Základy algoritmizace a programování

Rozměr: px
Začít zobrazení ze stránky:

Download "Základy algoritmizace a programování"

Transkript

1 Základy algoritmizace a programování Složitost algoritmů. Třídění Přednáška listopadu 2009

2 Který algoritmus je "lepší"? Různé algoritmy, které řeší stejnou úlohu zbytek = p % i; zbytek = p - p/i*i; Časové a pamět ové nároky algoritmu (programu) časová a pamět ová složitost. Volba vhodného algoritmu : Vyhledání telefonního čísla v telefonním seznamu. Nejjednodušší algoritmus: prohledávat od začátku postupně jméno po jméně, dokud nenajdeme hledané. (sekvenční vyhledávání). ALE my postupujeme jinak: Využíváme toho, že v seznamu jsou jména utříděna podle abecedy. Postup, který obvykle používáme je založen na myšlence půlení intervalu.

3 Složitost algoritmů Časová složitost závislost časových nároků na velikosti vstupních dat. Měříme počtem elementárních operací (kroků algoritmu), které budou provedeny v programu s danými vstupními daty. Elementární operace instrukce typické pro daný problém počet porovnání, přesunů v paměti, aritmetické operace apod. N (velikost konkrétního řešeného problému) počet operací vykonaných při výpočtu podle daného algoritmu. (rostoucí funkce ) Pamět ová složitost závislost pamět ových nároků na velikosti vstupních dat. Měříme počtem pamět ových míst, které budou při výpočtu podle algoritmu zapotřebí.

4 Složitost algoritmů Složitost v nejhorším případě jak nejdéle bude trvat výpočet s libovolnými daty délky N (zaručená horní mez)... hrubé odhady... Složitost v průměném případě při odhadu nutné uvažovat pravděpodobnostní rozložení dat. Zpravidla horní odhad Příklad: Je číslo prvočíslo? sudá čísla výpočet hned skončí číslo je prvočíslo testování všech možných dělitelů N. Hrubý odhad časové složitosti : N. Který ze dvou algoritmů je lepší? f (n) = 10n, g(n) = n 2 pro n < 10 platí : f (n) > g(n), pro n > 10 platí f (n) < g(n) Pokud nevíme, pro jak velká data bude algoritmus používán, je podstatné, který algoritmus je rychlejší pro velké hodnoty N

5 Asymptotická složitost Asymptotická složitost rychlost růstu funkce složitosti Například: počet operací je charakterizován 2N 2 + 3N + 1 časové nároky jsou úměrné N 2 funkce časové složitosti je kvadratická O(N 2 ). V praxi používané algoritmu mívají většinou některou následujících složitostí: O(log N), O(N), O(N log N), O(N 2 ), O(N 2 log N), O(N 3 ),... O(2 N ) uspořádáno podle rychlosti růstu polynomiální... exponenciální Zrychlení procesoru 10 násobné lineární algoritmus zpracuje 10 krát větší objem dat, kvadratický trojnásobně, exponenciální jen o 3.

6 Příklady Úloha utřídění N čísel podle velikosti. Jednodušší algoritmy mají časovou složitost O(N 2 ), lepší pracují v čase O(N log N). Předpokládejme, že operace porovnání dvou čísel trvá 0,1 ms. Utřídění 100 čísel "nepatrný" rozdíl (1 sekunda nebo 0,07 s) i pomalý algoritmus vyhovuje. Třídění čísel rozdíl 11 dní nebo necelé 3 minuty.

7 Příklady Hledání v telefonním seznamu (cca jmen) Prohledávání nejprimitivnějším způsobem... lineární složitost Binární vyhledávání v uspořádané posloupnosti otevřeme seznam uprostřed porovnáme s hledaným zjistíme, ve které polovině máme dál hledat v každém kroku zmenšíme sledovanou část na polovinu Při N jménech musíme udělat přibližně O(log 2 N) kroků, aby se zkoumaný úsek zúžil na jediné jméno. Člověk porovná dvě jména za cca 1 sekundu rozdíl dny nebo sekundy.

