Ekonometrická analýza panelových dat s aplikací na vybavenost domácností

Rozměr: px
Začít zobrazení ze stránky:

Download "Ekonometrická analýza panelových dat s aplikací na vybavenost domácností"

Transkript

1 Ekonomtrcká analýza panlových dat s aplkací na vybavnost domácností Ekonomtrcká analýza panlových dat s aplkací na vybavnost domácností # Zuzana Fíglová Úvod Panlová data přdstavují spcfcký typ pozorování, ktrá kombnují průřzová a časově uspořádaná data Znamná to, ž několk subjktů, např domácnost, frmy nbo státy, jsou pozorovány v několka časových obdobích Průřzová složka j označována ndxm =,,, a časová složka j rovna t =,,, Panlová data tak umožňují zvětš datový soubor, snžují kolnaru mz vysvětlujícím proměnným a umožňují tstovat složější konomtrcké modly Ekonomtrcký modl, v ktrém j ndognní proměnná dskrétního charaktru (katgorální nbo kvalatvní vlčnou), nazývám modlm dskrétní volby (Hušk, 003) Často jd o dchotomckou ndognní proměnnou nabývající pouz hodnot nbo 0, ktré odpovídají výsldkům bnární volby, kdy rozhodující s ndvduální subjkt můž vol pouz mz dvěma altrnatvam Uvažujm modl bnární volby panlových dat y = X β + µ + ν =,,,, t =,,,, () kd y přdstavuj ndx užčnost -tého ndvduálního subjktu v čas t př nějaké akc, například př nákupu automoblu, volbě povolání, apod, X K vktor xognních proměnných, µ fkt ndvduálního subjktu, ν náhodná složka s normálním rozdělním áhodná složka ν zachytává vlv vynchaných proměnných v modlu, ktré mohou zodpovídat různým faktorům: faktorům, ktré jsou typcké jnom pro jdnotlvá časová období, faktorům, ktré zachytávají rozdíly mz jdnotlvým subjkty, al nmění s v čas, faktorům, ktré jsou typcké jak pro jdnotlvé subjkty, tak pro různá časová období # Článk byl zpracován jako jdn z výstupů výzkumného projktu Ekonomtrcká analýza mkrokonomckých procsů pomocí modlů panlových dat, aplkac v konomckém prostřdí ČR rgstrovaného u Grantové agntury Čské rpublky pod vdnčním číslm 40/04/0756 Ing Zuzana Fíglová asstntka; Katdra konomtr, Fakulta nformatky a statstky, VŠE v Praz, zuzanafglova@hotmalcom 3

2 Acta Oconomca Pragnsa, roč 5, č, 007 Hodnota µ přdstavuj ndvduální fkt subjktu, což znamná, ž dvě pozorování určého subjktu v různém období s budou víc podobná nž dvě pozorování o různých subjktch v stjném období Když j tnto ndvduální fkt µ korlován s X jdná s o modl s fxním fkty panlových dat, s ktrým budm dál pracovat V případě nkorlovanost µ s X jd o modl s náhodným fkty panlových dat Brusch a Pagan (Grn, 003) navrhl tst, ktrý slouží k urční, zda datový soubor vyhovuj spíš modlům s fxním č náhodným fkty nto tst j založný na rzduích získaných pomocí mtody njmnších čtvrců stovaná hypotéza o tom, ž mzskupnový rozptyl komponnt j nulový, j v tvaru H H 0 : : σ σ = 0 0 stovací statstka založná na Lagrangově multplkátoru má tvar = t= LM = () ( ) = t= stovací statstka LM má χ rozdělní s jdním stupněm volnost V případě nzamítnutí nulové hypotézy s jdná o modl s fxním fkty, v opačném případě jd o modl s náhodným fkty Pro ndognní proměnnou y platí = y když y > 0 a y = 0 když y 0 (3) U modlu bnární dskrétní volby s fxním fkty tdy platí, ž výběrová pravděpodobnost Y nabývá hodnoty a p j opačná pravděpodobnost, ž Y má hodnotu 0 P( y = ) = p( y > 0) = P( ν > X β µ ) = F( X β + µ ), (4) kd F() j dstrbuční funkc U logového modlu bnární dskrétní volby přdpokládám logstckou dstrbuční funkc a označím j jako Λ, u probového modlu uvažujm normální dstrbuční funkc s označním Φ Logový modl bnární dskrétní volby s fxním fkty má tvar P( y X β + µ + ν = X ) = (5) X β + µ + ν + 4

