OPTIMALIZACE ŽELEZOBETONOVÉHO PRŮŘEZU V ENVIRONMENTÁLNÍCH SOUVISLOSTECH

Rozměr: px
Začít zobrazení ze stránky:

Download "OPTIMALIZACE ŽELEZOBETONOVÉHO PRŮŘEZU V ENVIRONMENTÁLNÍCH SOUVISLOSTECH"

Transkript

1 Ctislav Fiala: OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB K 124FZS Doc. Ing. Petr Hájek, CSc. OPTIMALIZACE ŽELEZOBETONOVÉHO PRŮŘEZU V ENVIRONMENTÁLNÍCH SOUVISLOSTECH Plzeň 28. dubna 2005

2 2 OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB K 124FZS Doc. Ing. Petr Hájek, CSc. OPTIMALIZACE ŽELEZOBETONOVÉHO PRŮŘEZU V ENVIRONMENTÁLNÍCH SOUVISLOSTECH 1. ÚVOD Studie 1 - MONOKRITERIÁLNÍ OTIMALIZAČNÍ ÚLOHA Optimalizační proměnné a účelová funkce Parametry konstrukce a omezující podmínky Výpočet pomocí Řešitele MS Excel Hodnocení vybraných stropních konstrukcí Závěr Studie 2 - MULTIKRITERIÁLNÍ OTIMALIZAČNÍ ÚLOHA Optimalizační proměnné a účelová funkce Parametry konstrukce a omezující podmínky Výpočet pomocí Řešitele MS Excel Hodnocení vybraných stropních konstrukcí Závěr Studie 3 HODNOCENÍ A OPTIMALIZACE VLIVU STAVEBNÍCH KONSTRUKCÍ NA ŽIVOTNÍ PROSTŘEDÍ BEES Hodnocení vybrané konstrukce Závěr LITERATURA... 35

3 3 1. ÚVOD Snížení spotřeby materiálových a energetických zdrojů je jedním z dílčích úkolů trvale udržitelné výstavby. Optimalizace tvaru a vyztužení betonových konstrukcí tak má významný vliv na velikost výsledných environmentálních dopadů navržené konstrukce. Následující studie ukazují možné přístupy v oblasti optimalizací železobetonových stropních konstrukcí. Cílem optimalizací stropních konstrukcí v environmentálních souvislostech je snížení zatížení životního prostředí prostřednictvím snížení spotřeby neobnovitelných surovinových a energetických zdrojů, snížení spotřeby svázané energie, snížení svázaných škodlivých emisí a to především CO 2 a SO 2, snížení množství odpadů po dožití konstrukce a zkvalitnění funkčních vlastností. V oblasti optimalizace tvaru stropních konstrukcí již proběhla celá řada analýz, které jasně vymezily potenciál žebrových a kazetových stropních konstrukcí jako konstrukcí, které svým tvarem a charakterem představují efektivní konstrukci z hlediska spotřeby konstrukčních materiálů a jejích statických parametrů. Nevýhodou těchto konstrukcí je však komplikovaný tvar bednění, jež je často eliminován využitím stropních tvarovek nebo vložek, které však nezajišťují kompaktní povrch stropního podhledu. Nevýhodu nekompaktního a nerovného podhledu žebrové nebo kazetové stropní konstrukce, který je nutné následně omítat, eliminují stropní konstrukce komůrkového průřezu. Schéma optimalizovaného komůrkového průřezu je na obr. 1. Jedná se o monolitickou žebrovou konstrukci s vložkami, které jsou uloženy na spodní prefabrikované podhledové desce, s integrovanou hlavní ohybovou a smykovou výztuží žeber, z betonu typu SCC (samozhutnitelný beton - Self-Compacting Concrete) nebo FRCC (vláknové cementové kompozity - Fibre Reinforced Cementitious Composites) tl. cca 30 mm. Obr. 1) Schéma optimalizovaného železobetonového komůrkového průřezu s vložkami Pro následující studie bylo použito šesti různých druhů stropních vložek, které reprezentují současný trend ve vývoji vylehčení železobetonových stropních konstrukcí. Jednotlivá schémata průřezů stropních vložek jsou uvedena na obr. 2. 2a) vložka betonová dutinová 2b) vložka štěpkocementová 2c) vložka keramická dutinová 2d) vložka z pěnového polystyrenu

4 4 2e) vložka pórobetonová 2f) vložka z recyklovaného plastu Obr. 2) Schémata průřezů použitých stropních vložek 2. Studie 1 - MONOKRITERIÁLNÍ OTIMALIZAČNÍ ÚLOHA První studie se zabývá využitím metody matematické optimalizace pro optimalizaci železobetonového komůrkového průřezu v environmentálních souvislostech. Za tímto účelem byl v programu Microsoft Excel vytvořen optimalizační algoritmus, který je schopen optimalizovat klasický výřez komůrkového/žebrového stropu postupně podle různých kritérií. Zvolenými kritérii v rámci této studie jsou svázané emise CO 2, SO 2, energie a poslední nikoli však co do významnosti cena. 2.1 Optimalizační proměnné a účelová funkce Úloha pracuje se čtyřmi optimalizačními proměnnými. Jedná se o geometrické optimalizační proměnné: a) celková tloušťka stropní konstrukce h; b) tloušťka horní železobetonové stropní desky h f ; c) šířka žebra b w ; d) plocha hlavní ohybové výztuže A S. Z hlediska průběhu optimalizačního procesu jsou uvažovány jako kontinuální proměnné. Účelová funkce F(x i ) = E i = V C.e C,i + V S.e S,i + V F.e F,i, kde: E i.. výsledná hodnota účelové funkce; V C objem betonu v optimalizovaném průřezu [mm 3 ]; V S objem oceli v optimalizovaném průřezu [mm 3 ]; V F objem materiálu stropní vložky v optimalizovaném průřezu [mm 3 ]; e C,i jednotkové hodnoty optimalizačního kritéria pro beton; e S,i jednotkové hodnoty optimalizačního kritéria pro ocel; e F,i jednotkové hodnoty optimalizačního kritéria pro materiál stropní vložky; i... i = 1,, 4; index představuje jednotlivá optimalizační kritéria, tedy: 1) cena - e C,C ; e S,C a e F,C [Kč/m 3 ]; 2) svázané emise CO 2 - e C,eCO2 ; e S,eCO2 a e F,eCO2 [kg CO 2 ekviv./kg]; 3) svázané emise SO 2 - e C,eSO2 ; e S,eSO2 a e F,eSO2 [g SO 2 ekviv./kg]; 4) svázaná energie - e C,EE ; e S,EE a e F,EE [MJ/kg]. Účelová funkce F(x i ) je tedy definována jako suma součinů objemů materiálů obsažených v konstrukci (tedy betonu, oceli a stropní vložky) a příslušných jednotlivých hodnot pro daný materiál dle vybraného optimalizačního kritéria (ceny, svázané emise CO 2, SO 2 a svázané energie). Výpočtem minima účelové funkce (minimální cena konstrukce, minimální hodnoty svázaných emisí) je možné určit optimální hodnoty geometrických optimalizačních proměnných, při nichž je minimum účelové funkce s určitou zadanou přesností dosaženo.