8 Matematická definice symbolu O Mějme dvě funkce f a g, definované v oboru přirozených čísel (v matematice matematické analýze se totéž zavádí v oboru reálných čísel). Řekneme, že funkce f je třídy O(g), jestliže existuje taková reálná konstanta C, že pro všechna přirozená čísla od jistého n 0 počínaje platí f (n) Cg(n). To znamená, že funkce g shora omezuje funkci f až na multiplikativní konstantu.

9 Algoritmy třídění Úloha Přerovnat data do správného pořadí, protože se seřazenými údaji se mnohem lépe pracuje, například pokud v nich pak potřebujeme vyhledávat. Budeme třídit pole celých čísel. Metody třídění můžeme rozdělit do dvou hlavních skupin: vnitřní třídění, kdy si můžeme dovolit všechna data načíst do (rychlé) paměti počítače, vnější třídění, kdy již třídění musíme realizovat opakovaným čtením a vytvářením diskových souborů. Omezíme se pouze na algoritmy vnitřního třídění.

10 Nejjednodušší algoritmy Nejjednodušší třídící algoritmy patří do skupiny přímých metod. Tyto algoritmy mají většinou časovou složitost O(N 2 ). Jsou použitelné tehdy, když tříděných dat není příliš mnoho. Stručně si přiblížíme tři nejznámější přímé algoritmy. přímým výběrem přímým vkládáním bublinkové třídění

11 Třídění přímým výběrem (SelectSort) Třídění přímým výběrem je založeno na opakovaném vybírání nejmenšího čísla z dosud nesetříděných čísel. Vybereme nejmenší číslo v celém poli Nalezené číslo prohodíme s prvkem na začátku pole Vybereme nejmenší číslo z čísel 2,...,N, Prohodíme s druhým prvkem v poli. Vybereme nejmenší číslo z čísel s indexy 3,...,N, atd.... Je snadné si uvědomit, že když takto postupně vybíráme minimum z menších a menších intervalů, setřídíme celé pole (v i-tém kroku nalezneme i-tý nejmenší prvek a zařadíme ho v poli na pozici s indexem i).

12 Realizace void SelectSort(int * A, int N) { int i,j,k,x; for (i=0; i<n-1; i++) { k=i; //k : index prvního z prohledávaných for (j = i+1; j< N; j++) if (A[j]<A[k]) k = j;//k : index nejmenšího x = A[k]; A[k] = A[i]; A[i] = x;//prohodíme } return; } Časová složitost algoritmu V i-tém kroku musíme nalézt minimum z N-i+1 čísel O(N i + 1). Ve všech krocích dohromady O(N + (N 1) ) = O(N 2 ).

13 Třídění přímým vkládáním (InsertSort) Třídění přímým vkládáním (InsertSort) funguje na podobném principu jako třídění přímým výběrem. Na začátku pole vytváříme správně utříděnou posloupnost, kterou postupně rozšiřujeme. Na začátku i-tého kroku má tato utříděná posloupnost délku i-1. V i-tém kroku určíme pozici i-tého čísla v dosud utříděné posloupnosti a zařadíme ho do utříděné posloupnosti (zbytek utříděné posloupnosti se posune o jednu pozici doprava). Každý krok lze provést v čase O(N). Protože počet kroků algoritmu je N, celková časová složitost právě popsaného algoritmu je opět O(N 2 ).

14 Realizace void InsertSort(int * A, int N) { int i,j,x; for (i = 1; i< N; i++) { x = A[i]; j =i-1; while (j>0 && x <A[j]) { A[j+1] = A[j]; j = j-1; } A[j+1] = x; } return; }

15 Bublinkové třídění (BubbleSort) Bublinkové třídění (BubbleSort) pracuje jinak než dva dříve popsané algoritmy. Algoritmu se říká "bublinkový", protože podobně jako bublinky v limonádě "stoupají" vysoká čísla v poli vzhůru. Postupně se porovnávají dvojice sousedních prvků, řekněme zleva doprava, a pokud v porovnávané dvojici následuje menší číslo po větším, tak se tato dvě čísla prohodí. Celý postup opakujeme, dokud probíhají nějaké výměny. Protože algoritmus skončí, když nedojde k žádné výměně, je pole na konci algoritmu setříděné.

