Jak bude zítra? Skoro jako dneska. Dan Lessner

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Jak bude zítra? Skoro jako dneska. Dan Lessner"

Transkript

1 Jak bude zítra? Skoro jako dneska. Dan Lessner

2 Osnova O čem budu mluvit Motivace, popis problému Vhodná data Použitá architektura sítě Zajímavá zjištění Kde je zakopaný pes? Tady Co teď s tím Další zajímavá zjištění Jak dál Závěr

3 Motivace, popis problému Zápočet 1. Chci vědět, co zítra na sebe 2. Nemám ve sklepě superpočítač 3. Vím jak bylo dnes 4. Moji přátelé v Evropě to vědí taky 5. Nechci s tím mít příliš práce Pokus o predikci vývoje časové řady na základě několika posledních členů. Nesimuluju, používám empirické metody.

4 Vhodná data Aby to fungovalo Hodí se o problému (počasí) něco vědět: dnes je skoro jako včera je zejména teplo vlhko těžko prach, sluníčko, emise, bio... počasí k nám chodí ve frontách počasí se různí podle ročního období Proto vezmu data: nedávná o průměrné denní teplotě to je dost zjednodušující (pro mě, ne pro síť) z různých míst odborník: km od Klementina o roční době

5 Vhodná data Konkrétněji V Tróji sídlí Katedra meteorologie a ochrany prostředí a na ní dvoučlenná Skupina deterministického chasu. Tímto děkuji Mgr. Jiřímu Mikšovskému za pomoc se sháněním vhodných dat. Na je k dispozici volně přístupná databáze ECA (European Climate Assessment) s daty ze stovek stanic v Evropě. různá období uvádění teplot v desetinách C ušetří tečku

6 Vhodná data Příprava Výběr vhodných stanic k měření (odhadem), stažení časových řad Nalezení společného průniku ( ) Poslední tři roky jako testovací Normalizace teplot: lineárně jako z [-40;40] na [-1;1] (přenosová funkce bude tansig) Zavedení informace o ročním období separace sezón čtyři nové vstupy sinus a cosinus dne v roce Příklad vstupu: 0.831; 0.556; 0,185; -0,008; 0,105; 0,015; 0,128; 0,0003; 0,025; 0,188; 0,0005; 0,14

7 Použitá architektura sítě Jak na to Požadovaná přesnost předpovědi: 1 C Není to moc, ale menší rozdíl stejně nepoznám Navíc se teplota během dne stejně dost mění Průměrný rozptyl denní teploty v Klementinu ( ) činí víc než 7 C Taky je tu otázka přesnosti samotných dat Zkoušel jsem různé varianty různé učící algoritmy a jejich parametry jedna nebo dvě skryté vrstvy s až čtyřnásobkem počtu vektorů ze vstupní vrstvy , , , , , , , 10 1!!!

8 Zajímavá zjištění Něco tu smrdí Záleží na inicializaci Nejlépe se síť učila s LM Za 17 epoch bylo hotovo Celkem dobře vycházelo i trainrp Přesnost by šla hnát výš, ovšem s řádovým nárůstem počtu epoch Třeba na 400 To není nic špatného, jiné problémy se tak učí běžně. Na konkrétní architektuře příliš nezáleželo Opravdu až příliš... co je tedy obtížného na předpovědi počasí?

9 Kde je zakopaný pes? km 2

10 Tady Zítra bude SKORO jako dneska. Kdyby v Klementinu dnešek znamenal zítřek: Obléct se na denní průměr o deset stupňů jinde může někoho stát zdraví. A to bohatě stačí třeba dvakrát za rok. Ale síť tyhle případy mezi stovkami ostatních ignoruje. A podobně vypadá i rozložení chyb sítě. (je jen o něco strmější)

11 Co teď s tím? Zvýším šance sítě přidáním informací ze včerejška (ale zato uberu polovinu míst) nová data (ne)zapomenu normalizovat Snížím práh citlivosti na dlouhé učení Nebudu měřit střední kvadratickou odchylku, ale absolutní hodnotu chyby (funkce mae)