5 5 2.2 Parametry konstrukce a omezující podmínky Parametry konstrukce, tzv. invarianty představují hodnoty, které se nemění v průběhu výpočtu minimální hodnoty účelové funkce a vymezují prostředí výpočtu. Jsou to parametry, které charakterizují vlastní optimalizovanou stropní konstrukci a průřez (rozpětí konstrukce, stálé a nahodilé zatížení, druhy jednotlivých materiálů betonu, oceli, stropní vložky, některé průřezové charakteristiky, výběr optimalizačního kritéria, atd.). Omezující podmínky se dají rozdělit do dvou skupin. Jsou to omezující podmínky přirozené a implicitní. Přirozené omezující podmínky (x i.min x i x i,max, i = 1,, n(4)) vymezují návrhovou oblast a představují technologická a konstrukční omezení jednotlivých geometrických optimalizačních proměnných. Implicitní omezující podmínky (g j ({x i }) 0, j = 1,, m) vymezují v daném n-rozměrném prostoru tzv. přípustnou oblast a představují omezení vycházející z vlastního posouzení optimalizovaného průřezu podle normy ČSN P ENV Navrhování betonových konstrukcí. Jedná se o tzv. podmínky chování, jež v sobě zahrnují omezení podmíněná splněním požadavků I.MS (ohyb, smyk) a II.MS (průhyb). 2.3 Výpočet pomocí Řešitele MS Excel Řešitel je jednou z mnoha funkcí tabulkového procesoru Microsoft Excel. Je součástí sady příkazů, která se někdy nazývá nástroje citlivostní analýzy. Nástroj Řešitel aplikace Microsoft Excel pracuje s nelineárním optimalizačním kódem Generalized Reduced Gradient (GRG2), který vytvořili Leon Laudon z University of Texas v Austinu a Allan Waren z Cleveland State University. Při řešení lineárních problémů optimalizační algoritmus pracuje na principu simplexní metody s ohraničenými proměnnými a metody větvení a skoku. Tyto metody zavedli John Watson a Dan Fylstra ze společnosti Frontline Systems, Inc. [4]. Řešitel pracuje se skupinou buněk, které přímo nebo nepřímo souvisejí se vzorcem cílové buňky (účelová funkce). Upravuje hodnoty v určených měněných buňkách, nazývaných měnitelné buňky (optimalizační proměnné), v závislosti na zadaných omezujících podmínkách tak, aby byl dosažen výsledek, který požadujeme v cílové buňce, tedy minimum (určitá hodnota, maximum) účelové funkce. V případě této studie jsou podle jednotlivých kritérií optimalizovány, přes zvolené geometrické optimalizační proměnné, objemy složek betonu, oceli a stropní vložky tak, aby bylo dosaženo minima účelové funkce, tedy minimální ceny stropní konstrukce nebo minimálních hodnot svázaných emisí v materiálech použitých ve stropní konstrukci. Výpočet optimálních hodnot geometrických optimalizačních proměnných probíhá v následujících krocích: a) zadání parametrů konstrukce a omezujících podmínek, výběr optimalizačního kriteria b) spuštění optimalizačního algoritmu Řešitele c) pomocné výpočty objemy jednotlivých materiálů v průřezu [m 3 ] d) výpočet implicitních omezujících podmínek I.MS ohyb e) výpočet implicitních omezujících podmínek I.MS smyk f) výpočet implicitních omezujících podmínek II.MS průhyb g) hledání minima účelové funkce F(x i ) pomocí Řešitele

6 6 Výsledkem řešené úlohy jsou optimální hodnoty geometrických optimalizačních proměnných: celková tloušťka stropní konstrukce h [mm] tloušťka horní železobetonové stropní desky h f [mm] šířka žebra b w [mm] plocha hlavní ohybové výztuže A S [mm 2 ] V první studii byly použity pro stropní konstrukci materiály s těmito parametry: materiál objemová hmotnost [kg/m 3 ] cena [Kč/m 3 ] sváz. emise CO 2 [kg CO 2 ekviv./kg] sváz. emise SO 2 [g SO 2 ekviv./kg] sváz. energie [MJ/kg] BETON C35/ ,13 0,50 0,80 OCEL R ,80 3,60 13,00 STROPNÍ VLOŽKY keramická dutinová (obr. 3a) z pěnového polystyrenu (obr. 3b) ,13 0,40 2, ,30 20,00 95,00 Tab. 1) Materiálové charakteristiky použité v optimalizačním výpočtu 3a) vložka keramická dutinová 3b) vložka z pěnového polystyrenu Obr. 3) Schémata průřezů stropních vložek použitých v první studii Na následujících obrázcích jsou uvedeny jednotlivé strany zpracovaného modelu optimalizačního výpočtu komůrkového železobetonového průřezu v prostředí Microsoft Excel. Žluté a rozbalovací buňky jsou parametry konstrukce (invarianty) zadávající se před výpočtem, modré buňky jsou optimalizační proměnné a všechny ostatní buňky jsou automaticky přepočítávány během výpočtu.

7 7 Obr. 4) Úvodní strana výpočtu s buňkami optimalizačních proměnných, omezujících podmínek a invariant

8 8 Obr. 5) Strana 2 výpočtu: pomocné výpočty, výpočet implicitních omezujících podmínek I.MS

9 9 Obr. 6) Strana 3 výpočtu: výpočet implicitních omezujících podmínek I.MS, II.MS

10 10 Obr. 7) Strana 4 výpočtu: výpočet implicitních omezujících podmínek II.MS

11 11 Obr. 8) Strana 5 výpočtu: výpočet implicitních omezujících podmínek II.MS

12 12 Obr. 9) Strana 6 výpočtu: výpočet implicitních omezujících podmínek II.MS 2.4 Hodnocení vybraných stropních konstrukcí Pro prezentaci výsledků optimalizace v první studii byly záměrně vybrány dva odlišné typy stropních vložek (viz. tab. 1, obr. 3 na str. 6), jak z hlediska statického (rozdílné objemové hmotnosti stropních vložek), tak z hlediska environmentálního zvoleny byly stropní vložky keramické dutinové a z pěnového polystyrenu. vložka keramická dutinová vložka z pěnového polystyrenu Obr. 10) Optimalizované výseky stropní konstrukce V první parametrické studii byly sledovány optimalizační proměnné, tedy geometrické charakteristiky průřezu v závislosti na užitném zatížení působícím na danou konstrukci. Teoretické rozpětí stropní konstrukce bylo uvažováno 6 m, vzdálenost žeber 500 mm, tloušťka podhledové desky 30 mm. Beton C35/45, ocel R Vložky byly použity