16 Realizace void BubbleSort(int * A, int N) { int i,x; int zmena; do { zmena = 0; for (i = 0; i< N-1; i++) { x = A[i]; A[i] = A[i+1]; A[i+1] = x; zmena = 1; } } while (zmena = = 1); return; }

17 Bublinkové třídění Po i průchodech while cyklem bude posledních i prvků obsahovat největších i prvků setříděných od nejmenšího po největší. Popsaný algoritmus se tedy zastaví po nejvýše N průchodech jeho celková časová složitost v nejhorším případě je O(N 2 ), nebot na každý průchod spotřebuje čas O(N). Výhodou tohoto algoritmu oproti předchozím dvěma je, že je tím rychlejší, čím blíže bylo zadané pole k setříděnému stavu pokud bylo úplně setříděné, tehdy algoritmus spotřebuje jen lineární čas, O(N).

18 Algoritmus jménem QuickSort Pracuje v čase O(N log N) Tento algoritmus je založen na metodě "Rozděl a panuj". Nejprve si zvolíme nějaké číslo, kterému budeme říkat pivot. Poté pole přeuspořádáme a rozdělíme je na dvě části tak, že žádný prvek v první části nebude větší než pivot a žádný prvek v druhé části naopak menší. Prvky v obou částech pak setřídíme rekurzivním zavoláním téhož algoritmu. Musíme ale dát pozor, aby byly v každém kroku obě části neprázdné (a rekurze tedy byla konečná). Po skončení algoritmu bude pole setříděné.

19 Výběr pivota Malá zrada spočívá ve volbě pivota. Hodilo by se, aby po přeházení prvků levá i pravá část pole byly přibližně stejně velké. Nejlepší volbou pivota by byl prvek takový, jenž by byl v setříděném poli přesně uprostřed. Přeuspořádání zvládneme v lineárním čase a pokud by pivoty na všech úrovních byly mediány, pak by počet úrovní rekurze byl O(log N) a celková časová složitost O(N log N) (na každé úrovni rekurze je součet délek tříděných posloupnosti nejvýše N). Většinou se pivot volí náhodně z dosud nesetříděného úseku Dá se ukázat, že takovýto algoritmus s velmi vysokou pravděpodobností poběží v čase O(N log N). V naší implementaci QuickSortu pro názornost nebudeme pivot volit náhodně, ale vždy jako pivot vybereme prostřední prvek tříděného úseku.

20 Realizace void QuickSort(int * A, int left, int right) {int i,j,pivot,x; i = left; j = right; pivot =A[(i+j) / 2]; do { while (A[i]<pivot) i = i+1; while (A[j]>pivot j = j-1; if (i<=j) { x=a[i]; A[i]=A[j]; A[j]=x; i=i+1; j=j-1; } } while (i< j); if (j>left) QuickSort(A, left, j); if (i<right) QuickSort(A, i, right); return; }

21 Vyhledávání Jak v uspořádaných datech něco efektivně najít a jak si data udržovat stále uspořádaná. K tomu se nám bude hodit zejména binární vyhledávání a různé druhy vyhledávacích stromů.

22 Binární vyhledávání. Najít nějaký konkrétní záznam z mezi utříděnými. Nalistujeme prostřední záznam (označíme si ho xm) a porovnáme s ním naše z. Při z<xm víme, že se z nemůže vyskytovat "napravo" od xm, protože tam jsou všechny záznamy větší než xm Analogicky, pokud z>xm, nemůže se z vyskytovat v první polovině pole. V obou případech nám zbude jedna polovina a v ní budeme pokračovat stejným způsobem. Tak budeme postupně zmenšovat interval, ve kterém se z může nacházet, až bud to z najdeme zjistíme, že v seznamu není. Tomuto principu se obvykle říká binární vyhledávání nebo také hledání půlením intervalu a snadno ho naprogramujeme pomocí cyklu, v němž si budeme udržovat interval < l, r >, ve kterém se hledaný prvek může nacházet.