12 Další zajímavá zjištění Odkud vítr vane Délka učení poskočila z desítek na stovky epoch Takže na velikosti sítě už dost záleží Co se týče zvratů, moc jsem si nepomohl Dokážu naučit síť velmi dobře na malých množinách, ale pro neznámá data je nepoužitelná (chyba vzroste třeba na stonásobek) To velmi je mnohem lepší než v předchozích pokusech (maximální chyba 2 C, výskyt v desetinách procenta) Ale nedokážu říct, jestli by šlo stejný výsledek získat pro větší vstupy Začíná být zřejmé, co je složitého na předpovědi počasí Opravdu se může stát, že síť leze po plošině a najednou narazí na údolí chybové funkce

13 Jak dál Musím taky spát Kudy by šlo pokračovat Podívat se na váhy která místa mají na zítřejší teplotu nejmenší vliv (pak je ubrat a urychlit učení) Přidat kvalitativně nová data na vstup (tlak, vlhkost) Začít znovu, lépe od začátku se zaměřit na vyhledávání zvratů v počasí (že zítra bude jako dnes, odhadne často každý trouba) Průběžně síť přizpůsobovat podle každodenního pozorování počasí a jeho změny se vyvíjí i dlouhodobě funkce adapt

14 Závěr Problém vyřešen Jak bude zítra? Skoro jako dneska, ale ráno se radši podívám z okna.

Rozpoznávání captcha obrázků

Rozpoznávání captcha obrázků Rozpoznávání captcha obrázků Tomáš Pop tomas.pop@seznam.cz www.vanocnibesidka.wz.cz Lukáš Bajer bajeluk@matfyz.cz Idea - cíl Captcha bezpečnostní kód, který se opisuje má zabránit automatizovanému využití

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Klasifikace hudebních stylů

Klasifikace hudebních stylů Klasifikace hudebních stylů Martin Šimonovský (mys7@seznam.cz) Rozpoznávání hudby úloha z oblasti DSP klasifikace dle hudebních stylů

Více

ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.

ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK. ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Meteorologie opakování pojmů a veličin

Meteorologie opakování pojmů a veličin Meteorologie opakování pojmů a veličin Postup práce: Řešení: Vyučující si vytiskne následující pracovní listy pro každou skupinu a lístečky rozstříhá. Úkolem skupiny je sestavit fyzikální pojmy a veličiny

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

SketchUp je zase o něco snadnější a výkonnější!

SketchUp je zase o něco snadnější a výkonnější! SketchUp je zase o něco snadnější a výkonnější! Více modelů a snadnější vyhledávání SketchUp 2014 nám zase připravil hodně překvapení, od plně interaktivních náhledů modelu přes zcela nové uživatelské

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:

Zadání Máme data hdp.wf1, která najdete zde:  Bodová předpověď: Intervalová předpověď: Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Statistika. Jindřich Soukup. University of South Bohemia in České Budějovice Faculty of Fisheries and Protection of Waters, School of complex systems

Statistika. Jindřich Soukup. University of South Bohemia in České Budějovice Faculty of Fisheries and Protection of Waters, School of complex systems Statistika Jindřich Soukup 2013-07-24 University of South Bohemia in České Budějovice Faculty of Fisheries and Protection of Waters, School of complex systems Statistika umí: Předpovídat budoucnost? "...

Více

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)*

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)* Modely analýzy a syntézy plánů MAF/KIV) Přednáška 10 itlivostní analýza 1 Analytické metody durace a konvexita aktiva dluhopisu) Budeme uvažovat následující tvar cenové rovnice =, 1) kde jsou současná

Více

Atmosférická chemie a její interakce s procesy v atmosféře

Atmosférická chemie a její interakce s procesy v atmosféře seminář Atmosférická chemie a její interakce s procesy v atmosféře Žermanice 21. - 23. 9. 2015 Rozptylové podmínky a měření ventilačního indexu Pavel Jůza Rozptylové podmínky jsou podmínky pro rozptyl

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

SEZNAM PŘÍLOH. Příloha č. 1: Seznam respondentů (tabulka) Příloha č. 2: Ukázka rozhovorů a pozorování (přepis)

SEZNAM PŘÍLOH. Příloha č. 1: Seznam respondentů (tabulka) Příloha č. 2: Ukázka rozhovorů a pozorování (přepis) SEZNAM PŘÍLOH Příloha č. 1: Seznam respondentů (tabulka) Příloha č. 2: Ukázka rozhovorů a pozorování (přepis) 2 Příloha č. 1: Seznam všech respondentů a jejich základních charakteristik (tabulka) Jméno

Více

Metodika poradenství. Vypracovali: Jiří Šupa Edita Kremláčková

Metodika poradenství. Vypracovali: Jiří Šupa Edita Kremláčková Metodika poradenství Vypracovali: Jiří Šupa Edita Kremláčková Úvod V následujícím textu je popsán způsob vedení rozhovoru s klientem, jehož cílem je pomoci klientovi prozkoumat jeho situaci, která ho přivedla

Více

Uběhly desítky minut a vy stále neumíte nic. Probudíte se ze svého snění a hnusí se vám představa učit se.