13 13 keramické dutinové (v grafech KD) a polystyrénové (PS). Zatížení vyjma vlastní tíhy konstrukce, stálé g k = 1,5 kn/m 2 a užitné q k = 1,0-4,0 kn/m 2. Průřezy (viz. obr. 10) byly optimalizovány podle dvou vybraných kritérií a to podle ceny a podle svázaných emisí CO 2. Optimální hodnoty geometrických charakteristik průřezů optimalizačních proměnných jsou uvedeny v následujících grafech Graf. 1 a Graf. 2. Graf. 1) A: celková tloušťka stropu h B: tloušťka horní desky h f Graf. 2) A: šířka žebra b w B: plocha hlavní ohybové výztuže A S V grafech je na první pohled zřejmá téměř lineární závislost většiny proměnných na narůstajícím užitném zatížení. Zejména celková tloušťka stropu striktně dodržuje přímou lineární závislost na zatížení ve všech optimalizačních uzlech. Drobné odchylky od linearity jsou způsobeny možností nastavení velikosti kroku optimalizačního procesu v Řešiteli, tedy reálnou rychlostí konvergence. Patrné jsou i rozdíly mezi jednotlivými stropními vložkami. Stropní konstrukce vyšetřovaný výsek průřezu nabývá u všech optimalizovaných proměnných větších absolutních hodnot u vložky keramické dutinové a to i přesto, že hodnoty svázaných emisí jsou řádově odlišné, vzhledem ke keramické vložce příznivé. Při optimalizaci dle jakéhokoli z možných čtyř kritérií (svázané emise CO 2, SO 2, energie či cena) pak tedy stropní konstrukce s keramickou dutinovou vložkou vychází méně výhodná oproti, primárně environmentálně nevýhodné, vložce z pěnového polystyrenu. Za příčinou navýšení rozměrů průřezu a plochy hlavní ohybové výztuže u stropu s keramickými dutinovými vložkami není samozřejmě nic jiného než rozdíl objemových hmotností dvou porovnávaných vložek. Zajímavé je tedy potom vlastní porovnání stropních konstrukcí z hlediska absolutních hodnot svázaných emisí v m 2 stropní konstrukce. Tedy konfrontace ekologické (keramické dutinové) vložky a dle primárních hodnot svázaných emisí krajně neekologické, přesto cenově srovnatelné, (polystyrénové) stropní vložky. Touto otázkou se dále zabývá druhá parametrická studie této úlohy.

14 14 Druhá parametrická studie vychází ze stejných okrajových podmínek jako studie první, pouze užitné zatížení není proměnné a je rovno 2,0 kn/m 2. Během studie byly oba stropní výseky optimalizovány postupně podle všech čtyř kritérií (cena, svázané emise CO 2, SO 2 a energie) a byly sledovány a zaznamenávány absolutní hodnoty ceny, svázaných emisí CO 2, SO 2 a svázané energie v jednotlivých materiálech na m 2 stropní konstrukce. Výsledky jsou prezentovány v grafech Graf. 3 až Graf. 6. Graf. 3) Optimální ceny stropních konstrukcí dle jednotlivých kritérií Optimální ceny stropních konstrukcí (Graf. 3) graf ukazuje jasnou převahu polystyrénové (PS) vložky oproti keramické dutinové (KD), čemuž nahrává především objemová hmotnost polystyrenu, jež má za následek nižší stálé zatížení a tedy nižší spotřebu betonu a oceli pro přenos celkového zatížení. Cena výseku stropní konstrukce s vložkou z pěnového polystyrénu se pak nezávisle na druhu použitého optimalizačního kritéria pohybuje okolo 750 Kč/m 2, naproti tomu u stropu s keramickou dutinovou vložkou se cena šplhá až k hranici okolo 800 Kč/m 2. Graf. 4) Optimální hodnoty svázaných emisí CO 2 stropních konstrukcí dle jednotlivých kritérií

15 15 Optimální hodnoty svázaných emisí CO 2 stropních konstrukcí (Graf. 4) zde je z grafu patrná jasná výhoda nižší objemové hmotnosti pěnového polystyrenu. Hodnota svázaných emisí CO 2 je v 1kg keramické dutinové vložky 0,13 kg CO 2 ekviv. naproti v pěnovém polystyrenu 2,3 kg CO 2 ekviv., tj. tedy téměř 18krát více. Přesto je celková hodnota příspěvku svázaných emisí CO 2 keramické vložky na celou stropní konstrukci téměř 2,5krát větší než vložky polystyrénové. Celková hodnota svázaných emisí CO 2 ve stropní konstrukci je pak na 1 m 2 u stropu s polystyrénovými vložkami nižší cca o 12 kg CO 2 ekviv./m 2 a to i díky menší spotřebě betonu v konstrukci. Graf. 5) Optimální hodnoty svázaných emisí SO 2 stropních konstrukcí dle jednotlivých kritérií Optimální hodnoty svázaných emisí SO 2 stropních konstrukcí (Graf. 5) zde jsou celkové hodnoty emisí u obou konstrukcí téměř totožné. Polystyren, přestože jeho hodnota svázaných emisí SO 2 v 1kg činí 20 g SO 2 ekviv. oproti 0,4 g SO 2 ekviv. dutinové keramické vložky, přispívá díky své výše uvedené výhodě pouze asi o 1,2krát více oproti vložce keramické a vzhledem k nižšímu objemu betonu a oceli a tedy i nižším celkovým emisím za tyto materiály, jeví se stropní konstrukce s vložkami z polystyrenu i z hlediska svázaných emisí SO 2 jako výhodnější. Graf. 6) Optimální hodnoty svázaných energií stropních konstrukcí dle jednotlivých kritérií

16 16 Optimální hodnoty svázaných energií stropních konstrukcí (Graf. 6) zde je rozdíl materiálových konstant, tedy svázaných energií v 1 kg materiálu vložek nejmarkantnější, u polystyrénu je téměř 40krát vyšší, 95 MJ. Přesto i zde je polystyrén výhodnějším materiálem a to opět díky své objemové hmotnosti a nižší následné spotřebě betonu a oceli v konstrukci. 2.5 Závěr Cílem první úlohy bylo ukázat chování jednotlivých parametrů průřezu v závislosti na zatížení, materiálech použitých v konstrukci a zejména na použití jednotlivých kritérií použitých v tom kterém optimalizačním procesu. Z výsledků vyplývají příspěvky jednotlivých materiálů použitých v konstrukci na celkovou hodnotu optimalizovaných veličin. V praxi však těžko můžeme předpokládat hojnou aplikaci konstrukcí, které budou sice šetrné k životnímu prostředí, ale jejich cena bude vysoká. Proto je návrh konstrukcí využitelných v praxi otázkou komplexního přístupu k problematice optimalizace a vede k řešení multikriteriálního problému optimalizace, pro který je tato úloha podkladem a podrobněji je uveden ve Studii Studie 2 - MULTIKRITERIÁLNÍ OTIMALIZAČNÍ ÚLOHA Druhá studie se zabývá využitím multikriteriální optimalizace pro optimalizaci železobetonového komůrkového průřezu v environmentálních souvislostech. Za tímto účelem byl v programu Microsoft Excel vytvořen optimalizační algoritmus, který je schopen optimalizovat klasický výřez komůrkového/žebrového stropu dle různých kritérií najednou. Zvolenými kritérii v rámci této studie jsou rovněž svázané emise CO 2, SO 2, energie a cena. 3.1 Optimalizační proměnné a účelová funkce Úloha opět pracuje, stejně jako v úloze předchozí, se čtyřmi optimalizačními proměnnými, jedná se o geometrické optimalizační proměnné: a) celková tloušťka stropní konstrukce h; b) tloušťka horní železobetonové stropní desky h f ; c) šířka žebra b w ; d) plocha hlavní ohybové výztuže A S. Z hlediska průběhu optimalizačního procesu jsou uvažovány jako kontinuální proměnné. Účelová funkce L(x i ) = Σw i.l i,norm = w 1.L 1,norm + w 2.L 2,norm + w 3.L 3,norm + w 4.L 4,norm, kde: L(x i ). výsledná hodnota účelové funkce; w i. váhové konstanty [ - ]; L i,norm normované účelové funkce, L i,norm = (L i (x) L i,min )/(L i,max L i,min ) [ - ], L i,min minimální hodnota účelové funkce; L i,max maximální hodnota účelové funkce; L i (x) hodnota účelové funkce pro aktuální optimalizační proměnné; i... i = 1,, 4; index představuje jednotlivá optimalizační kritéria, tedy: 1) cena [Kč/m 3 ]; 2) svázané emise CO 2 [kg CO 2 ekviv./kg]; 3) svázané emise SO 2 [g SO 2 ekviv./kg]; 4) svázaná energie [MJ/kg].