23 Binární vyhledávání int BinSearch(int * x, int N, int z ) {int l,r,m ; l = 0; //interval, ve kterém hledáme r = N-1; while (l<= r) //ještě není prázdný { m = (l+r) / 2; // střed intervalu if (z < x[m]) r = m-1; // je vlevo else if (z > x[m]) l = m+1 ; // je vpravo else return m; // Bingo! } return -1; // nebyl nikde }

24 Složitost binárního vyhledávání Průchodů cyklem while může být nejvýše (log 2 N), protože interval < l, r > na počátku obsahuje N prvků a v každém průchodu jej zmenšíme na polovinu (ve skutečnosti ještě o jedničku. Proto po k průchodech bude interval obsahovat nejvýše N/2k prvků a jelikož pro N/2k<1 se algoritmus zastaví, může být k nejvýše log 2 N. Proto je časová složitost binárního vyhledávání O(log N). [Základ logaritmu nemusíme psát, protože logaritmy o různých základech se liší jen konstantou, která se "schová do O čka."] Hledání půlením intervalu je tedy velmi rychlé, pokud máme možnost si data předem setřídit.

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Třídění, vyhledávání Daniela Szturcová

Více

Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem

Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem Test prvočíselnosti Úkol: otestovat dané číslo N, zda je prvočíslem 1. zkusit všechny dělitele od 2 do N-1 časová složitost O(N) cca N testů 2. stačí zkoušet všechny dělitele od 2 do N/2 (větší dělitel

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky

Více

NPRG030 Programování I, 2018/19 1 / :03:07

NPRG030 Programování I, 2018/19 1 / :03:07 NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování

Více

Časová složitost algoritmů

Časová složitost algoritmů Časová složitost algoritmů Důležitou vlastností algoritmu je časová náročnost výpočtů provedené podle daného algoritmu Ta se nezískává měřením doby výpočtu pro různá data, ale analýzou algoritmu, jejímž

Více

DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3

DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3 DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky

Více

Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012

Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012 Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18

Více

Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění

Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double

Více

IB111 Úvod do programování skrze Python

IB111 Úvod do programování skrze Python Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově

Více

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu

Více

Prohledávání do šířky = algoritmus vlny

Prohledávání do šířky = algoritmus vlny Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé

Více

Různé algoritmy mají různou složitost

Různé algoritmy mají různou složitost / 1 Různé algoritmy mají různou složitost 1/ 1 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená?? 2/ 1 Asymptotická složitost y y x x Každému algoritmu

Více

Časová složitost / Time complexity

Časová složitost / Time complexity Časová složitost / Time complexity Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 24 Složitost algoritmů Algorithm complexity Časová a paměťová složitost Trvání výpočtu v závislosti

Více

IAJCE Přednáška č. 9. int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) { // nikoli 0 if (Pole[i] > max) {

IAJCE Přednáška č. 9. int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) { // nikoli 0 if (Pole[i] > max) { Vyhledání extrému v poli použito v algoritmech řazení hledání maxima int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) // nikoli 0 if (Pole[i] > max) max = pole[i];

Více

každého programátora, a tak není divu, že třídicí algoritmy jsou jedny z nejstudovanějších.

každého programátora, a tak není divu, že třídicí algoritmy jsou jedny z nejstudovanějších. Třídění Pojem třídění je možná maličko nepřesný, často se však používá. Nehodláme data (čísla, řetězce a jiné) rozdělovat do nějakých tříd, ale přerovnat je do správného pořadí, od nejmenšího po největší

Více

A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort.

