplikace Gaussova zákona ) Po sestavení základní ovnice elektostatiky Základní vlastnosti elektostatického pole, pobané v minulých hodinách, popisují dvě difeenciální ovnice : () ot E konzevativnost el.

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

( a ) s. Exponenciální rovnice teorie. Exponenciální rovnice ukázkové úlohy. Příklad 1.

( a ) s. Exponenciální rovnice teorie. Exponenciální rovnice ukázkové úlohy. Příklad 1. eg. č. pojektu CZ..07/..0/0.0007 Eponenciální ovnice teoie - ovnice, ve kteých e neznámá vykytuje v eponentu Řešíme je v záviloti n typu ovnice několik zákldními metodmi. A. metod převedení n tejný zákld

Více

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu Modelování Modelování, klasifikace a odvozování modelů» áhrada studovaného ojektu modelem na základě odonosti» Smsl» studium originálu rostřednictvím modelu» idealizovaný» jednodušší» dostunější All models

Více

Š ÍŠ Ť ž Ť Ý č ď č š Ť č č č š č Ť š š Ť Í šč š č č č č Ď č Ť č š š ť Š Ť Ť Š č č č ž Š č č š Ť Ť ž Ť ť Ť č š š Ť ť Ť ť č č Ť ž š Ť š Ť Ť š Ť š Ť Ť ť Č š Ť č š Ť č Ť ť č č š Ť ť Ý Ť š ď š Í Ť Í ť Ť ť š

Více