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb 16 Optimální hodnoty svázaných energií stropních konstrukcí (Graf. 6) zde je rozdíl materiálových konstant, tedy svázaných energií v 1 kg materiálu vložek nejmarkantnější, u polystyrénu je téměř 40krát

Více

ENVIRONMENTÁLNÍ OPTIMALIZACE KOMŮRKOVÉ ŽELEZOBETONOVÉ DESKY

ENVIRONMENTÁLNÍ OPTIMALIZACE KOMŮRKOVÉ ŽELEZOBETONOVÉ DESKY ENVIRONMENTÁLNÍ OPTIMALIZACE KOMŮRKOVÉ ŽELEZOBETONOVÉ DESKY Ctislav Fiala, Petr Hájek 1 Úvod Optimalizace v environmentálních souvislostech se na přelomu tisíciletí stává významným nástrojem v oblasti

Více

STUDIE OPTIMALIZACE ŽELEZOBETONOVÉHO PRŮŘEZU V ENVIRONMENTÁLNÍCH SOUVISLOSTECH

STUDIE OPTIMALIZACE ŽELEZOBETONOVÉHO PRŮŘEZU V ENVIRONMENTÁLNÍCH SOUVISLOSTECH STUDIE OPTIMALIZACE ŽELEZOBETONOVÉHO PRŮŘEZU V ENVIRONMENTÁLNÍCH SOUVISLOSTECH CASE STUDY ENVIRONMENTAL BASED OPTIMIZATION OF REINFORCED CONCRETE CROSS-SECTION Ctislav Fiala 1 Abstract The optimization

Více

KAZETOVÉ STROPY PRO VELKÉ ROZPONY ENVIRONMENTÁLNÍ ANALÝZA

KAZETOVÉ STROPY PRO VELKÉ ROZPONY ENVIRONMENTÁLNÍ ANALÝZA KAZETOVÉ STROPY PRO VELKÉ ROZPONY ENVIRONMENTÁLNÍ ANALÝZA Petr Hájek, Ctislav Fiala 1 Úvod Železobetonové kazetové konstrukce se tradičně uplatňují především při realizaci velkorozponových zastropení.

Více

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb

Více

Praha 22. 10. 2008. Ing. Ctislav Fiala IČ: 71590196, DIČ: CZ7903240488

Praha 22. 10. 2008. Ing. Ctislav Fiala IČ: 71590196, DIČ: CZ7903240488 IČ: 71590196, DIČ: CZ7903240488 Elišky Krásnohorské 717/25, 323 00 Plzeň tel: +420 603 720 308 ENVIRONMENTÁLNÍ A MATERIÁLOVÁ ANALÝZA STROPNÍCH KONSTRUKCÍ NA VELKÉ ROZPONY Srovnání plné a kazetové křížem

Více

KOMŮRKOVÝ ŽELEZOBETONOVÝ PANEL S VLOŽKAMI Z RECYKLOVANÉHO PLASTU

KOMŮRKOVÝ ŽELEZOBETONOVÝ PANEL S VLOŽKAMI Z RECYKLOVANÉHO PLASTU KOMŮRKOVÝ ŽELEZOBETONOVÝ PANEL S VLOŽKAMI Z RECYKLOVANÉHO PLASTU Ctislav Fiala, Petr Hájek, Vlastimil Bílek 1 Úvod Optimalizace spotřeby konstrukčních materiálů zaměřená na redukci čerpání primárních neobnovitelných

Více

HODNOCENÍ ŽIVOTNÍHO CYKLU ŽELEZOBETONOVÝCH KONSTRUKCÍ

HODNOCENÍ ŽIVOTNÍHO CYKLU ŽELEZOBETONOVÝCH KONSTRUKCÍ HODNOCENÍ ŽIVOTNÍHO CYKLU ŽELEZOBETONOVÝCH KONSTRUKCÍ Ctislav Fiala 1 Úvod Optimalizace spotřeby konstrukčních materiálů a jejich složení zaměřená na redukci spotřeby primárních neobnovitelných surovin

Více

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad) KERAMICKÉ STROPY HELUZ MIAKO Tabulky statických únosností stropy HELUZ MIAKO Obsah tabulka č. 1 tabulka č. 2 tabulka č. 3 tabulka č. 4 tabulka č. 5 tabulka č. 6 tabulka č. 7 tabulka č. 8 tabulka č. 9 tabulka

Více

Betonové stropy s vložkami z recyklovaných materiálů

Betonové stropy s vložkami z recyklovaných materiálů Betonové stropy s vložkami z recyklovaných materiálů Petr Hájek Snaha o úsporu konstrukčních materiálů pocházejících z primárních surovinových zdrojů patří mezi základní principy trvale udržitelného rozvoje.

Více

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled Petr Hájek, Ctislav Fiala Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

STROPNÍ PANEL S VLOŽKAMI Z RECYKLOVANÉHO SMĚSNÉHO PLASTU JAKO PROGRESIVNÍ ALTERNATIVA K DOSUD PŘEVLÁDAJÍCÍM ŘEŠENÍM

STROPNÍ PANEL S VLOŽKAMI Z RECYKLOVANÉHO SMĚSNÉHO PLASTU JAKO PROGRESIVNÍ ALTERNATIVA K DOSUD PŘEVLÁDAJÍCÍM ŘEŠENÍM STROPNÍ PANEL S VLOŽKAMI Z RECYKLOVANÉHO SMĚSNÉHO PLASTU JAKO PROGRESIVNÍ ALTERNATIVA K DOSUD PŘEVLÁDAJÍCÍM ŘEŠENÍM FLOOR PANEL LIGHTENED BY RECYCLED NON-SORTED PLASTIC FILLERS AS A PROGRESSIVE ALTERNATIVE

Více

MA MULTIKRITERIÁLNÍ HODNOCENÍ A OPTIMALIZACE KONSTRUKCÍ

MA MULTIKRITERIÁLNÍ HODNOCENÍ A OPTIMALIZACE KONSTRUKCÍ MA MULTIKRITERIÁLNÍ HODNOCENÍ A OPTIMALIZACE KONSTRUKCÍ Petr Hájek KRITÉRIA PRO HODNOCENÍ A OPTIMALIZACI odpady CO 2 emise SO 2 emise. trvanlivost stavební konstrukce spotřeba energie NO x emise spolehlivost

Více

P Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝM ROZPĚTÍM NÁSLEDUJÍCÍCH POLÍ

P Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝM ROZPĚTÍM NÁSLEDUJÍCÍCH POLÍ P Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝ ROZPĚTÍ NÁSLEDUJÍCÍCH POLÍ Projekt : FRVŠ 011 - Analýza metod výpočtu železobetonových lokálně podepřených desek Řešitelský

Více

STATICKÉ TABULKY stěnových kazet

STATICKÉ TABULKY stěnových kazet STATICKÉ TABULKY stěnových kazet OBSAH ÚVOD.................................................................................................. 3 SATCASS 600/100 DX 51D................................................................................