3 Ekonomtrcká analýza panlových dat s aplkací na vybavnost domácností Mtody odhadu modlů bnární volby panlových dat Jdnou z mtod odhadu modlu bnární volby s fxním fkty j mtoda npodmíněné maxmální věrohodnost pro logový modl dfnovaná v tvaru L Y Y = Λ( X + µ ) [ Λ( X + µ )] (6) = t= Odhadová funkc modlu bnární volby s fxním fkty j mtodou podmíněné maxmální věrohodnost (Chambrlan, 980) v tvaru P L = P,,, Y = y Y = y Y = y Y (7) = t= Pro případ, kdy datový soubor obsahuj vlký počt pozorování a =, můžou nastat tyto čtyř možnost (Y,Y ) = (0,0), (0,), (,0) a (,), a tdy pro P( Y = 0 a Y = 0 Y = 0) =, P( Y = a Y = Y = ) =, takž v případě, když s hodnoty těchto pozorování zlogarmují, jsou rovny nul Avšak pro další dvě možnost platí P(0,) P( Y = 0 a Y = Y = ) =, (8) P(0,) + P(,0) z čhož vyplývá, ž podmíněná pravděpodobnost pro tyto dvě pozorování j po nálžé úpravě rovna podílu X β X β X β + Podobně to platí pro případ, kdy Y = a Y = 0 Mz další mtody odhadu modlu bnární dskrétní volby patří mtoda tzv maxmálního skór (Mansk, 975), v níž maxmalzujm počt správných přdpovědí pomocí funkc MS( β ) = (y ){X β 0} (9) = Další nparamtrckou mtodou odhadu j tzv Krnlova odhadová funkc, kd j funkční hodnota F vypočítaná podl 5

4 Acta Oconomca Pragnsa, roč 5, č, 007 kd w ( ) = z y F ( z), (0) w ( z) y = w (z) = K[(z z )/(λs)], K(r ) = P(r )[ P(r )], P(r) = [ + xp( cr)] Konstanta c = ( π / 3) 0, 553 s používá k standardzac logstckého rozdělní Paramtr λ j vyrovnávající paramtr Problmatku odhadování modlů bnární dskrétní volby panlových dat j třba chápat jako otvřní problému a článk j przntován přdvším jako mtodcký Podobně jako u lnárního rgrsního modlu panlových dat, tak u nlnárních modlů j potřba tstovat přítomnost htrogny v datovém souboru Hausmanův tst spcfkac (978) v případě nzamítnutí nulové hypotézy o homogně j odhad mtodou npodmíněné podmíněné maxmální věrohodnost (MV) konzstntní, al nfktvní u mtody podmíněné MV V případě nzamítnutí altrnatvní hypotézy o htrogně j odhad mtodou npodmíněné MV nkonzstntní a odhad mtodou podmíněné MV j konzstntní a fktvní stovací statstka Husmanova tstu spcfkac j rovna ˆ ˆ χ = ( β ) ( [PMV] [MV]) ( ˆ ˆ PMV β MV Var Var β PMV β MV ) () stovací statstka má χ rozdělní s počtm stupňů volnost odpovídajícímu počtu odhadnutých paramtrů v modlu 3 Aplkac modlů dskrétní volby panlových dat K lustrac modlů panlových dat byla použa data Čského statstckého úřadu z Statstky rodnných účtů za roky z 3 70 domácností yto údaj byly roztříděny do dst skupn s stjnou čtností podl výš ročního hrubého pněžního příjmu v korunách na jdnoho člna domácnost, tj datový soubor tvořlo 50 pozorování V všch dst příjmových skupnách byla zjštěna vybavnost domácností přdměty dlouhodobé spotřby Endognní proměnnou v modlu byla vybavnost domácností osobním počítačm a xognní proměnné přdstavovaly čstý příjm (Příjm) na osobu a jdnotlvé pozorované roky (Rok 000 až Rok 004) Časovou proměnnou Rok 000 př spcfkac všch modlů vynchám, abychom zabránl vznku prfktní multkolnary Pro porovnání bylo použo násldujících statckých modlů panlových dat: lnární pravděpodobnostní modl panlových dat s fxním fkty (LPMPDFE), nazývaný modl njmnších čtvrců s bnární závslou proměnnou anbo modl založný na analýz rozptylu a základě přdpokladu o náhodní složc 6

