tazatel Průměr ve Počet respondentů Rozptyl ve

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve"

Transkript

1 Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný počet údajů o statistických jednotkách (respondentech - těch, kteří odpověděli). tazatel Průměr ve Počet respondentů Rozptyl ve 24,9x ,85x ,658x ,2x x ,1x ,2x ,8x10 6 a) Vypočítejte celkovou průměrnou hodnotu ze všech získaných dat. b) Vypočítejte vnitroskupinové směrodatné odchylky (u jednotlivých tazatelů) c) Vypočítejte variační koeficienty u jednotlivých tazatelů d) Vypočítejte meziskupinový rozptyl a meziskupinovou směrodatnou odchylku e) Vypočítejte celkový rozptyl a celkovou směrodatnou odchylku f) Vypočítejte celkový variační koeficient 2) Při zpracování studie o průměrné výši měsíčních příjmů v jednom průmyslovém podniku jsme získali výsledky ze všech třech oddělní. Datový soubor obsahuje údaje o všech zaměstnancích podniku. oddělení výroba marketing ředitelství Průměr ve Podíl 0,6 0,3 0,1 zaměstnanců Směrodatná odchylka a) Vypočítejte celkovou průměrnou hodnotu mezd v celém podniku, b) Vypočítejte vnitroskupinové variační koeficienty, c) Vypočítejte vnitroskupinové rozptyly v jednotlivých oddělení d) Vypočítejte meziskupinový rozptyl a meziskupinovou směrodatnou odchylku e) Vypočítejte celkový rozptyl a celkovou směrodatnou odchylku f) Vypočítejte celkový variační koeficient

2 3) Máme k dispozici datový soubor od 9. tazatele, jemuž se podařilo přesvědčit k odpovědi pouze 11 respondentů: a) určete průměr datového souboru, b) určete medián, c) určete horní a dolní kvartil, d) určete rozptyl výběrového souboru, e) určete výběrovou směrodatnou odchylku, f) určete variační rozpětí, g) určete variační koeficient. 4) Získali jsme informace o mzdách v zemědělském podniku (za minulý měsíc) s celkem 50-ti zaměstnanci: =25 000; s x = 5 700; = ; x min = 8 500; x max = ; n = 50 a) Určete základní rozptyl souboru b) Určete variační koeficient c) Určete variační rozpětí d) Pokuste se vysvětlit, proč se medián liší od průměru? e) V měsíce byli propuštěni dva zaměstnanci jejichž mzdy činily: a , do podniku byly na jejich místo přijati dva noví zaměstnanci s nástupními platy a Jak tato personální změna ovlivnila hodnotu průměrné mzdy v podniku? f) Co se stane s průměrnou mzdou, pokud bude každému zaměstnanci přidáno 500 Kč jako bonus? g) Co se stane s rozptylem a směrodatnou odchylkou při této změně? h) Co se stane s variačním koeficientem? i) Pokud průměrná mzda vzroste o 15% a směrodatná odchylka vzroste o 10%, jak se změní variační koeficient? j) Pokud průměrná mzda vzroste o 15% a rozptyl vzroste o 10%, jak se změní variační koeficient? 5) Obchodní řetězec odebírá určitý výrobek, jehož cena v průběhu roku sezónně kolísá, od dvou stálých dodavatelů (A a B). Průměrná cena za celý rok od dodavatele A je 9 CZK, její směrodatná odchylka činí 2 CZK, od dodavatele A se nakoupilo 1000 kusů. U dodavatele B činí průměrná cena 10 CZK při směrodatné odchylce 1 CZK, nákup od dodavatele B byl 4000 kusů. Určete a.) variační koeficient vyjadřující variabilitu kolísání nákupní ceny během roku souhrnně za oba dva dodavatele dohromady. b.) zjistěte, zda se na celkové variabilitě nákupní ceny větší měrou podílí průběžné sezónní kolísání cen výrobku u jednotlivých dodavatelů v rámci roku nebo zda jsou důležitější rozdíly mezi průměrnými cenami jednotlivých dodavatelů.