Uběhly desítky minut a vy stále neumíte nic. Probudíte se ze svého snění a hnusí se vám představa učit se. Kapitola 1 Nesnášíte učení? STOP Určitě valná část z vás, která otevřela tuto knihu, se potýká s problém jak se lépe učit. Sedíte nad knížkou hodiny, ale do hlavy nenacpete nic. Díváte se na písmenka,

Více

Optimalizace osazování odběrných míst inteligentními plynoměry

Optimalizace osazování odběrných míst inteligentními plynoměry Optimalizace osazování odběrných míst inteligentními plynoměry Ondřej Konár, Marek Brabec, Ivan Kasanický, Marek Malý, Emil Pelikán Ústav informatiky AV ČR, v.v.i. ROBUST 2012 Němčičky 14. září 2012 Měření

Více

Vliv Mosteckého jezera na teplotu a vlhkost vzduchu a rychlost větru. Lukáš Pop Ústav fyziky atmosféry v. v. i. AV ČR

Vliv Mosteckého jezera na teplotu a vlhkost vzduchu a rychlost větru. Lukáš Pop Ústav fyziky atmosféry v. v. i. AV ČR Vliv Mosteckého jezera na teplotu a vlhkost vzduchu a rychlost větru Lukáš Pop Ústav fyziky atmosféry v. v. i. AV ČR Motivace a cíle výzkumu Vznik nové vodní plochy mění charakter povrchu (teplotní charakteristiky,

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005

Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005 Rozpoznávání písmen Jiří Šejnoha Rudolf Kadlec (c) 2005 Osnova Motivace Popis problému Povaha dat Neuronová síť Architektura Výsledky Zhodnocení a závěr Popis problému Jedná se o praktický problém, kdy

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Vliv emisí z měst ve střední Evropě na atmosférickou chemii a klima

Vliv emisí z měst ve střední Evropě na atmosférickou chemii a klima Vliv emisí z měst ve střední Evropě na atmosférickou chemii a klima, Tomáš Halenka, Michal Belda Matematicko-fyzikální fakulta UK v Praze Katedra fyziky atmosféry Výroční seminář ČMeS 21-23. září, 2015,

Více

VÍŠ, CO JE TO BANKA?

VÍŠ, CO JE TO BANKA? VÍŠ, CO JE TO BANKA? Plán vyučovací hodiny (č. 5) TÉMA VYUČOVACÍ HODINY: Víš, co je to banka? VĚK ŽÁKŮ: využití podle úrovně žáků (doporučení 6. až 8. třída) ČASOVÁ DOTACE: 45 minut POTŘEBNÉ MATERIÁLY:

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

4.1 Metoda horizontální a vertikální finanční analýzy

4.1 Metoda horizontální a vertikální finanční analýzy 4. Extenzívní ukazatelé finanční analýzy 4.1 Metoda horizontální a vertikální finanční analýzy 4.1.1 Horizontální analýza (analýza vývojových trendů -AVT) AVT = časové změny ukazatelů (nejen absolutních)

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 14. listopadu 2007 1 Diferenciální 2 Motivace Linearizace Metoda Matematický model Global Positioning System - Diferenciální 24 navigačních satelitů

Více

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION Lucie Váňová 1 Anotace: Článek pojednává o předpovídání délky kolony v křižovatce. Tato úloha je řešena v programu

Více

PRŮBĚŽNÉ HODNOCENÍ AKTUÁLNÍ PŘENOSOVÉ KAPACITY VEDENÍ

PRŮBĚŽNÉ HODNOCENÍ AKTUÁLNÍ PŘENOSOVÉ KAPACITY VEDENÍ PRŮBĚŽNÉ HODNOCENÍ AKTUÁLNÍ PŘENOSOVÉ KAPACITY VEDENÍ Antonín Popelka, Václav Böhm, Daniel Juřík, Petr Marvan AIS spol. s r.o. Brno Ampacita vedení Přenosová schopnost vedení ampacita je stanovena z konstrukčních