5 Ekonomtrcká analýza panlových dat s aplkací na vybavnost domácností ν vím, ž mtoda njmnších čtvrců ( odhadová funkc v rámc skupn ) dává njlpší lnární nvychýlný odhad nznámých paramtrů tohoto modlu Podl tstu Brusch a Pagana j hodnota LM statstky rovna 53,68, což vdlo k zamítnutí nulové hypotézy o modlu s náhodným fkty logový modl bnární dskrétní volby panlových dat s fxním fkty (LOGPDFE), odhadnutý mtodou npodmíněné maxmální věrohodnost (5), probový modl bnární dskrétní volby panlových dat s fxním fkty (PROBPDFE) odhadnutý mtodou npodmíněné maxmální věrohodnost (5) Výsldky odhadnutých paramtrů spolu s hodnotam t-statstky (χ -statstky) všch modlů jsou uvdny v tabulc č Uvdné odhadové mtody jsou součástí softwarového produktu Lmdp, s jhož pomocí byly provdny tyto odhady Odhady paramtrů modlů bnární dskrétní volby panlových dat Konstanta 0,660 (7,889) LPMPDFE LOGPDFE PROBPDFE F x n í f k t y Příjm 0, (3,308) 0, (0,056) 0,760 5 (0,05) Rok 00 0,0343 (,586) 0,08 (0,33) 0,44 (0,35) Rok 00 0,065 (3,009) 0,79 (0,) 0,594 (0,06) Rok 003 0,95 (5,497) 0,670 (0,47) 0,3685 (0,43) Rok 004 0,75 (7,905) 0,8389 (0,608) 0,5055 (0,66) M a r g n á l n í f k t y Příjm 0, (3,308) 0, (0,06) 0, (0,07) Rok 00 0,0343 (,586) 0,597 (0,03) 0,034 (0,9) Rok 00 0,065 (3,009) 0,85 (0,08) 0,0387 (0,08) Rok 003 0,95 (5,497) 0,4790 (0,357) 0,0 (0,38) Rok 004 0,75 (7,905) 0,696 (0,373) 0,477 (0,567) U modlu LPMPDFE kofcnt vícnásobné dtrmnac dosáhl poměrně vysokou hodnotu R = 0,6977 a na základě F-tstu (F (5,44) = 0,3) zamítám nulovou hypotézu o statstcké nvýznamnost R Všchny odhadnuté paramtry tohoto modlu kromě proměnné Rok 00 jsou statstcky významné na pětprocntní hladně významnost J splněn přdpoklad o kladných znaménkách odhadnutých paramtrů, například, zvýšní příjmu o jdnu příjmovou skupnu zvyšuj pravděpodobnost, ž tato domácnost bud vybavna osobním počítačm Podobně lz ntrprtovat další odhadnuté paramtry V modlu LPMPDFE zamítám hypotézu o homoskdastcě pomocí Whova tstu, kd tstovací statstka χ (6) = 7,07 s p-hodnotou rovnou 0,009 a F (6,37) = 3,8 p-hodnotou rovnou 0,03 Rovněž nzamítám hypotézu 7