3 6) Ve stavební společnosti STATUS a.s. je zaměstnáno 80% mužů, zbytek jsou ženy. Průměrná měsíční mzda žen ve firmě je Kč. Průměrná mzda v celém podniku je Kč. Jaká je průměrná měsíční mzda mužů? 7) V soukromé společnosti pracuje 10 pracovníků s průměrným platem Kč. Ke konci října z firmy odchází zaměstnanec, jehož mzda je Kč. Na jeho místo je ihned přijat nový zaměstnanec s nástupním platem Kč. Jaká bude nyní průměrná mzda ve firmě? 8) Inflace ve čtyřech po sobě jdoucích letech byla 4%; 5%; 3% a 6%. Za pomoci geometrického průměru (viz. učebnice) vypočítejte průměrnou inflaci za celé období čtyř let. 9) Jak se změní průměr, rozptyl a směrodatná odchylka, pokud každou hodnotu v souboru zvýším o 10? 10) V následují tabulce je znázorněna produkce podniku v měsíci říjnu, podle výrobní haly a podle jakosti. Výrobní I jakost II jakost III jakost celkem hala/jakost Hala A Hala B Hala C celekm Jaká je pravděpodobnost, že náhodně vybraný výrobek z celkové produkce v měsíci říjnu je A) I jakosti, B) I nebo II jakosti, C) III jakosti, jestliže víme, že byl vyroben v hale B, D) II nebo III jakosti, jestliže byl vyroben v hale C, E) byl vyroben v hale B, F) alespoň II jakosti a vyroben v hale A nebo B? 11) Při hodu dvěma kostkami určete pravděpodobnost, že a) Padne na obou kostkách šestka, b) padne součet 10, c) padne součet alespoň 10, d) padne na obou kostkách sudé číslo, e) padne alespoň na jedné kostce šestka f) padne právě jedna šestka.

4 12) V klobouku máme 20 černých a 10 červených koulí. Náhodně z klobouku vytáhneme 5 koulí. Jaká je pravděpodobnost, že a) bude právě jedna koule červená, jestliže provádíme výběr s vracením, b) bude právě jedna koule červená, jestliže c) bude všech 5 koulí červených, jestliže provádíme výběr s vracením, d) bude všech 5 koulí červených, jestliže provádíme výběr bez vracení? 13) Na 10 m látky je v průměru 1 kaz, jaká je pravděpodobnost, že na roli dlouhé 50 metrů bude a) jeden kaz, b) tři kazy, c) více než jeden kaz. d) Určete vhodné rozdělení použitelné pro tento příklad a určete u něho střední hodnotu E(X) a rozptyl D(X). 14) Házíme sedmkrát mincí. a) jaká je pravděpodobnost, padne právě šestkrát panna b) jaká je pravděpodobnost, že při prvních šesti pokusech padne orel a při sedmým panna c) padne víc pan než orlů? 15) Balík obsahuje 50 věcí. 5 věcí v balíku jsou vadné zmetky. Vytahujeme 7 věcí. Jaká je pravděpodobnost reklamace, ke které je potřeba vytáhnout alespoň 1 zmetek, a) Jestliže vždy výrobek zpět po vytažení vrátíme, b) jestliže výrobek zpět po vytažení do balíku nevracíme? 16) Pravděpodobnost, že trefím terč při jednom výstřelu je 0,25. a) Určete pravděpodobností, že ze 6ti výstřelů se trefím vždy do terče, b) ze 6-ti se trefím alespoň 3krát c) ze 6-ti se trefím právě 3krát. d) Z 5-ti výstřelů se netrefím ani jednou. 17) Tři kamarádi jedou na dovolenou, Petr s pravděpodobností 0,4, Pavel 0,25 a Honza 0,5 a) Určete pravděpodobnost, že pojedou všichni tři, b) že pojede alespoň jeden, c) že pojede Petr i Pavel, ale Honza ne