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Co je za obchodním úspěchem

Co je za obchodním úspěchem Co je za obchodním úspěchem a jak jedno technické řešení může změnit zaměření celé firmy Třicátého července jsme v technickém zázemí Ředitelství silnic a dálnic předávali zaměstnancům této společnosti

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

Rizika a důsledky hydrometeorologických extrémů

Rizika a důsledky hydrometeorologických extrémů Rizika a důsledky hydrometeorologických extrémů .aby naše chyba byla co nejmenší! 4 km Každé zlepšení vyžaduje 10x výkonější počítač tj. celkem 10,000,000x! 2. Provést řadu simulací s nepatrně odlišnými

Více

Diagnostika regrese pomocí grafu 7krát jinak

Diagnostika regrese pomocí grafu 7krát jinak StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

KIS a jejich bezpečnost I Šíření rádiových vln

KIS a jejich bezpečnost I Šíření rádiových vln KIS a jejich bezpečnost I Šíření rádiových vln Podstata jednotlivých druhů spojení, výhody a nevýhody jejich použití doc. Ing. Marie Richterová, Ph.D. Katedra komunikačních a informačních systémů Černá

Více

METODIKA PRO PŘEDPOVĚĎ EXTRÉMNÍCH TEPLOT NA LETECKÝCH METEOROLOGICKÝCH STANICÍCH AČR

METODIKA PRO PŘEDPOVĚĎ EXTRÉMNÍCH TEPLOT NA LETECKÝCH METEOROLOGICKÝCH STANICÍCH AČR Katedra vojenské geografie a meteorologie Univerzita obrany Kounicova 65 612 00 Brno METODIKA PRO PŘEDPOVĚĎ EXTRÉMNÍCH TEPLOT NA LETECKÝCH METEOROLOGICKÝCH STANICÍCH AČR 1 1. Obecná charakteristika Teplota

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

sbor Českobratrské církve evangelické ve Velké Lhotě u Dačic Velká Lhota a Valtínov

sbor Českobratrské církve evangelické ve Velké Lhotě u Dačic Velká Lhota a Valtínov sbor Českobratrské církve evangelické ve Velké Lhotě u Dačic Velká Lhota a Valtínov sborový dopis - září 2009 Co se tu stalo o prázdninách?...byly dokončeny opravy věže horního kostela! Věž je opravdu

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

Zařazování dětí mladších tří let do mateřské školy. Vyhodnocení dotazníkového šetření. Příloha č. 1

Zařazování dětí mladších tří let do mateřské školy. Vyhodnocení dotazníkového šetření. Příloha č. 1 Příloha č. 1 Zařazování dětí mladších tří let do mateřské školy Vyhodnocení dotazníkového šetření Pro dotazníkové šetření bylo náhodným výběrem zvoleno 1500 mateřských škol (MŠ) ze všech krajů České republiky,

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

Renáta Bednárová, Petr Sládek. Pedagogická fakulta MU Brno, Univerzita obrany Brno

Renáta Bednárová, Petr Sládek. Pedagogická fakulta MU Brno, Univerzita obrany Brno Renáta Bednárová, Petr Sládek Pedagogická fakulta MU Brno, Univerzita obrany Brno Cíle Úvod Cíle projektu Charakteristika e-kurzu Několik poznámek k pedagogickému šetření Využití e-kurzu v praxi Možnosti

Více

UŽ ZNÁTE SVÉ ŠŤASTNÉ ČÍSLO?