6 Acta Oconomca Pragnsa, roč 5, č, 007 o autokorlac prostřdnctvím tstu Lagrangova multplkátoru s tstovací statstkou χ () = 3,580 s p-hodnotou rovnou 0,000 a F (,43) = 38,376 s p-hodnotou 0,000 U modlů LOGPDFE a PROBPDFE j splněn přdpoklad o kladných znaménkách odhadnutých paramtrů, avšak všchny odhadnuté paramtry jsou statstcky nvýznamné Porovnání všch modlů navzájm lz přnásobním vhodnou hodnotou (Grn, 003) V další část tabulky jsou uvdny hodnoty margnálních fktů modlů bnární volby V případě LPMPDFE jsou tyto hodnoty rovny přímo hodnotám odhadnutých paramtrů U modlů LOGPDFE a PROBPDFE jsou hodnoty margnálních fktů vypočítány vždy pro jdnotlvou umělou nula-jdnotkovou proměnnou za podmínky, ž za hodnoty ostatních umělých nula-jdnotkových proměnných dosadím jjch průměry Suma margnálních fktů každé proměnné j vždy rovna jdné a změna přdstavuj rozdíl mz zahrnutím a nzahrnutím dané proměnné do modlu 4 Závěr ato prác obsahuj přhld mtod odhadu nlnárních modlů bnární volby panlových dat, a to zjména logového a probového modlu Byly uvdny čtyř základní mtody odhadu pro případ modlu panlových dat s fxním fkty Část těchto mtod byla aplkovaná na konkrétní data z oblast vybavnost domácností přdměty dlouhodobé spotřby v závslost na xognních proměnných příjm a čas, ktré byly statstcky významné jnom u lnárního pravděpodobnostního modlu bnární dskrétní volby panlových dat Odhady byly provdny pomocí softwaru Lmdp Lratura [] CHAMBERLAI, G, 980: Analyss of Covaranc wh Qualatv Data h Rvw of Economc Studs 47/, Economtrcs Issu, str 5 38, 980 [] GREEE, W H, 003: Economtrc Analyss w Jrsy, Prntc Hall, 003 [3] HSIAO, C, 003: Analyss of Panl Data Cambrdg Unvrsy Prss, 003 [4] HUŠEK, R, 003: Aplkovaná konomtr: tor a prax Praha: Profssonal Publshng, 003 [5] MADDALA, G S, 987: Lmd Dpndnt Varabl Modls Usng Panl Data h Journal of Human Rsourcs /3, 987, str [6] MASKI, C F, 975: Maxmum Scor Estmaton of th Stochastc Utly Modl of Choc Journal of Economtrcs 3, 975, str 05 8 [7] WOOLDRIDGE, J 00: Economtrc Analyss of Cross Scton and Panl Data MI Prss, 00 8