Více

Únosnost kompozitních konstrukcí

Únosnost kompozitních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:

Více

K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku

K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku 1 Zadání úlohy Vypracujte návrh betonového konstrukčního prvku (průvlak,.). Vypracujte návrh prvku ve variantě železobetonová konstrukce

Více

Téma 8: Optimalizační techniky v metodě POPV

Téma 8: Optimalizační techniky v metodě POPV Téma 8: Optimalizační techniky v metodě POPV Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola báňská

Více

PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení

PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení STROPNÍ KERAMICKÉ PANELY POD - Stropní panely určené pro stropní a střešní ploché konstrukce, uložené na zdivo, průvlaky nebo do přírub ocelových

Více

Předběžný Statický výpočet

Předběžný Statický výpočet ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra konstrukcí pozemních staveb Předběžný Statický výpočet Stomatologická klinika s bytovou částí v Praze 5 Bakalářská práce Jan Karban Praha,

Více

STATICKÝ VÝPOČET ŽELEZOBETONOVÉHO SCHODIŠTĚ

STATICKÝ VÝPOČET ŽELEZOBETONOVÉHO SCHODIŠTĚ Investor - Obec Dolní Bečva,Dolní Bečva 340,Dolní Bečva 756 55 AKCE : Půdní vestavba v ZŠ Dolní Bečva OBJEKT : SO 01 Základní škola Budova A- STATICKÝ VÝPOČET ŽELEZOBETONOVÉHO SCHODIŠTĚ Autor: Dipl.Ing.

Více

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015 2015 STAVBA STUPEŇ Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem DSP STATICKÝ POSUDEK srpen 2015 ZODP. OSOBA Ing. Jiří Surovec POČET STRAN 8 Ing. Jiří Surovec istruct Trabantská 673/18, 190

Více

Požární odolnost v minutách 15 30 45 60 90 120 180 1 Stropy betonové, staticky určité 1),2) (s ustálenou vlhkostí), bez omítky, druh DP1 REI 60 10 1)

Požární odolnost v minutách 15 30 45 60 90 120 180 1 Stropy betonové, staticky určité 1),2) (s ustálenou vlhkostí), bez omítky, druh DP1 REI 60 10 1) Tabulka 2 Stropy Požární odolnost v minutách 15 30 45 90 1 1 Stropy betonové, staticky určité, (s ustálenou vlhkostí), bez omítky, druh DP1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Desky z hutného betonu), výztuž v

Více

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem Stavba: Stavební úpravy skladovací haly v areálu firmy Strana: 1 Obsah: PROSTAB 1. Technická zpráva ke statickému výpočtu 2 2. Seznam použité literatury 2 3. Návrh a posouzení monolitického věnce nad okenním

Více

PREFABRIKOVANÉ STROPNÍ SYSTÉMY. Inteligentní řešení

PREFABRIKOVANÉ STROPNÍ SYSTÉMY. Inteligentní řešení PREFABRIKOVANÉ STROPNÍ SYSTÉMY Inteligentní řešení 1 STROPNÍ KERAMICKÉ PANELY POD Použití a konstrukce: - Stropní panely určené pro stropní a střešní ploché konstrukce, uložené na zdivo, průvlaky nebo

Více

Základy Zateplením stávajícího objektu dojde k minimálnímu (zanedbatelnému) přitížení stávajících základů.

Základy Zateplením stávajícího objektu dojde k minimálnímu (zanedbatelnému) přitížení stávajících základů. PROJEKT PRO STAVEBNÍ POVOLENÍ ST 01 TECHNICKÁ ZPRÁVA Obsah a) popis navrženého konstrukčního systému stavby, výsledek průzkumu stávajícího stavu nosného systému stavby při návrhu její změny... 3 Úvod...

Více

ENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU

ENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU P Ř Í K L A D Č. 4 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU Projekt : FRVŠ 011 - Analýza metod výpočtu železobetonových lokálně podepřených desek Řešitelský kolektiv : Ing. Martin

Více

Srovnání konstrukce krovu rodinného domu při použití krytiny GERARD a betonové krytiny

Srovnání konstrukce krovu rodinného domu při použití krytiny GERARD a betonové krytiny Srovnání konstrukce krovu rodinného domu při použití krytiny GERARD a betonové krytiny 1. Úvod Podklady použité pro srovnání: ČSN 730035 Zatížení stavebních konstrukcí, ČSN 731701 Dřevěné konstrukce -

Více

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA SADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 06. DESKA PROSTĚ ULOŽENÁ DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: SŠS JIHLAVA ŠABLONY REGISTRAČNÍ ČÍSLO PROJEKTU:CZ.1.09/1.5.00/34.0284

Více

Průvodní zpráva ke statickému výpočtu

Průvodní zpráva ke statickému výpočtu Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství

Více

Problematika je vyložena ve smyslu normy ČSN 73 0035 Zatížení stavebních konstrukcí.

Problematika je vyložena ve smyslu normy ČSN 73 0035 Zatížení stavebních konstrukcí. ZATÍŽENÍ KONSTRUKCÍ 4. cvičení Problematika je vyložena ve smyslu normy ČSN 73 0035 Zatížení stavebních konstrukcí. Definice a základní pojmy Zatížení je jakýkoliv jev, který vyvolává změnu stavu napjatosti

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

LEHKÝ PREFABRIKOVANÝ SKELET PRO ENERGETICKY EFEKTIVNÍ BUDOVY

LEHKÝ PREFABRIKOVANÝ SKELET PRO ENERGETICKY EFEKTIVNÍ BUDOVY LEHKÝ PREFABRIKOVANÝ SKELET PRO ENERGETICKY EFEKTIVNÍ BUDOVY Petr Hájek, Ctislav Fiala, Jan Tywoniak, Vlastimil Bílek 1 Úvod Energeticky efektivní budovy jsou často realizovány jako dřevostavby. Důvodem

Více

2.1.3. www.velox.cz TECHNICKÉ VLASTNOSTI VÝROBKŮ

2.1.3. www.velox.cz TECHNICKÉ VLASTNOSTI VÝROBKŮ Podrobné technické vlastnosti jednotlivých výrobků jsou uvedeny v následujících přehledných tabulkách, řazených podle jejich použití ve stavebním systému VELOX: desky (VELOX WS, VELOX WSD, VELOX WS-EPS)

Více

Statický výpočet střešního nosníku (oprava špatného návrhu)

Statický výpočet střešního nosníku (oprava špatného návrhu) Statický výpočet střešního nosníku (oprava špatného návrhu) Obsah 1 Obsah statického výpočtu... 3 2 Popis výpočtu... 3 3 Materiály... 3 4 Podklady... 4 5 Výpočet střešního nosníku... 4 5.1 Schéma nosníku

Více

Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová

Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová KERAMICKÉ STROPNÍ KONSTRUKCE ČSN EN 1992 Principy návrhu 28.3.2012 1 Ing. Zuzana Hejlová Přechod z národních na evropské normy od 1.4.2010 Zatížení stavebních konstrukcí ČSN 73 0035 = > ČSN EN 1991 Navrhování