5 18) Délka pobytu jednoho hosta v hotelu (měřena ve dnech) je náhodná veličina X s pravděpodobnostním rozdělením X P(x) 0,45 0,25 0,2 0,1 Vypočítejte distribuční funkci náhodné veličiny X a její střední hodnotu. 18) Bylo pozorováno, ze 30% zákazníků dává při nákupu určitého druhu zboží přednost značce A a 70% značce B. Jaká je pravděpodobnost, že a) z 5-ti zákazníků si 4 koupí značku A a 1 zákazník značku B, b) z 5-ti zákazníků si všichni koupí značku A c) z 5-ti zákazníků si nikdo nekoupí značku A? 19) Máme 3 typy domácností: 20% domácností nemá žádné auto, 1 auto má 50% domácností a 2 auta má 30% domácností. Víme, že náklady (benzín a nafta) pro používání jednoho každého auta stojí 1500 Kč. Určete: a) Jaká je pravd., že náhodně vybraná dom. vlastní 1 auto? b) Jaká je pravd., že náhodně vybraná dom. má náklady na benzín větší než 2500 Kč? c) kolik domácnosti spotřebují celkem průměrně na benzín? (střední hodnota n.v.) d) Určete rozptyl náhodné veličiny X 20) Při kontrole účetních dokladů v určitém velkém průmyslovém podniku externí auditor ze zkušenosti ví, že lze předpokládat formální chyby u 2 % účetních dokladů. Jestliže ze souboru účetních dokladů jich auditor vybere 100, jaká je pravděpodobnost, že a) mezi nimi budou právě 2 chybné? b) ani jeden chybný? c) maximálně dva chybné? Pozn.: řešte pomocí binomického i pomocí poissonova rozdělení následně porovnejte výsledky

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Téma 2. Řešené příklady

Téma 2. Řešené příklady Téma. Řešené příklady 1. V tabulce č. 1. jsou uvedeny údaje o spotřebě polotučného sušeného a polotučného tekutého mléka v jednotlivých létech. Tab. 1. (mil. l) \ rok 1998 1999 000 001 00 003 004 005 Polotučné

Více

5. Jev B je částí jebu A. Co můžeme říct o podmíněné pravděpodobnosti? (1b)

5. Jev B je částí jebu A. Co můžeme říct o podmíněné pravděpodobnosti? (1b) TEST 3 1. U pacienta je podozření na jednu ze čtyř, navzájem se vylučujících nemocí. Pravděpodobnost výskytu těchto nemocí je 0,1, 0,2, 0,4 a 0,3. Laboratorní zkouška je v případě první nemoci pozitivní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Po(λ) je možné použít jako model náhodné veličiny, která nabývá hodnot 0, 1, 2,... a udává buď počet událostí,

Více

náhodný jev je podmnožinou

náhodný jev je podmnožinou Pravděpodobnost Dovednosti a cíle - Chápat jev A jako podmnožinu množiny, která značí množinu všech výsledků náhodného děje. - Umět zapsat jevy pomocí množinových operací a obráceně umět z množinového

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz).

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz). 1 Cvičení z předmětu KMA/PST1 Pro získání zápočtu je nutno mimo docházky (max. 3 absence) uspět minimálně ve dvou ze tří písemek, které budou v průběhu semestru napsány. Součástí třetí písemky bude též

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK 1. Na základě údajů uvedených v tabulce rozhodněte, zda existuje závislost mezi roky a počtem firem ve Šluknovském výběžku, které zaměstnávaly osoby zdravotně

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Vypočítejte: 8 3 10 9?? 29.11.2014 Tomáš Karel - 4ST201 2 n n! 8! 87654321 40320 k (n k)! k! (8 3)! 3! (5 4321) 321 1206 56 n n! 10! 109 8 7 6 5 4 3 2 1 10 k (n k)! k! (10 9)!

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách ROZKLAD ROZPTYLU ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže

Více

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní

Více

Statistika (4ST201) Vytvoříme datový soubor, který obsahuje věk, výšku a pohlaví studentů tohoto semináře. V Excelu

Statistika (4ST201) Vytvoříme datový soubor, který obsahuje věk, výšku a pohlaví studentů tohoto semináře. V Excelu Statistika (4ST201) 1 Popsisná statistika (1. a 2. cvičení) 1.1 Úvodní příklad Vytvoříme datový soubor, který obsahuje věk, výšku a pohlaví studentů tohoto semináře. V Excelu určete: 1. Vytvořte histogram

Více

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2.