7 Ekonomtrcká analýza panlových dat s aplkací na vybavnost domácností Ekonomtrcká analýza panlových dat s aplkací na vybavnost domácností Zuzana Fíglová Abstrakt Panlová data můžm dfnovat jako spcfcký typ dat, ktré kombnují časové řady a průřzová data, tj víc subjktů j pozorováno v několka časových obdobích Použí této kombnac př analýz dat přnáší mnoho výhod v podobě zvětšného datového souboru, snížní kolnary mz vysvětlujícím proměnným a umožňuj tstovat složější konomtrcké modly K lustrac modlů panlových dat byla použa data Čského statstckého úřadu z Statstky rodnných účtů za roky Data o domácnostch obsahovala dmografcké charaktrstky, údaj o domácnost, čstý příjm, hodnocní vlastní socokonomcké suac Endognní proměnnou v modlu byla vybavnost domácnost osobním počítačm a jjí vývoj běhm dané prody pomocí tří konomtrckých modlů Klíčová slova: modl bnární volby; panlová data; statstka rodnných účtů; přdměty dlouhodobé spotřby Economtrc analyss of panl data appld to houshold charactrstcs Abstract Panl data ar spcfc data whr cass ar obsrvd at two or mor tm prods hs approach brngs many advantags: largr datast, dcrasng collnary btwn xognous varabls and usng advancd conomtrc modls h panl data modls wr appld to data from th Houshold Budgt Survys carrd out by th Czch Statstcal Offc n ordr to analyz choc bhavor of housholds h data on housholds ncludd dmographc charactrstcs of ndvduals, housng, houshold amns, nt ncom, and opnons of housholds about thr own sococonomc suaton W analyzd th rol of ncom as a dtrmnant of PC ownrshp and s dvlopmnt through th obsrvd prod by usng thr statc conomtrc modls wh panl data Ky words: bnary choc modl; panl data; houshold budgt survy; durabl goods JEL classfcaton: C3, C5 9

část 8. (rough draft version)

část 8. (rough draft version) Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

1. Okrajové podmínky pro tepeln technické výpo ty

1. Okrajové podmínky pro tepeln technické výpo ty 1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol

Více

Aplikace VAR ocenění tržních rizik

Aplikace VAR ocenění tržních rizik Aplkac VAR ocnění tržních rzk Obsah: Zdroj rzka :... 2 Řízní tržního rzka... 2 Měřní tržního rzka... 3 Modly... 4 Postup výpočtu... 7 Nastavní modlu a gnrování Mont-Carlo scénářů... 7 Vlčny vyjadřující

Více

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm

Více

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

USE OF ELASTICITY CATEGORY IN FORMING OF PERSPECTIVE AGRICULTURAL POLICY TOWARDS SUSTAINABLE DEVELOPMENT

USE OF ELASTICITY CATEGORY IN FORMING OF PERSPECTIVE AGRICULTURAL POLICY TOWARDS SUSTAINABLE DEVELOPMENT VYUŽITÍ KATEGORIE RUŽNOSTI ŘI KONCIOVÁNÍ ERSEKTIVNÍ ZEMĚDĚLSKÉ OLITIKY K TRVALE UDRŽITELNÉMU ROZVOJI USE OF ELASTICITY CATEGORY IN FORMING OF ERSECTIVE AGRICULTURAL OLICY TOWARDS SUSTAINABLE DEVELOMENT

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.

Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D. Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.

Více

Časové řady typu I(0) a I(1)

Časové řady typu I(0) a I(1) Aca oconomca pragnsa 6: (2), sr. 7-, VŠE Praha, 998. ISSN 572-343 (Rukops) Časové řady ypu I() a I() Josf Arl Úvod Př analýz konomckých časových řad má smysl rozlšova saconární a nsaconární časové řady.

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

I. MECHANIKA 8. Pružnost

I. MECHANIKA 8. Pružnost . MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.

Více

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina Přdnáša č 6 Náhodné vličiny pro analyticou statistiu Při výpočtch v analyticé statistic s používají vhodné torticé vličiny, tré popisují vlastnosti vytvořných tstovacích charatristi Mzi njpoužívanější

Více

ANALÝZA KATEGORIÁLNÍCH DAT PROBLÉM VÍCENÁSOBNÉ VOLBY V ODPOVĚDI. Julie Rendlová. Robust, Jeseníky,

ANALÝZA KATEGORIÁLNÍCH DAT PROBLÉM VÍCENÁSOBNÉ VOLBY V ODPOVĚDI. Julie Rendlová. Robust, Jeseníky, ANALÝZA KATEGORIÁLNÍCH DAT PROBLÉM VÍCENÁSOBNÉ VOLB V ODPOVĚDI Juli Rndlová Katdra matmatické analýzy a aplikací matmatiky, Přírodovědcká fakulta, Univrzita Palackého v Olomouci Robust, Jsníky, 5. 9. 26