Více

P Ř Í K L A D Č. 3 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE STŘEDNÍM PRUHU

P Ř Í K L A D Č. 3 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE STŘEDNÍM PRUHU P Ř Í K L A D Č. 3 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE STŘEDNÍM PRUHU Projekt : FRVŠ 011 - Analýza metod výpočtu železobetonových lokálně podepřených desek Řešitelský kolektiv : Ing. Martin

Více

GlobalFloor. Cofraplus 60 Statické tabulky

GlobalFloor. Cofraplus 60 Statické tabulky GlobalFloor. Cofraplus 6 Statické tabulky Cofraplus 6. Statické tabulky Cofraplus 6 žebrovaný profil pro kompozitní stropy Polakovaná strana Použití Profilovaný plech Cofraplus 6 je určen pro výstavbu

Více

STATICKÉ POSOUZENÍ K AKCI: RD TOSCA. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB

STATICKÉ POSOUZENÍ K AKCI: RD TOSCA. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB STATICKÉ POSOUZENÍ K AKCI: RD TOSCA Obsah: 1) statické posouzení krovu 2) statické posouzení stropní konstrukce 3) statické posouzení překladů a nadpraží 4) schodiště 5) statické posouzení založení stavby

Více

PS01 POZEMNÍ STAVBY 1

PS01 POZEMNÍ STAVBY 1 PS01 POZEMNÍ STAVBY 1 SVISLÉ NOSNÉ KONSTRUKCE 1 Funkce a požadavky Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb)

Více

Libor Kasl 1, Alois Materna 2

Libor Kasl 1, Alois Materna 2 SROVNÁNÍ VÝPOČETNÍCH MODELŮ DESKY VYZTUŽENÉ TRÁMEM Libor Kasl 1, Alois Materna 2 Abstrakt Příspěvek se zabývá modelováním desky vyztužené trámem. Jsou zde srovnány různé výpočetní modely model s prostorovými

Více

STROPNÍ KONSTRUKCE Petr Hájek 2009

STROPNÍ KONSTRUKCE Petr Hájek 2009 STROPNÍ KONSTRUKCE FUNKCE A POŢADAVKY Základní funkce a poţadavky architektonická funkce a poţadavky - půdorysná variabilita - estetická funkce - konstrukční tloušťka stropu statická funkce a poţadavky

Více

VYSOKÉ U ENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ U ENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV BETONOVÝCH A ZDNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF CONCRETE AND MASONRY STRUCTURES ŽELEZOBETONOVÁ

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ Katedra konstrukcí pozemních staveb BAKALÁŘSKÁ PRÁCE D.1.2.6 Statické posouzení 2016 Lukáš Hradečný OBSAH: A. SCHÉMA KONSTRUKCE... 3 A.1 IDENTIFIKACE

Více

Příklad 3: NÁVRH A POSUDEK TRAPÉZOVÉHO PLECHU A STROPNICE

Příklad 3: NÁVRH A POSUDEK TRAPÉZOVÉHO PLECHU A STROPNICE Příklad 3: NÁVRH A POSUDEK TRAPÉZOVÉHO PLECHU A STROPNICE Navrhněte a posuďte prostě uloženou ocelobetonovou stropnici na rozpětí 6 m včetně posouzení trapézového plechu jako ztraceného bednění. - rozteč

Více

K AZETOVÉ STROPNÍ KONSTRUKCE PRO VELKÉ ROZPONY

K AZETOVÉ STROPNÍ KONSTRUKCE PRO VELKÉ ROZPONY K AZETOVÉ STROPNÍ KONSTRUKCE PRO VELKÉ ROZPONY WAFFLE-SLAB FLOORS F O R L A R G E SPANS P ETR HÁJEK, CTISLAV FIALA Železobetonové kazetové konstrukce se tradičně uplatňují při realizaci velkorozponových

Více

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica)

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Obsah: 1. Úvod 4 2. Statické tabulky 6 2.1. Vlnitý profil 6 2.1.1. Frequence 18/76 6 2.2. Trapézové profily 8 2.2.1. Hacierba 20/137,5

Více

BETON V ENVIRONMENTÁLNÍCH SOUVISLOSTECH. Ctislav Fiala, Magdaléna Kynčlová

BETON V ENVIRONMENTÁLNÍCH SOUVISLOSTECH. Ctislav Fiala, Magdaléna Kynčlová BETON V ENVIRONMENTÁLNÍCH SOUVISLOSTECH Ctislav Fiala, Magdaléna Kynčlová České vysoké učení technické v Praze, Fakulta stavební, Katedra konstrukcí pozemních staveb, Thákurova 7, 166 29, Praha 6 - Dejvice,

Více

GlobalFloor. Cofrastra 40 Statické tabulky

GlobalFloor. Cofrastra 40 Statické tabulky GlobalFloor. Cofrastra 4 Statické tabulky Cofrastra 4. Statické tabulky Cofrastra 4 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Použití Profilovaný plech Cofrastra 4 je určen pro

Více

STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB

STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN Obsah: 1) statické posouzení krovu 2) statické posouzení stropní konstrukce 3) statické posouzení překladů a nadpraží 4) schodiště 5) statické posouzení založení

Více

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB Cvičení Program cvičení 1. Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení, návrh

Více

NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁMU

NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁMU NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁU Navrhněte ohybovou výztuž do železobetonového nosníku uvedeného na obrázku. Kromě vlastní tíhy je nosník zatížen bodovou silou od obvodového pláště ostatním stálým rovnoměrným

Více

ČVUT v Praze, fakulta stavební Katedra betonových a zděných konstrukcí Zadání předmětu RBZS obor L - zimní semestr 2015/16

ČVUT v Praze, fakulta stavební Katedra betonových a zděných konstrukcí Zadání předmětu RBZS obor L - zimní semestr 2015/16 ČVUT v Praze, fakulta stavební Katedra betonových a zděných konstrukcí Zadání předmětu RBZS obor L - zimní semestr 2015/16 Přehled úloh pro cvičení RBZS Úloha 1 Po obvodě podepřená deska Úloha 2 Lokálně

Více

NK 1 Konstrukce. Volba konstrukčního systému

NK 1 Konstrukce. Volba konstrukčního systému NK 1 Konstrukce Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta

Více

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA SADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 09. DESKA DOKONALE VETKNUTÁ - NÁVRH DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: SŠS JIHLAVA ŠABLONY REGISTRAČNÍ ČÍSLO PROJEKTU:CZ.1.09/1.5.00/34.0284

Více

ENVIRONMENTÁLNÍ ASPEKTY VYUŽITÍ VLÁKNOBETONŮ V KONSTRUKCÍCH BUDOV

ENVIRONMENTÁLNÍ ASPEKTY VYUŽITÍ VLÁKNOBETONŮ V KONSTRUKCÍCH BUDOV ENVIRONMENTÁLNÍ ASPEKTY VYUŽITÍ VLÁKNOBETONŮ V KONSTRUKCÍCH BUDOV Petr Hájek, Magdaléna Kynčlová, Ctislav Fiala 1 Úvod Optimalizace spotřeby konstrukčních materiálů a jejich složení zaměřená na redukci

Více

Tradiční vložkový strop Vysoká variabilita Snadná a rychlá montáž Vhodný i pro svépomocnou výstavbu Výborná požární odolnost Ekologická nezávadnost