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2. 9..3 Pravděpodobnosti jevů I Předpoklady: 90 Opět se vrátíme k hodu kostkou. Pokus má šest stejně pravděpodobných náhodných výsledků pravděpodobnost každého z nich je 6. Do domečku nám chybí tři políčka.

Více

pravděpodobnost, náhodný jev, počet všech výsledků

pravděpodobnost, náhodný jev, počet všech výsledků Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN

Více

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka; I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné.

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné. Měření rizika Podnikatelské riziko představuje možnost, že dosažené výsledky podnikání se budou kladně či záporně odchylovat od předpokládaných výsledků. Toto riziko vzniká např. při zavádění nových výrobků

Více

výška (cm) počet žáků

výška (cm) počet žáků Statistika 1) Ve školním roce 1997/119 bylo v Brně 3 základních škol, ve kterých bylo celkem 1 tříd. Tyto školy navštěvovalo 11 5 žáků. Určete a) kolik tříd průměrně měla jedna ZŠ, b) kolik žáků průměrně

Více

1 Popisná statistika. 2 Základy kombinatoriky. x = {15; 12; 18; 14; 21; 15; 17; 14; 25; 13},

1 Popisná statistika. 2 Základy kombinatoriky. x = {15; 12; 18; 14; 21; 15; 17; 14; 25; 13}, Příklady na procvičování 1 Popisná statistika Příklad 1.1 Určete první, druhé a výběrové druhé momenty datových souborů x = {15; 12; 18; 14; 21; 15; 17; 14; 25; 13}, y = {9; 21; 15; 32; 11; 5; 17; 12;

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120 KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Charakteristiky variability Mgr. Jakub Němec VY_32_INOVACE_M4r0120 CHARAKTERISTIKY VARIABILITY Charakteristika variability se určuje pouze u kvantitativních znaků.

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Statistické řízení jakosti - regulace procesu měřením a srovnáváním

Statistické řízení jakosti - regulace procesu měřením a srovnáváním Statistické řízení jakosti - regulace procesu měřením a srovnáváním Statistická regulace výrobního procesu (SPC) SPC = Statistical Process Control preventivní nástroj řízení jakosti, který na základě včasného

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Diskrétní pravděpodobnost

Diskrétní pravděpodobnost Diskrétní pravděpodobnost Jiří Koula Definice. Konečným pravděpodobnostním prostorem nazveme dvojici(ω, P), kde Ω jekonečnámnožina {ω 1,..., ω n}apfunkcepřiřazujícíkaždépodmnožiněωčíslo zintervalu 0,1,splňujícíP(

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Doporučené příklady k procvičení k 2. Průběžnému testu

Doporučené příklady k procvičení k 2. Průběžnému testu Doporučené příklady k procvičení k 2. Průběžnému testu - Statistika v příkladech Marek a kol. (2013) - kapitola 2.3, 9 řešené příklady 2.52-2.53, 2.58a,b - kapitola 3.1 o řešené příklady: 3.1, 3.2, 3.4

Více

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Příklady z pravděpodobnosti a statistiky

Příklady z pravděpodobnosti a statistiky Příklady z pravděpodobnosti a statistiky k testům a na zkoušení Ivan Nagy, Pavla Pecherková, Jitka Homolová Obsah 1 PRAVĚPODOBNOST................................ 2 1.1 Popisná statistika...................................