UŽ ZNÁTE SVÉ ŠŤASTNÉ ČÍSLO? UŽ ZNÁTE SVÉ ŠŤASTNÉ ČÍSLO? Městská knihovna v Praze & Univerzita Pardubice za podpory programu VISK MK ČR roi.mlp.cz PROČ DĚLAT ROI Z pohledu ekonoma Z pohledu ředitele Z pohledu knihovníka 2 Jeho veličenstvo

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

Konstruktivistické principy v online vzdělávání

Konstruktivistické principy v online vzdělávání Konstruktivistické principy v online vzdělávání Erika Mechlová Ostravská univerzita ESF Čeladná, 4.11.2005 Teorie poznání Teorie poznání, noetika - část filozofie Jak dospíváme k vědění toho, co víme Co

Více

Příloha A - Dotazník průběhu procesu vyhledávání informací

Příloha A - Dotazník průběhu procesu vyhledávání informací Příloha A - Dotazník průběhu procesu vyhledávání informací Zde naleznete první dotazník průběhu procesu vyhledávání informací ve verzi pro MS Word. Původní dotazník byl vytvořen v aplikaci Google Form

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika? Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner

Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX Přidělená data a jejich popis Data určená pro zpracování

Více

2.7.6 Rovnice vyšších řádů (separace kořenů)

2.7.6 Rovnice vyšších řádů (separace kořenů) 76 Rovnice vyšších řádů (separace kořenů) Předpoklady: 00507, 00705 Přehled rovnic: Řád rovnice Tvar Název způsob řešení (vzorec) ax + b = 0 lineární b a 0, x = a ax + bx + c = 0 kvadratická ± a 0, x,

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Zvyšování obchodní výkonnosti webových stránek. nejen e-shopů

Zvyšování obchodní výkonnosti webových stránek. nejen e-shopů Zvyšování obchodní výkonnosti webových stránek nejen e-shopů Jihočeská hospodářská komora, 20. 5. 2015 nejsme agentura Jsme tým nezávislých & kreativních lidí pro Váš web Martin Laudát Creative director

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Ústav aplikované matematiky

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Ústav aplikované matematiky ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Ústav aplikované matematiky Semestrální práce ze statistiky Téma: Stravovací návyky studentů vysokých škol Autor: David Bursík Ročník: 3 7 Akademický

Více

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

Daniel Beneš Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav informatiky

Daniel Beneš Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav informatiky Daniel Beneš Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav informatiky Charakteristika projektu On-line aplikace pro analýzu mikrosatelitů révy vinné Charakteristika projektu On-line

Více

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 1 12 7 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30

Více

Cena celkem včetně DPH. E122099020 1 215 Kč 971332H001 1 656 Kč 52902P000012 1,2 714 Kč Cena bez DPH Cena celkem včetně DPH.

Cena celkem včetně DPH. E122099020 1 215 Kč 971332H001 1 656 Kč 52902P000012 1,2 714 Kč Cena bez DPH Cena celkem včetně DPH. 15 000 km/12 měsíců GD015ADCMP00 0,9 536 Kč 30 000 km/24 měsíců 45 000 km/36 měsíců GD030ADCMP00 1,4 833 Kč 4 339 Kč 5 251 Kč GD045ADCMP00 0,9 536 Kč 60 000 km/48 měsíců GD060ADCMP00 1,6 952 Kč 4 790 Kč

Více

1.1.7 Rovnoměrný pohyb I

1.1.7 Rovnoměrný pohyb I 1.1.7 Rovnoměrný pohyb I Předpoklady: 116 Kolem nás se nepohybují jenom šneci. Existuje mnoho různých druhů pohybu. Začneme od nejjednoduššího druhu pohybu rovnoměrného pohybu. Př. 1: Uveď příklady rovnoměrných

Více

Je větrná růžice potřeba pro zpracování rozptylové studie?

Je větrná růžice potřeba pro zpracování rozptylové studie? Je větrná růžice potřeba pro zpracování rozptylové studie? Mgr. Ondřej Vlček Bc. Hana Škáchová Oddělení modelování a expertíz Úsek ochrany čistoty ovzduší, ČHMÚ Ochrana ovzduší ve státní správě, Hustopeče

Více

Podnebí a počasí všichni tyto pojmy známe

Podnebí a počasí všichni tyto pojmy známe Podnebí a počasí všichni tyto pojmy známe Obsah: Podnebí Podnebné pásy Podnebí v České republice Počasí Předpověď počasí Co meteorologové sledují a používají Meteorologické přístroje Meteorologická stanice

Více

MINIROL SCREEN. Efektivní omezení proudění teplého a studeného vzduchu na Vaše okna! Specialisté na rolovací systémy

MINIROL SCREEN. Efektivní omezení proudění teplého a studeného vzduchu na Vaše okna! Specialisté na rolovací systémy MINIROL SCREEN Efektivní omezení proudění teplého a studeného vzduchu na Vaše okna! Specialisté na rolovací systémy MINIROL SCREEN Minirol screeny jsou elegantní, moderní a cenově příznivá možnost, jak