Tradiční vložkový strop Vysoká variabilita Snadná a rychlá montáž Vhodný i pro svépomocnou výstavbu Výborná požární odolnost Ekologická nezávadnost Norma/předpis Vložky: STO 030-039999 Nosníky: ČSN, EN, STO... dle dodavatele Beton: ČSN EN 206-1 Popis výrobku a použití Ytong bílý strop je variabilní stropní konstrukce, která se zhotovuje na stavbě

Více

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb 30 4. Studie 3 HODNOCENÍ A OPTIMALIZACE VLIVU STAVEBNÍCH KONSTRUKCÍ NA ŽIVOTNÍ PROSTŘEDÍ Hodnocení a optimalizace pozemních staveb jako celků, stejně tak jako jednotlivých konstrukcí, konstrukčních prvků

Více

GlobalFloor. Cofrastra 70 Statické tabulky

GlobalFloor. Cofrastra 70 Statické tabulky GlobalFloor. Cofrastra 7 Statické tabulky Cofrastra 7. Statické tabulky Cofrastra 7 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Polakovaná strana Použití Profilovaný plech Cofrastra

Více

PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY. Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku.

PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY. Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku. PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku Skladba stropu: Podlaha, tl.60mm, ρ=400kg/m 3 Vlastní žb deska, tl.dle návrhu,

Více

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení, návrh

Více

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení,

Více

NK 1 Konstrukce. Co je nosná konstrukce?

NK 1 Konstrukce. Co je nosná konstrukce? NK 1 Konstrukce Přednášky: Prof. Ing. Milan Holický, DrSc., Doc. Ing. Karel Lorenz, CSc., FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc. - Uspořádání konstrukce - Zásady

Více

ENERGETICKY A ENVIRONMENTÁLNĚ EFEKTIVNÍ KONSTRUKCE S POUŽITÍM HPC

ENERGETICKY A ENVIRONMENTÁLNĚ EFEKTIVNÍ KONSTRUKCE S POUŽITÍM HPC ENERGETICKY A ENVIRONMENTÁLNĚ EFEKTIVNÍ KONSTRUKCE S POUŽITÍM HPC Ing. Ctislav Fiala, Prof. Ing. Petr Hájek CSc., Ing. Magdaléna Kynčlová, České vysoké učení technické v Praze, Fakulta stavební, Katedra

Více

Část 5.3 Spřažená ocelobetonová deska

Část 5.3 Spřažená ocelobetonová deska Část 5.3 Spřažená ocelobetonová deska P. Schaumann, T. Trautmann University of Hannover J. Žižka České vysoké učení technické v Praze ZADÁNÍ Navrhněte průřez trapézového plechu spřažené ocelobetonové desky,

Více

CEMVIN FORM Desky pro konstrukce ztraceného bednění

CEMVIN FORM Desky pro konstrukce ztraceného bednění CEMVIN FORM Desky pro konstrukce ztraceného bednění CEMVIN CEMVIN FORM - Desky pro konstrukce ztraceného bednění Vysoká pevnost Třída reakce na oheň A1 Mrazuvzdornost Vysoká pevnost v ohybu Vhodné do vlhkého

Více

RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn

RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn Zdivo zadní stěny suterénu je namáháno bočním zatížením od zeminy (lichoběžníkovým). Obecně platí, že je výhodné, aby bočně namáhaná

Více

YQ U PROFILY, U PROFILY

YQ U PROFILY, U PROFILY YQ U Profil s integrovanou tepelnou izolací Minimalizace tepelných mostů Jednoduché ztracené bednění monolitických konstrukcí Snadná a rychlá montáž Norma/předpis ČSN EN 771-4 Specifikace zdicích prvků

Více

Témata profilové části ústní maturitní zkoušky z odborných předmětů

Témata profilové části ústní maturitní zkoušky z odborných předmětů Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019

Více

MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ

MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ 20. Betonářské dny (2013) Sborník Sekce ČT1B: Modelování a navrhování 2 ISBN 978-80-87158-34-0 / 978-80-87158-35-7 (CD) MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ Jaroslav Navrátil 1,2

Více

STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH:

STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH: STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH: 1 ZADÁNÍ A ŘEŠENÁ PROBLEMATIKA, GEOMETRIE... 2 2 POLOHA NA MAPĚ A STANOVENÍ KLIMATICKÝCH ZATÍŽENÍ... 2 2.1 SKLADBY STŘECH... 3 2.1.1 R1 Skladba střechy na objektu

Více

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN

Více

Nástroj. pro optimalizaci spřažených ocelobetonových. silničních mostů

Nástroj. pro optimalizaci spřažených ocelobetonových. silničních mostů Nástroj pro optimalizaci spřažených ocelobetonových silničních mostů 2 CompLOT Composite Bridges Lifecycle Optimization Tool Nástroj optimalizující spřažené trámové mosty na základě LCC a LCA Návrh optimální

Více

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA SADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 04. VYZTUŽOVÁNÍ - TRÁMY DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: SŠS JIHLAVA ŠABLONY REGISTRAČNÍ ČÍSLO PROJEKTU:CZ.1.09/1.5.00/34.0284

Více

VODOROVNÉ NOSNÉ KONSTRUKCE

VODOROVNÉ NOSNÉ KONSTRUKCE VODOROVNÉ NOSNÉ KONSTRUKCE STAVITELSTVÍ I. FAKULTA ARCHITEKTURY ČVUT PRAHA VODOROVNÉ NOSNÉ KONSTRUKCE Základní funkce a požadavky architektonická funkce a požadavky - variabilita vnitřního prostoru - estetická

Více

Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem

Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem 2.5 Příklady 2.5. Desky Příklad : Deska prostě uložená Zadání Posuďte prostě uloženou desku tl. 200 mm na rozpětí 5 m v suchém prostředí. Stálé zatížení je g 7 knm -2, nahodilé q 5 knm -2. Požaduje se

Více

DRÁTKOBETON PRO PODZEMNÍ STAVBY

DRÁTKOBETON PRO PODZEMNÍ STAVBY DRÁTKOBETON PRO PODZEMNÍ STAVBY ABSTRAKT Václav Ráček 1 Jan Vodička 2 Jiří Krátký 3 Matouš Hilar 4 V příspěvku bude uveden příklad návrhu drátkobetonu pro prefabrikované segmentové ostění tunelu. Bude

Více

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D Ing. Jakub Kršík Ing. Tomáš Pail Navrhování betonových konstrukcí 1D Úvod Nové moduly dostupné v Hlavním stromě Beton 15 Původní moduly dostupné po aktivaci ve Funkcionalitě projektu Staré posudky betonu

Více

Témata profilové části ústní maturitní zkoušky z odborných předmětů

Témata profilové části ústní maturitní zkoušky z odborných předmětů Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NOSNÁ ŽELEZOBETONOVÁ KONSTRUKCE OBCHODNÍHO DOMU REINFORCED CONCRETE STRUCTURE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NOSNÁ ŽELEZOBETONOVÁ KONSTRUKCE OBCHODNÍHO DOMU REINFORCED CONCRETE STRUCTURE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV BETONOVÝCH A ZDĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF CONCRETE AND MASONRY STRUCTURES NOSNÁ ŽELEZOBETONOVÁ