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 1

10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 1 10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA slid 1 Přdmětm přdnášky jsou tři modly agrgátní nabídky, v ktrých v krátkém období výstup pozitivně závisí na cnové hladině. Krátkodobý invrzní vztah mzi inflací

Více

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unvrzta Tomáš Bat v Zlíně LABORATORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Vntřní odpor zdroj a voltmtru Jméno: Ptr Luzar Skupna: IT II/ Datum měřní: 0.října 2007 Obor: Informační tchnolog Hodnocní: Přílohy:

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

PŘÍKLAD 2 1. STANOVENÍ ÚSPOR TEPLA A ROČNÍ MĚRNÉ POTŘEBY TEPLA 1.1. GEOMETRICKÉ VLASTNOSTI BUDOVY 1.2. CHARAKTERISTIKA STAVEBNÍCH KONSTRUKCÍ

PŘÍKLAD 2 1. STANOVENÍ ÚSPOR TEPLA A ROČNÍ MĚRNÉ POTŘEBY TEPLA 1.1. GEOMETRICKÉ VLASTNOSTI BUDOVY 1.2. CHARAKTERISTIKA STAVEBNÍCH KONSTRUKCÍ PŘÍKLAD 2 1. STANOVENÍ ÚSPOR TEPLA A ROČNÍ MĚRNÉ POTŘEBY TEPLA pro clkové zatplní panlového domu Běhounkova 2457-2462, Praha 5 Objkt má dvět nadzmní podlaží a jdno podlaží podzmní, částčně pod trénm. Objkt

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál) INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

11. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 0

11. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 0 11. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA slid 0 Přdmětm přdnášky jsou tři modly agrgátní nabídky, v ktrých v krátkém období výstup pozitivně závisí na cnové hladině. Krátkodobý invrzní vztah mzi inflací

Více

1. ÚVOD 2. PŘENOSOVÉ KANÁL 2.2. RICEŮV KANÁL 2.1. GAUSSŮV KANÁL 2009/

1. ÚVOD 2. PŘENOSOVÉ KANÁL 2.2. RICEŮV KANÁL 2.1. GAUSSŮV KANÁL 2009/ 1. ÚVOD Př šířní rádových sgnálů s mz vysílačm a přjímačm uplatňuj několk přnosových jvů. Sgnál s můž šířt přímo, j-l mz vysílačm a přjímačm tzv. optcká vdtlnost. Většnou s však mz nm nacházjí njrůznější

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními

Více

Přednáška X. Testování hypotéz o kvantitativních proměnných

Přednáška X. Testování hypotéz o kvantitativních proměnných Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Cvičení ze statistiky - 8. Filip Děchtěrenko

Cvičení ze statistiky - 8. Filip Děchtěrenko Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5) pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku

Více

KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD

KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD 40 KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD POD TLAKEM míč, hmotnost, rovnováha, pumpička, tlak, idální plyn, pružná srážka, koficint rstituc

Více

Zjednodušený výpočet tranzistorového zesilovače

Zjednodušený výpočet tranzistorového zesilovače Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M

Více

8 Coxův model proporcionálních rizik I

8 Coxův model proporcionálních rizik I 8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu - 1 - Tato Příloha 307 j součástí článku: ŠKORPÍK, Jří. Enrgtcké blanc lopatkových strojů, Transformační tchnolog, 2009-10. Brno: Jří Škorpík, [onln] pokračující zdroj, ISSN 1804-8293. Dostupné z http://www.transformacn-tchnolog.cz/nrgtckblanc-lopatkovych-stroju.html.