A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort. A4B33ALG 2010/05 ALG 07 Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated Quicksort Stabilita řazení 1 Selection sort Neseřazeno Seřazeno Start T O U B J R M A K D Z E min

Více

Časová složitost algoritmů, řazení a vyhledávání

Časová složitost algoritmů, řazení a vyhledávání Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Časová složitost algoritmů, řazení a vyhledávání BI-PA1 Programování a algoritmizace 1 Katedra teoretické informatiky Miroslav Balík Fakulta

Více

Složitost algoritmů. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava

Složitost algoritmů. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Složitost algoritmů doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 27. prosince 2015 Jiří Dvorský (VŠB TUO) Složitost algoritmů

Více

Maturitní téma: Programovací jazyk JAVA

Maturitní téma: Programovací jazyk JAVA Maturitní téma: Programovací jazyk JAVA Insert Sort (třídění vkládáním) 1. Jako setříděnou část označíme první prvek pole. Jako nesetříděnou část označíme zbytek pole. 2. Vezmeme první (libovolný) prvek

Více

Datové struktury 2: Rozptylovací tabulky

Datové struktury 2: Rozptylovací tabulky Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy

Více

vyhledávací stromové struktury

vyhledávací stromové struktury vyhledávací algoritmy Brute Force Binary Search Interpolation Search indexové soubory Dense index, Sparse index transformační funkce Perfect Hash, Close Hash Table, Open Hash Table vyhledávací stromové

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

přirozený algoritmus seřadí prvky 1,3,2,8,9,7 a prvky 4,5,6 nechává Metody řazení se dělí:

přirozený algoritmus seřadí prvky 1,3,2,8,9,7 a prvky 4,5,6 nechává Metody řazení se dělí: Metody řazení ve vnitřní a vnější paměti. Algoritmy řazení výběrem, vkládáním a zaměňováním. Heapsort, Shell-sort, Radix-sort, Quicksort. Řazení sekvenčních souborů. Řazení souborů s přímým přístupem.

Více

Michal Krátký. Úvod do programování. Cíl kurzu. Podmínky získání zápočtu III/III

Michal Krátký. Úvod do programování. Cíl kurzu. Podmínky získání zápočtu III/III Michal Krátký Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 tel.: +420 596 993 239 místnost: A1004 mail: michal.kratky@vsb.cz

Více

ALGORITMY A DATOVÉ STRUKTURY

ALGORITMY A DATOVÉ STRUKTURY Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_147_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

Složitost UPR 2008/09 1

Složitost UPR 2008/09 1 Složitost UPR 2008/09 1 Ohodnocení algoritmu Jak porovnávat efektivitu algoritmů? Požadavky na paměť Požadavky na rychlost výpočtu Asymptotická složitost UPR 2008/09 2 Měření algoritmu Dvě míry: čas x

Více

Časová a prostorová složitost algoritmů

Časová a prostorová složitost algoritmů .. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_148_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

Hledání k-tého nejmenšího prvku

Hledání k-tého nejmenšího prvku ALG 14 Hledání k-tého nejmenšího prvku Randomized select CLRS varianta Partition v Quicksortu 0 Hledání k-tého nejmenšího prvku 1. 2. 3. Seřaď seznam/pole a vyber k-tý nejmenší, složitost (N*log(N)). Nevýhodou

Více

Základní datové struktury III: Stromy, haldy

Základní datové struktury III: Stromy, haldy Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní

Více

Základní informace o předmětu Otázka:

Základní informace o předmětu Otázka: Základní informace o předmětu Otázka: Proč vůbec porovnávat algoritmy? Vlastnosti algoritmů přirozenost a stabilita algoritmu časová náročnost algoritmu asymetrická a asymptotická časová náročnost algoritmů

Více

Algoritmy vyhledávání a řazení. Zatím nad lineární datovou strukturou (polem)

Algoritmy vyhledávání a řazení. Zatím nad lineární datovou strukturou (polem) Algoritmy vyhledávání a řazení Zatím nad lineární datovou strukturou (polem) Vyhledávací problém Vyhledávání je dáno Universum (množina prvků) U je dána konečná množina prvků X U (vyhledávací prostor)

Více

Třídění a vyhledávání Searching and sorting

Třídění a vyhledávání Searching and sorting Třídění a vyhledávání Searching and sorting Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 33 Vyhledávání Třídění Třídící algoritmy 2 / 33 Vyhledávání Searching Mějme posloupnost (pole)

Více

Binární soubory (datové, typované)

Binární soubory (datové, typované) Binární soubory (datové, typované) - na rozdíl od textových souborů data uložena binárně (ve vnitřním tvaru jako v proměnných programu) není čitelné pro člověka - všechny záznamy téhož typu (může být i

Více

Složitost algoritmů. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.