Více

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače

Více

Strojové učení Marta Vomlelová

Strojové učení Marta Vomlelová Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer

Více

Pracující důchodci v Česku

Pracující důchodci v Česku Pracující důchodci v Česku 22. 9. 2015 ČT 1 19:00 Události Daniela PÍSAŘOVICOVÁ, moderátorka Skoro devadesát procent českých seniorů nepracuje a spoléhá jenom na podporu státu. Důvodem není podle nové

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

1.2.2 Měříme délku II

1.2.2 Měříme délku II 1.2.2 Měříme délku II Předpoklady: 010201 Pomůcky: metr, zavinovací metr, krejčovský metr, šuplera, metrický šroub, pásmo, provázek s vyznačeným metrem, provázek s vyznačenými decimetry, pravítko 30 cm

Více

2011 (datový soubor life expectancy CR.txt). Budeme predikovat vývoj očekávané doby dožití pomocí

2011 (datový soubor life expectancy CR.txt). Budeme predikovat vývoj očekávané doby dožití pomocí Příklady užití časových řad k predikci rizikových jevů 1 Očekávaná doba dožití v ČR Máme k dispozici časovou řadu udávající očekávanou dobu dožití v České republice od roku 1960 do roku 2011 (datový soubor

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

Obsah. Předmluva 9 Poděkování 10. Statistické pojmy

Obsah. Předmluva 9 Poděkování 10. Statistické pojmy Obsah Předmluva 9 Poděkování 10 PRVNÍ ČÁST Statistické pojmy Kapitola 1 Základy matematiky 13 Množiny 13 Souvislosti a statistické funkce 16 Čísla 20 Rovnice o jedné neznámé 23 Jednoduché grafy 26 Modelování,

Více

ZMĚNA KLIMATU - HROZBA A PŘÍLEŽITOST PRO ČESKÉ ZEMĚDĚLSTVÍ

ZMĚNA KLIMATU - HROZBA A PŘÍLEŽITOST PRO ČESKÉ ZEMĚDĚLSTVÍ ZMĚNA KLIMATU - HROZBA A PŘÍLEŽITOST PRO ČESKÉ ZEMĚDĚLSTVÍ Zdeněk Žalud Mendelova univerzita v Brně (MENDELU) Ústav výzkumu globální změny AV ČR v.v.i (CzechGlobe) Konference GIS ESRI v ČR Praha, ZMĚNA

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické

Více

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Automatická segmentace slov s pomocí nástroje Affisix Michal Hrušecký, Jaroslava Hlaváčová Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Motivace Při zpracování přirozeného jazyka nikdy nemůžeme mít

Více

Zvládnu to sám nebo potřebuji pomoc?

Zvládnu to sám nebo potřebuji pomoc? Zvládnu to sám nebo potřebuji pomoc? Lekce 25: Kdy využít externí firmu a co to pro mě znamená Jak na dotace z ESI fondů, PhDr. Ing. Vít Skála, Ph.D. Obsah lekce Co mi může přinést externí firma Co nemůže

Více

3.5.2007-9.5.2007. Jazykové okénko... 7.5.2007 ČT 1 str. 1 07:50 Rubrika dne - Ostrava

3.5.2007-9.5.2007. Jazykové okénko... 7.5.2007 ČT 1 str. 1 07:50 Rubrika dne - Ostrava 3.5.2007-9.5.2007 Jazykové okénko... Jazykové okénko Tak a zatímco já jsem vás vítal u obrazovek, tak mě tady sledovala, čekala, až domluvím, paní Eva Jandová, vedoucí Katedry českého jazyka z Ostravské

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Možnosti podpory plošné inventarizace kontaminovaných míst interpretací multi- a hyperspektrálního snímkování Jana Petruchová Lenka Jirásková

Možnosti podpory plošné inventarizace kontaminovaných míst interpretací multi- a hyperspektrálního snímkování Jana Petruchová Lenka Jirásková Možnosti podpory plošné inventarizace kontaminovaných míst interpretací multi- a hyperspektrálního snímkování Jana Petruchová Lenka Jirásková Praha 13.6.2012 Multispektrální data cíl ověření vhodnosti

Více