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček Aplkace L-Ma metody na scntgrafcké vyšetření příštítných tělísek P. Karhan, P. Fala, J. Ptáček Vyšetření příštítných tělísek dagnostka hyperparatyreózy: lokalzace tkáně příštítných tělísek neexstence radofarmaka

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

Řešení Navierových-Stokesových rovnic metodou

Řešení Navierových-Stokesových rovnic metodou Řšní Navrovýc-Stoksovýc rovnc mtodou končnýc prvků Lbor Črmák prosnc 2009 Označní: Abstrakt Txt obsauj klasckou a varační formulac 2D-úloy nstlačtlnéo nstaconárnío proudění, pops prostorové dskrtzac mtodou

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometre Zobecněná MNČ Cvčení 7 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady. E(u) = náhodné vlvy se vzájemně vynulují. E(uu T ) = σ I n konečný a konstantní

Více

Komentovaný vzorový příklad výpočtu suterénní zděné stěny zatížené kombinací normálové síly a ohybového momentu

Komentovaný vzorový příklad výpočtu suterénní zděné stěny zatížené kombinací normálové síly a ohybového momentu Fakulta stavbní ČVUT v Praz Komntovaný vzorový příklad výpočtu sutrénní zděné stěny zatížné kombinací normálové síly a ohybového momntu Výuková pomůcka Ing. Ptr Bílý, 2012 Tnto dokumnt vznikl za finanční

Více

Statistická šetření a zpracování dat.

Statistická šetření a zpracování dat. Statstcká šetření a zpracování dat. Vyjadřovací prostředky ve statstce STATISTICKÉ TABULKY Typckým vyjadřovacím prostředkem statstky je číslo formalzovaným nástrojem číselného vyjádření je statstcká tabulka.

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tsty - NOV NOV tsty s rovádí s omocí aalýzy roztylů NOV souhré tsty ro víc ěž dva výběry. NOV aramtrcká tstováí charaktrstk z zámých rozdělí

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

347/2012 Sb. VYHLÁŠKA

347/2012 Sb. VYHLÁŠKA 347/2012 Sb. VYHLÁŠKA z dn 12. října 2012, ktrou s stanoví tchnicko-konomické paramtry obnovitlných zdrojů pro výrobu lktřiny a doba životnosti výrobn lktřiny z podporovaných zdrojů Změna: 350/2013 Sb.

Více

ÚVOD DO TEORIE ODHADU. Martina Litschmannová

ÚVOD DO TEORIE ODHADU. Martina Litschmannová ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TEHNIKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADEH VIČENÍ Č. Ing. Ptra Schribrová, Ph.D. Ostrava Ing. Ptra Schribrová, Ph.D. Vsoká škola báňská Tchnická univrzita

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Příručka pro návrh technických izolací

Příručka pro návrh technických izolací Njšrší nabídka tplných, zvukových a protpožárních zolací Příručka pro návrh tchnckých zolací Včtně vzorových příkladů počítaných programm IsoCal IsoCal výpočtní program pro návrh tchnckých zolací Snžování

Více

ε, budeme nazývat okolím bodu (čísla) x

ε, budeme nazývat okolím bodu (čísla) x Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž

Více

STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA

STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA Martin Radina a, Ivo Schindlr a, Tomáš Kubina a, Ptr Bílovský a Karl Čmil b Eugniusz Hadasik c a) VŠB Tchnická univrzita Ostrava,

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Testy. Pavel Provinský. 19. listopadu 2013

Testy. Pavel Provinský. 19. listopadu 2013 Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování

Více

SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaiser, Emil Košťál xkaiserj@feld.cvut.cz

SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaiser, Emil Košťál xkaiserj@feld.cvut.cz SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaisr, Emil Košťál xkaisrj@fld.cvut.cz ČVUT, Fakulta lktrotchnická, katdra Radiolktroniky Tchnická 2, 166 27 Praha 6 1. Úvod Článk s