Složitost algoritmů. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol. Složitost algoritmů Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2017 Datové struktury a algoritmy, B6B36DSA 02/2017, Lekce 3

Více

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2 Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných

Více

Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce)

Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce) 13. Metody vyhledávání. Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce). Asociativní vyhledávání (sekvenční, binárním půlením, interpolační, binární vyhledávací

Více

Anotace. Informace o praktiku z programování!!! Direktivy překladače Soubory (textové) Quicksort Metoda rozděl a panuj

Anotace. Informace o praktiku z programování!!! Direktivy překladače Soubory (textové) Quicksort Metoda rozděl a panuj Anotace Informace o praktiku z programování!!! Direktivy překladače Soubory (textové) Quicksort Metoda rozděl a panuj Direktivy překladače Překladač kontroluje plno věcí, například: zda nekoukáme za konec

Více

Rekurze a rychlé třídění

Rekurze a rychlé třídění Rekurze a rychlé třídění Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2017 1 / 54 Rekurze Rychlé třídění 2 / 54 Rekurze Recursion Rekurze = odkaz na sama sebe, definice za pomoci sebe

Více

Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41

Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Obsah přednášky Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Analýza algoritmu Proč vůbec dělat analýzu? pro většinu problémů existuje několik různých přístupů aby

Více

Algoritmy I. Třídění ALGI 2010/2011

Algoritmy I. Třídění ALGI 2010/2011 Algoritmy I Třídění 1 ALGI 2010/2011 Třídící problém Je dána množina A = {a 1,a 2,...,a n }. Je potřebné najít permutaci π těchto n prvků, která zobrazuje danou posloupnost do neklesající posloupnosti

Více

10. Složitost a výkon

10. Složitost a výkon Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří

Více

IB111 Úvod do programování skrze Python

IB111 Úvod do programování skrze Python Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2014 1 / 48 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý

Více

Složitosti základních operací B + stromu

Složitosti základních operací B + stromu Složitosti základních operací B + stromu Radim Bača VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky ŠKOMAM 2010-1- 28/1/2010 Složitosti základních operací B +

Více

Prioritní fronta, halda

Prioritní fronta, halda Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje

Více

Rozděl a panuj. Často se setkáme s úlohami, které lze snadno rozdělit na nějaké menší úlohy a z jejich

Rozděl a panuj. Často se setkáme s úlohami, které lze snadno rozdělit na nějaké menší úlohy a z jejich Rozděl a panuj Často se setkáme s úlohami, které lze snadno rozdělit na nějaké menší úlohy a z jejich výsledků zase snadno složit výsledek původní velké úlohy. Přitom menší úlohy můžeme řešit opět týmž

Více

Dynamické programování

Dynamické programování Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_149_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

Sada 1 - Základy programování

Sada 1 - Základy programování S třední škola stavební Jihlava Sada 1 - Základy programování 17. Řadící algoritmy Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Vyhledávání, vkládání, odstraňování Vyhledání hodnoty v nesetříděném poli Vyhledání hodnoty v setříděném poli Odstranění hodnoty z pole Vkládání hodnoty do pole Verze pro akademický

Více

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti. Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel

Více

Algoritmizace řazení Bubble Sort

Algoritmizace řazení Bubble Sort Algoritmizace řazení Bubble Sort Cílem této kapitoly je seznámit studenta s třídícím algoritmem Bubble Sort, popíšeme zde tuto metodu a porovnáme s jinými algoritmy. Klíčové pojmy: Třídění, Bubble Sort,

Více

Rozhledy matematicko-fyzikální

Rozhledy matematicko-fyzikální Rozhledy matematicko-fyzikální Daniel Kráľ; Martin Mareš; Tomáš Valla Recepty z programátorské kuchařky Korespondenčního semináře z programování, 2. část Rozhledy matematicko-fyzikální, Vol. 80 (2005),

Více

Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C

Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_145_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu

Více

13. Třídící algoritmy a násobení matic

13. Třídící algoritmy a násobení matic 13. Třídící algoritmy a násobení matic Minulou přednášku jsme probírali QuickSort, jeden z historicky prvních třídících algoritmů, které překonaly kvadratickou složitost aspoň v průměrném případě. Proč

Více

Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost

Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost Amortizovaná složitost. Prioritní fronty, haldy binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost 1. Asymptotické odhady Asymptotická složitost je deklarována na základě

Více

Návrh Designu: Radek Mařík

Návrh Designu: Radek Mařík 1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2. 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste

Více

Třídící algoritmy. Insert Sort. Bubble Sort. Select Sort. Shell Sort. Quick Sort. Merge Sort. Heap Sort.

Třídící algoritmy. Insert Sort. Bubble Sort. Select Sort. Shell Sort. Quick Sort. Merge Sort. Heap Sort. Třídící algoritmy. Insert Sort. Bubble Sort. Select Sort. Shell Sort. Quick Sort. Merge Sort. Heap Sort. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká

Více

Anotace. pointery (pars prima). Martin Pergel,

Anotace. pointery (pars prima). Martin Pergel, Anotace Základní třídicí algoritmy, jednotky oddělený překlad, pointery (pars prima). Problém třídění jednoduché třídicí algoritmy Bublinkové třídění (BubbleSort), zatřid ování alias třídění přímým vkládáním

Více

3 Vyhledávání, třídící algoritmy

3 Vyhledávání, třídící algoritmy 3 Vyhledávání, třídící algoritmy Vyhledávání Nechme zelináře zelinářem a pojd me se spolu podívat na jinou úlohu. Tentokrát budeme chtít napsat spellchecker. Pro začátek bude velmi jednoduchý. Dostane

Více

Aplikace. vliv na to, jakou mají strukturu i na to, jak pracné je je vyvinout. Bylo vypozorováno, že aplikace je možné rozdělit do skupin

Aplikace. vliv na to, jakou mají strukturu i na to, jak pracné je je vyvinout. Bylo vypozorováno, že aplikace je možné rozdělit do skupin Aplikace Aplikace se liší tím, k jakému účelu jsou tvořeny. To má vliv na to, jakou mají strukturu i na to, jak pracné je je vyvinout. Bylo vypozorováno, že aplikace je možné rozdělit do skupin s podobnou

Více

Stromy. Jan Hnilica Počítačové modelování 14

Stromy. Jan Hnilica Počítačové modelování 14 Stromy Jan Hnilica Počítačové modelování 14 1 Základní pojmy strom = dynamická datová struktura, složená z vrcholů (uzlů, prvků) propojených hranami hrany chápeme jako orientované, tzn. vedou z uzlu A

Více

Úvod do programování

Úvod do programování Úvod do programování Základní literatura Töpfer, P.: Algoritmy a programovací techniky, Prometheus, Praha učebnice algoritmů, nikoli jazyka pokrývá velkou část probíraných algoritmů Satrapa, P.: Pascal

Více

Základy algoritmizace. Hašování

Základy algoritmizace. Hašování Základy algoritmizace Hašování Problematika hašování Hašování - nástroj na jednoduchý způsob "zakódování vstupních dat. Vstupní data jsou zpracována hašovací funkcí jsou jistým způsobem komprimována. Relativně

Více

Základy řazení. Karel Richta a kol.

Základy řazení. Karel Richta a kol. Základy řazení Karel Richta a kol. Přednášky byly připraveny s pomocí materiálů, které vyrobili Marko Berezovský, Petr Felkel, Josef Kolář, Michal Píše a Pavel Tvrdík Katedra počítačů Fakulta elektrotechnická

Více

IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)

IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615) IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná

Více

V případě jazyka Java bychom abstraktní datový typ Time reprezentující čas mohli definovat pomocí třídy takto:

V případě jazyka Java bychom abstraktní datový typ Time reprezentující čas mohli definovat pomocí třídy takto: 20. Programovací techniky: Abstraktní datový typ, jeho specifikace a implementace. Datový typ zásobník, fronta, tabulka, strom, seznam. Základní algoritmy řazení a vyhledávání. Složitost algoritmů. Abstraktní

Více

Zadání k 2. programovacímu testu

Zadání k 2. programovacímu testu Zadání k 2. programovacímu testu Úvod do programovacích jazyků (Java) 4.12.2008 00:08 Michal Krátký Katedra informatiky Technická univerzita Ostrava Historie změn, příklady: 21 Poznámka: Pokud není řečeno

Více

Doba běhu daného algoritmu/programu. 1. Který fragment programu z následujících dvou proběhne rychleji?