Více

PROJEKTOVÁ DOKUMENTACE

PROJEKTOVÁ DOKUMENTACE PROJEKTOVÁ DOKUMENTACE STUPEŇ PROJEKTU DOKUMENTACE PRO VYDÁNÍ STAVEBNÍHO POVOLENÍ (ve smyslu přílohy č. 5 vyhlášky č. 499/2006 Sb. v platném znění, 110 odst. 2 písm. b) stavebního zákona) STAVBA INVESTOR

Více

Základní rozměry betonových nosných prvků

Základní rozměry betonových nosných prvků Základní rozměry betonových nosných prvků Desky Trámy Průvlaky Sloupy Ohybové momenty [knm] na nosníku Prostě uloženýnosník q[kn/m] 1/8 ql 2 Oboustranně vetknutý nosník 1/12 ql 2 1/12 ql 2 q[kn/m] 1/24

Více

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova

Více

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( )

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( ) Program předmětu YMVB 1. Modelování konstrukcí (17.2.2012) 1.1 Globální a lokální modelování stavebních konstrukcí Globální modely pro konstrukce jako celek, lokální modely pro návrh výztuže detailů a

Více

TECHNICKÁ ZPRÁVA + STATICKÝ VÝPOČET

TECHNICKÁ ZPRÁVA + STATICKÝ VÝPOČET TECHNICKÁ ZPRÁVA + STATICKÝ VÝPOČET realizačního projektu Akce: Investor: Místo stavby: Stupeň: Projektant statiky: KANALIZACE A ČOV TŘEBENICE - ČOV sdružený objekt obec Třebenice, 675 52 Lipník u Hrotovic

Více

VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM

VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce

Více

F 1.2 STATICKÉ POSOUZENÍ

F 1.2 STATICKÉ POSOUZENÍ zak. č.47/4/2012 ZNALECTVÍ, PORADENSTVÍ, PROJEKČNÍ STUDIO F 1.2 STATICKÉ POSOUZENÍ Název stavby: Dům č.p. 72 ulice Jiřího Trnky Výměna oken, zateplení fasády Místo stavby: ulice Jiřího Trnky č.p. 72 738

Více

Úpravy schodiště v kulturním domě Dražice č.p.166

Úpravy schodiště v kulturním domě Dražice č.p.166 Úpravy schodiště v kulturním domě Dražice č.p.166 Investor: Obec Dražice Kú: Dražice u Tábora DOKUMENTACE PRO PROVEDENÍ STAVBY ( dle přílohy č.13 k vyhlášce č. 499/2006 Sb.) D.1.2. STAVEBNĚ KONSTRUKČNÍ

Více

OBSAH. 1. zastřešení 2. vodorovné nosné konstrukce 3. svislé nosné konstrukce 4. založení stavby

OBSAH. 1. zastřešení 2. vodorovné nosné konstrukce 3. svislé nosné konstrukce 4. založení stavby OBSAH 1. zastřešení 2. vodorovné nosné konstrukce 3. svislé nosné konstrukce 4. založení stavby místo stavby: RD č.p. 411 na parc. 1279, Praha 22 - Uhříněves investor: Letá Alexandra a Eugen Letý, U kombinátu

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

D.1.2 a. STAVBA: MALOKAPACITNÍ UBYTOVACÍ ZAŘÍZENÍ - MIROŠOV U JIHLAVY na p.č. 1/1 k.ú. Mirošov u Jihlavy (695459)

D.1.2 a. STAVBA: MALOKAPACITNÍ UBYTOVACÍ ZAŘÍZENÍ - MIROŠOV U JIHLAVY na p.č. 1/1 k.ú. Mirošov u Jihlavy (695459) P R O J E K T Y, S. R. O, H A V Í Ř S K Á 1 6, 5 8 6 0 1 K A N C E L Á Ř : C H L U M O V A 1, 5 8 6 0 1 J I H L A V A J I H L A V A D.1.2 a TECHNICKÁ ZPRÁVA STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ STAVBA: MALOKAPACITNÍ

Více

1 TECHNICKÁ ZPRÁVA KE STATICKÉMU VÝPOČTU

1 TECHNICKÁ ZPRÁVA KE STATICKÉMU VÝPOČTU TECHNICKÁ ZPRÁVA KE STATICKÉMU VÝPOČTU ÚVOD Předmětem tohoto statického výpočtu je návrh opěrných stěn, které budou realizovány v rámci projektu Chodník pro pěší Pňovice. Statický výpočet je zpracován

Více

AKCE : Stavební úpravy BD Kostřinská 577/2, Praha 8. TECHNICKÁ ZPRÁVA a STATICKÝ VÝPOČET

AKCE : Stavební úpravy BD Kostřinská 577/2, Praha 8. TECHNICKÁ ZPRÁVA a STATICKÝ VÝPOČET AKCE : Stavební úpravy BD Kostřinská 77/, Praha 8 TECHNICKÁ ZPRÁVA a STATICKÝ VÝPOČET Místo stavby : Kostřinská 77/, Praha 8 Objednatel : PlanPoint, s.r.o. Bubenská 8/7, 70 00 Praha 7 Investor : SVJ Kostřinská

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

4. cvičení výpočet zatížení a vnitřních sil

4. cvičení výpočet zatížení a vnitřních sil 4. cvičení výpočet zatížení a vnitřních sil Výpočet zatížení stropní deska Skladbu podlahy a hodnotu užitného zatížení převezměte z 1. úlohy. Uvažujte tloušťku ŽB desky, kterou jste sami navrhli ve 3.

Více

Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017

Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017 Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním

Více

Nosné izolační ložisko NIL EX Y-G 20

Nosné izolační ložisko NIL EX Y-G 20 Nosné izolační ložisko NIL EX Y-G 20 STATICKÉ PARAMETRY - 1.ČÁST Schéma Nosné izolační ložisko NIL Y-G 20 EX (krytí 20+30) pro balkóny ze systému NEICO výšky 200 mm 2ФR10+2ФR10 balkón 200 mm strop 80 mm

Více

TECHNICKÉ ÚDAJE STAVEBNÍHO SYSTÉMU HEBEL

TECHNICKÉ ÚDAJE STAVEBNÍHO SYSTÉMU HEBEL Platnost od 5. 11. 2018 TECHNICKÉ ÚDAJE STAVEBNÍHO SYSTÉMU HEBEL www.hebel.cz TECHNICKÉ ÚDAJE STAVEBNÍHO SYSTÉMU HEBEL Tvárnice Hebel expediční a technické údaje Tloušťka zdiva* Značka Rozměry d v š Obj.

Více

POZEMNÍ STAVITELSTVÍ I

POZEMNÍ STAVITELSTVÍ I POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

2.2.4. www.velox.cz VODOROVNÉ KONSTRUKCE 2.2.4.1 POPIS STROPNÍCH KONSTRUKCÍ. Zpět na obsah

2.2.4. www.velox.cz VODOROVNÉ KONSTRUKCE 2.2.4.1 POPIS STROPNÍCH KONSTRUKCÍ. Zpět na obsah 2.2.4.1 POPIS STROPNÍCH KONSTRUKCÍ 1. Stropy s využitím prefabrikovaných stropních prvků jako ztraceného bednění 1.1 s vytvořením ŽB monolitických žebírkových stropů osové vzdálenosti žeber - 00 mm s šířkou

Více