Více

Významná diskrétní rozdělení pravděpodobnosti

Významná diskrétní rozdělení pravděpodobnosti Alternativní rozdělení Příklad Střelec vystřelí do terče, pravděpodobnost zásahu je 0,8. Náhodná veličina X udává, jestli trefil: položíme X = 1, jestliže ano, a X = 0, jestliže ne. Alternativní rozdělení

Více

Zkušenosti s kvalitou a nákupem potravin

Zkušenosti s kvalitou a nákupem potravin VÝZKUM TRHU, MÉDIÍ a VEŘEJNÉHO MÍNĚNÍ VÝVOJ SOFTWARE MEDIAN, Národních hrdinů 73, 190 12 Praha 9 tel.: 225 301 111, fax: 225 301 101 http: //www.median.cz, e-mail: median@median.cz Oficiální partner KANTAR

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Pondělí 16:40, C328 http://www.ms.mff.cuni.cz/~dechf7am Praktické zaměření Proč potřebuji statistiku, když chci dělat (doplň)?

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 2. století - využití ICT ve vyučování matematiky na

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

IV. Indexy a diference

IV. Indexy a diference IV. Indexy a diference Ukazatel specifická statistická veličina popisující určitou sociálně ekonomiclou skutečnost. Ekonomická teorie definuje své pojmy a jejich vztahy často bez ohledu, zda jde o pojmy

Více

Regulace výrobního procesu v soft. Statistica

Regulace výrobního procesu v soft. Statistica Regulace výrobního procesu v soft. Statistica Newsletter Statistica ACADEMY Téma: Regulační diagramy, možnosti softwaru Typ článku: Teorie, návod V tomto článku bychom Vám rádi ukázali další typy analýz,

Více

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč.

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Kolik kusů tužek od každého druhu bylo koupeno? 16 ks dražších a 9

Více

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA. VZOR PŘIJÍMACÍ ZKOUŠKY DO NAVAZUJÍCÍHO STUDIA Obor: Podniková ekonomika

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA. VZOR PŘIJÍMACÍ ZKOUŠKY DO NAVAZUJÍCÍHO STUDIA Obor: Podniková ekonomika TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA VZOR PŘIJÍMACÍ ZKOUŠKY DO NAVAZUJÍCÍHO STUDIA Obor: Podniková ekonomika UPOZORNĚNÍ: Všechny potřebné výpočty se provádějí do zadání, používání kalkulaček

Více

WIDA Standard. Česká republika. 1. Září 2011. Knihovník(-ice) Oblast povolání Cizí jazyky, knihovny, archívy, muzea

WIDA Standard. Česká republika. 1. Září 2011. Knihovník(-ice) Oblast povolání Cizí jazyky, knihovny, archívy, muzea Analýza mezd na jedné pracovní pozici WIDA Standard Knihovník(-ice) Oblast povolání Cizí jazyky, knihovny, archívy, muzea 1. Září 2011 Česká republika Koupí tohoto produktu podporujete transparentnost

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

PRAVDEPODOBNOST A STATISTIKA, OSNOVA CVICENI. Cviceni 1 tyden-mnozinove operace, kombinatorika

PRAVDEPODOBNOST A STATISTIKA, OSNOVA CVICENI. Cviceni 1 tyden-mnozinove operace, kombinatorika PRAVDEPODOBNOST A STATISTIKA, OSNOVA CVICENI Cviceni 1 tyden-mnozinove operace, kombinatorika 1. Kolik ruznych slov lze sestavit ruznym usporadanim pismen ABCD? 2. Kolik ruznych slov lze sestavit ruznym

Více

Tématické celky { kontrolní otázky.

Tématické celky { kontrolní otázky. Tématické celky kontrolní otázky. Základy teorie pravdìpodobnosti..pravdìpodobnostní míra základní pojmy... Vysvìtlete pojem náhody, náhodného pokusu, náhodného jevu a jeho mno- ¾inovou interpretaci. Popi¹te

Více

Distribuční funkce je funkcí neklesající, tj. pro všechna

Distribuční funkce je funkcí neklesající, tj. pro všechna Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná

Více

c) Matematické myšlení

c) Matematické myšlení c) Matematické myšlení Koš 1: 1. Které číslo doplníte místo otazníku?? 8 11 15 20 a) 3 b) 4 c) 5 d) 6 Správné řešení d) 2. Které číslo doplníte místo otazníku? 5 7? 17 25 a) b) 10 c) 11 d) 12 3. Které