Doba běhu daného algoritmu/programu. 1. Který fragment programu z následujících dvou proběhne rychleji? 1 Doba běhu daného algoritmu/programu 1. Který fragment programu z následujících dvou proběhne rychleji? int n = 100; int sum = 0; for (i = 0; i < n; i++) for (j = 0; j < i; j++) sum += i+j; int n = 75;

Více

Rekurzivní algoritmy

Rekurzivní algoritmy Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS

Více

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT binární vyhledávání a bst Karel Horák, Petr Ryšavý 23. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Naimplementujte binární vyhledávání. Upravte metodu BinarySearch::binarySearch. 1 Příklad 2 Mysĺım

Více

Dynamické datové struktury III.

Dynamické datové struktury III. Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované

Více

3 Algoritmy řazení. prvku a 1 je rovněž seřazená.

3 Algoritmy řazení. prvku a 1 je rovněž seřazená. Specifikace problému řazení (třídění): A... neprázdná množina prvků Posl(A)... množina všech posloupností prvků z A ... prvky množiny Posl(A) q... délka posloupnosti Posl(A), přičemž Delka()

Více

ÚVODNÍ ZNALOSTI. datové struktury. správnost programů. analýza algoritmů

ÚVODNÍ ZNALOSTI. datové struktury. správnost programů. analýza algoritmů ÚVODNÍ ZNALOSTI datové struktury správnost programů analýza algoritmů Datové struktury základní, primitivní, jednoduché datové typy: int, char,... hodnoty: celá čísla, znaky, jednoduché proměnné: int i;

Více

Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A

Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 21. září 2009 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Organizace předmětu Přednášky 1. 5. Základní

Více

Algoritmizace. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Úvod stránky předmětu: https://cw.felk.cvut.cz/doku.php/courses/a4b33alg/start cíle předmětu Cílem je schopnost samostatné implementace různých variant základních

Více

Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015

Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Programování 3. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Implementace zásobníku a fronty pomocí

Více

Programátorské kuchařky

Programátorské kuchařky Programátorské kuchařky VYDAVATELSTVÍ MATEMATICKO-FYZIKÁLNÍ FAKULTY UNIVERZITY KARLOVY V PRAZE BÖHM, LÁNSKÝ, VESELÝ A KOLEKTIV Programátorské kuchařky Praha 2011 Vydáno pro vnitřní potřebu fakulty. Publikace

Více

5 Rekurze a zásobník. Rekurzivní volání metody

5 Rekurze a zásobník. Rekurzivní volání metody 5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení

Více

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)

Více

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11 333LP - lgoritmy a programování - Zkouška z předmětu 333LP Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8]

Více

NMIN101 Programování 1 2/2 Z --- NMIN102 Programování /2 Z, Zk

NMIN101 Programování 1 2/2 Z --- NMIN102 Programování /2 Z, Zk NMIN101 Programování 1 2/2 Z --- NMIN102 Programování 2 --- 2/2 Z, Zk Pavel Töpfer Katedra software a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer

Více

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk Pavel Töpfer Katedra softwaru a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer

Více

TGH07 - Chytré stromové datové struktury

TGH07 - Chytré stromové datové struktury TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n

Více

Tato tematika je zpracována v Záznamy přednášek: str

Tato tematika je zpracována v Záznamy přednášek: str Obsah 10. přednášky: Souvislosti Složitost - úvod Výpočet časové složitosti Odhad složitosti - příklady Posuzování složitosti Asymptotická složitost - odhad Přehled technik návrhů algoritmů Tato tematika

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11 Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8] count=0 for i in range(1,len(data)):

Více

Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek

Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_146_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více