Více

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice 1 ěřní barvnosti studijní matriál Ing. Ondrj Panák, ondrj.panak@upc.cz Katdra polygrafi a fotofyziky, Fakulta chmicko-tchnologická, Univrzita Pardubic Úvod Abychom mohli či už subjktivně nbo objktivně

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometre Zobecněná MNČ Cvčení 8 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady. E(u) = náhodné vlvy se vzájemně vynulují. E(u u T ) = σ I n konečný a konstantní

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Náhodné veličiny, náhodné chyby

Náhodné veličiny, náhodné chyby Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

Analýza panelových dat

Analýza panelových dat Petr Novák Petr Novák * Úvod V posledních desetletích výrazně roste zájem o problematku analýzy panelových dat. A to jak ve výzkumu socálních vazeb a způsobů chování obyvatelstva na straně jedné, tak př

Více

VZNIK TRHLIN V BETONU VLIVEM NESILOVÝCH ÚČINKŮ INITIATION OF CONCRETE CRACKING DUE TO NON-FORCE EFFECTS

VZNIK TRHLIN V BETONU VLIVEM NESILOVÝCH ÚČINKŮ INITIATION OF CONCRETE CRACKING DUE TO NON-FORCE EFFECTS VZNIK TRHLIN V BETONU VLIVEM NESILOVÝCH ÚČINKŮ INITIATION OF CONCRETE CRACKING DUE TO NON-FORCE EFFECTS Mark Vnklr, Jaroslav Procházka Článk s zabývá vznkm trhln v btonových konstrukcích vlvm nslových

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Jihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ

Jihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ Jihočská univrzita v Čských Budějovicích Katdra fyziky Modly atomu Vypracovala: Brounová Zuzana M-F/SŠ Datum: 3. 5. 3 Modly atomu První kvalitativně správnou přdstavu o struktuř hmoty si vytvořili již

Více

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A,

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A, Přijímací zkoušk do NMS MATEMATIKA, zadání A, jméno: V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna správná. Zakroužkujt ji! Za každou správnou odpověď získát uvdné bod. Za nsprávnou

Více

H - Řízení technologického procesu logickými obvody

H - Řízení technologického procesu logickými obvody H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu

Více

Absolutní nebo relativní?

Absolutní nebo relativní? Statstcká odynaka II dální plyn chcká rovnováha a kntka bsolutní nbo rlatvní? absolutní ají přrozné a unvrzální rrnční stavy ( K), ( a), ( ), n ( ol),, rlatvní číslnou hodnotu ůž přsoudt jn zěně U, H,,

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

Testy statistických hypotéz

Testy statistických hypotéz Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

Přednáška 6: Lineární, polynomiální a nelineární regrese

Přednáška 6: Lineární, polynomiální a nelineární regrese Čské vsoké učí tchcké v Prz Fkult orčích tchologí Ktdr tortcké ortk Evropský socálí od Prh & EU: Ivstu do vší budoucost I-AD Algort dt gu (/ Přdášk 6: Lárí, poloálí lárí rgrs Pvl Kordík, FIT, Czch Tchcl

Více

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 ) Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

12. cvičení z PST. 20. prosince 2017

12. cvičení z PST. 20. prosince 2017 1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace

Více

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu. Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

Časové řady a jejich periodicita pokračování

Časové řady a jejich periodicita pokračování Časové řady a jejich periodicita pokračování Jana Klicnarová Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Dekompozice časových řad Jak

Více

Validation of the selected factors impact on the insured accident

Validation of the selected factors impact on the insured accident 6 th Internatonal Scentfc Conference Managng and Modellng of Fnancal Rsks Ostrava VŠB-TU Ostrava, Faculty of Economcs,Fnance Department 0 th th September 202 Valdaton of the selected factors mpact on the

Více

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha této kapitol: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjí části) budm idaliovat

Více

Odhady - Sdružené rozdělení pravděpodobnosti

Odhady - Sdružené rozdělení pravděpodobnosti Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více