Více

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA Poslední aktualizace: 29. května 200 STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY Pro zdárné absolvování předmětu doporučuji věnovat pozornost zejména příkladům označenými hvězdičkou. Příklady

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Základy statistiky pro obor Kadeřník

Základy statistiky pro obor Kadeřník Variace 1 Základy statistiky pro obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Aritmetický průměr

Více

EXPLORATORNÍ ANALÝZA DAT. 7. cvičení

EXPLORATORNÍ ANALÝZA DAT. 7. cvičení EXPLORATORNÍ ANALÝZA DAT 7. cvičení Teorie pravděpodobnosti x Statistika Teorie pravděpodobnosti popisuje zákonitosti týkající se náhodných jevů, používá se k modelování náhodností a neurčitostí, které

Více

Měření ekonomiky. Ing. Jakub Fischer Katedra ekonomické statistiky VŠE v Praze

Měření ekonomiky. Ing. Jakub Fischer Katedra ekonomické statistiky VŠE v Praze Měření ekonomiky Ing. Jakub Fischer Katedra ekonomické statistiky VŠE v Praze Struktura přednášky Nezaměstnanost Inflace Hrubý domácí produkt Platební bilance Nezaměstnanost Základem je rozdělení osob

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu Metoda Monte Carlo a její aplikace v problematice oceňování technologií Manuál k programu This software was created under the state subsidy of the Czech Republic within the research and development project

Více

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA. VZOR PŘIJÍMACÍ ZKOUŠKY DO NAVAZUJÍCÍHO STUDIA Obor: Manažerská informatika

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA. VZOR PŘIJÍMACÍ ZKOUŠKY DO NAVAZUJÍCÍHO STUDIA Obor: Manažerská informatika TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA VZOR PŘIJÍMACÍ ZKOUŠKY DO NAVAZUJÍCÍHO STUDIA Obor: Manažerská informatika UPOZORNĚNÍ: Všechny potřebné výpočty se provádějí do zadání, používání kalkulaček

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti Stanovení měr opakovatelnosti a reprodukovatelnosti při kontrole měřením a srovnáváním Ing. Jan Král Úvodní teze Zásah do procesu se děje na základě měření.

Více

Rozdělení populace v ČR podle věku a pohlaví (v %)

Rozdělení populace v ČR podle věku a pohlaví (v %) tabulka č. 1 Rozdělení populace v ČR podle věku a pohlaví (v %) Populace celkem* Populace ohrožená chudobou ** Věk Celkem Muži Ženy Celkem Muži Ženy Celkem 100 100 100 100 100 100 0-15 18 32 16-24 12 13

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní

Více

VŠB Technická univerzita Ostrava

VŠB Technická univerzita Ostrava VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: PRAVDĚPODOBNOST A STATISTIKA Domácí úkoly Zadání 21 DATUM ODEVZDÁNÍ

Více

výška (cm) počet žáků

výška (cm) počet žáků Statistika samostatná práce 1) Ve školním roce /13 bylo v Brně 5 základních škol, ve kterých bylo celkem 5 tříd. Tyto školy navštěvovalo 1 3 žáků. Určete a) kolik tříd průměrně měla jedna ZŠ, b) kolik

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

Přednáška 5. Výběrová šetření, Exploratorní analýza

Přednáška 5. Výběrová šetření, Exploratorní analýza Přednáška 5 Výběrová šetření, Exploratorní analýza Pravděpodobnost vs. statistika Výběrová šetření aneb jak získat výběrový soubor Exploratorní statistika aneb jak popsat výběrový soubor Typy proměnných

Více

Panajotis Cakirpaloglu, Jan Šmahaj. 361 hod. nízká. žádné. celý dotazník najednou

Panajotis Cakirpaloglu, Jan Šmahaj. 361 hod. nízká. žádné. celý dotazník najednou Metadata průzkumu "Cena a kvalita pohonných hmot" Autor průzkumu: Panajotis Cakirpaloglu, Jan Šmahaj Šetření: 21. 04. 2010-06. 05. 2010 Délka průzkumu: 361 hod Počet respondentů: 55 Vypovídací hodnota:

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více